
Computational Materials Science 2010, 49(25-34)

Simulation of discontinuous dynamic recrystallization in

pure Cu using a probabilistic cellular automaton
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Abstract

A cellular automaton algorithm with probabilistic cell switches is employed in the simula-

tion of dynamic discontinuous recrystallization. Recrystallization kinetics are formulated

on a microlevel where, once nucleated, new grains grow under the driving pressure avail-

able from the competing processes of stored energy minimization and boundary energy

reduction. Simulations of the microstructural changes in pure Cu under hot compression

are performed where the influence of different thermal conditions are studied. The model

is shown to capture both the microstructural evolution in terms of grain size and grain

shape changes and also the macroscopic flow stress behavior of the material. The latter

gives the expected transition from single- to multiple-peak serrated flow with increasing

temperature. Further, the effects on macroscopic flow stress by varying the initial grain

size is analyzed and the model is found to replicate the shift towards more serrated flow

as the initial grain size is reduced. Conversely, the flow stress is stabilized by larger initial

grain sizes. The extent of recrystallization as obtained from simulations are compared to

classical JMAK theory and proper agreement with theory is established. In addition, by

tracing the strain state during the simulations, a post-processing step is devised to obtain

the macroscopic deformation of the cellular automaton domain, giving the expected defor-

mation of the equiaxed recrystallized grains due to the macroscopic compression.

Keywords: Recrystallization, Cellular automaton, Hot compression, Copper

1 Introduction

Parameters such as temperature and strain rate have a major impact on the microstruc-

tural evolution during thermomechanical processing of metallic materials. Together with
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knowledge of the initial microstructure, these parameters provide tools to control several

properties of the final product. An important aspect of the material microstructure is the

grain size, control of which allows beneficial combinations of e.g. strength and ductility to

be obtained. One of the main metallurgical processes controlling the grain size is dynamic

recrystallization, frequently observed in metals during hot working. The recrystallization

is driven by a lowering of the Gibbs energy. This may occur either by continuous recovery

processes through annihilation and rearrangement of dislocations or by a discontinuous

formation of new, relatively dislocation-free, grains through recrystallization. Nucleation

of new grains predominantly occur at pre-existing grain boundaries at sites of sufficient

stored energy. The recrystallization then proceeds through the migration of high-angle

grain boundaries, normally taken as boundaries with a relative misorientation greater than

10-15◦. Recovery, on the other hand, occurs by e.g. annihilation of dislocations through

cross-slip and climb and arrangement of dislocations in low-angle (2-5◦) subgrain bound-

aries. In materials of low stacking-fault energy, such as copper, the dynamic recovery is

slow in favor of dynamic discontinuous recrystallization. In contrast, high stacking-fault

energy materials such as aluminum exhibit rapid dynamic recovery which makes continu-

ous dynamic recrystallization the dominating mechanism for the formation of new grains.

After the initial formation of recrystallized grains, subsequent grain growth occurs due

to migration of grain boundaries, however also driven by a reduction of the total grain

boundary area in the microstructure, cf. [1].

Materials undergoing dynamic recrystallization are characterized by an initially ser-

rated flow curve, exhibiting either cyclic or single peak oscillations. At lower temperatures

and higher strain-rates, the tendency is towards single peak flow, while elevated temper-

atures and lowered strain-rates promote multiple-peak flow behavior, [2, 3, 4, 5]. This is

often explained as an effect of the competitive processes of work hardening and softening

due to recrystallization, i.e. between dislocation generation by deformation and dislocation

annihilation by recrystallization. At low strain rates, most of the microstructure is recrys-

tallized before the regions that were first to be recrystallized have deformation hardened

enough to initiate a new cycle of recrystallization. If the strain rate is increased, multiple

recrystallization cycles may occur in parallel, damping out the flow curve oscillations, cf.

[2, 4, 6].

Cellular automata have become a widely used tool in materials science for simulating

microstructural evolution in terms of e.g. phase transformation, solid state precipitation,

dendrite growth during solidification of melts, spherulite growth in polymers and recrys-

tallization. Cellular automata modeling of – primarily static – recrystallization has been

studied by several authors, e.g. [7, 8, 9, 10, 11, 12].

In the present work, a cellular automaton with probabilistic cell state switching rules

is employed in the simulation of microstructural evolution in pure Cu under hot-working

conditions. The effects of different temperatures are studied and compared to experimental
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findings in the literature. A description of the grain boundary energy, valid for the entire

range of misorientation angles in contrast to the commonly used Read-Shockley relation,

is an important aspect of the present model. Further, a viable incremental algorithm

for the grain growth kinetics is obtained by tuning of the numerical model to analytical

expressions. Deformation of the analysis domain is obtained by identifying the strain state

throughout the simulations. In addition to these model features, it can be noted that the

grain boundary driving pressure is a result of the competing processes of stored energy

minimization and grain boundary area reduction.

This paper is divided into sections, beginning with a description of the recrystallization

kinematics and the governing equations for nucleation and growth of recrystallized grains.

That section is followed by a description of the cellular automaton formulation employed

in the current work, its switching rules and updating scheme. The subsequent sections

presents material parameter calibration followed by a presentation of results compared to

experimental data together with a discussion on the findings. Some finishing remarks closes

the paper.

2 Evolution laws and recrystallization kinematics

During inelastic deformation dislocations will be generated, resulting in increasing stored

energy. If recovery by dislocation annihilation is slow as in materials of low stacking-fault

energy, grain nuclei may start to form. The nucleation predominantly occurs along grain

boundaries, cf. [4, 13], although additional sites such as at shear bands and near particle

inclusions, causing strong lattice curvature, also contributes. The nucleation of new grains

is in this way a manifestation of a thermodynamically unstable material microstructure,

cf. [1]. In combination with recovery, the microstructure may reach a thermodynamically

more favorable state by growth of new, relatively dislocation-free, grains from the nuclei.

The dislocation density ρ in a grain, with diameter d, is assumed to evolve according to a

Kocks-Mecking relation, cf. [14, 15, 16, 17], i.e.

ρ̇ =

(

k1

√
ρ − k2ρ +

1

bd

)

ε̇p
eff (1)

where k1,2 are parameters and b is the magnitude of the Burgers vector. Note that a

superposed dot denotes differentiation with respect to time. The rate of the effective

plastic strain is denoted by ε̇p
eff .

In the present model, the rate of nucleation per unit of grain boundary area is taken as

Ṅ = cε̇p
eff exp

(

− Qn

RT

)

(2)

where T is the absolute temperature, c a constant, R the gas constant and Qn the activation

energy for nucleation. This corresponds to the proportional nucleation model of [18, 19]
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which has also been used by e.g. [20, 21, 22]. The nucleation activation energy in (2) is

for simplicity taken as a constant parameter in the present model whereas this quantity

is likely to depend on the state of the microstructure at a given location, e.g. in terms

of the local stored energy. As discussed previously, nucleation predominantly occur along

grain boundaries at sites where sufficient stored energy is present. Following [23], this

process is viewed as a bulging of the grain boundary upon reaching the critical dislocation

density needed for the nucleation to be initiated. Following the arguments of [6], the critical

dislocation density for nucleation to occur at a boundary site is given by

ρc =

(

20γε̇p
eff

3blMτ 2

)1/3

(3)

where τ = µb2/2 is the dislocation line energy and where γ is the grain boundary energy,

defined below. The dislocation mean free path l, appearing in (3) is for simplicity taken

as the average distance between dislocations, giving l = ρ−1/2.

The dynamic recrystallization is not initiated until a certain strain has been reached

in the grains. This critical strain is denoted by εc and correspond to the critical strain

at nucleation initiation as discussed by e.g. [2, 6]. Nucleation of new grains – i.e. the

initiation of recrystallization – is in this way delayed until εp
eff ≥ εc, where the threshold

strain εc is determined by calibration against experimental data for different temperatures,

as shown below. By the introduction of a critical strain, we follow the common approach

for determination of the onset of recrystallization. Threshold values for recrystallization

initiation have in this way been used previously by e.g. [22, 24, 25] and is further discussed

by [26]. The use of a critical strain allows convenient identification of the point of recrys-

tallization initiation when considering experimental data. This is further discussed below

in relation to the calibration of the model.

The grain boundary migration velocity is directed along the local grain boundary normal

and the velocity magnitude is given by

v = MP (4)

where M is the grain boundary mobility and P the pressure available to drive the grain

boundary motion. Such recrystallization and grain growth kinetics were addressed already

by [27] where the migration of grain boundaries under the influence of a driving force was

studied. For the sake of simplicity, the grain boundary mobility M is in the present model

assumed to be a function of temperature, identical for all boundaries in the microstructure.

As mentioned, grain growth is driven by a lowering of the stored energy which can be

written as τρ. Assuming spherical grains, cf. [23, 28], the total energy related to a grain of

radius r can be described by a surface energy term, W surf , and a volumetric energy term,

W vol. The volumetric energy stems from the jump in dislocation density [ρ] across the
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boundary. The potential function for the grain boundary driving force can now be written

as

W = W vol + W surf where W vol =
4

3
πr3τ [ρ] and W surf = 4πr2γ (5)

The volumetric term is considered in the models of [29, 30] while the boundary energy

term is used in the models of [22, 31]. Using (5), the driving force F for grain boundary

migration will be related to the energy change occurring as the size of the grain is changed,

i.e.

F =
dW

dr
= 4πr2τ [ρ] − 8πrγ (6)

Next, the driving pressure acting on the boundary is obtained by dividing the driving force

by the boundary area of the spherical grain, giving

P = τ [ρ] − 2γ

r
(7)

Note that the grain boundary energy term in (7) is dependent on the grain radius r, i.e.

the local curvature of the grain boundary. The curvature calculation is considered later on,

in relation to the formulation of the cellular automaton algorithm. The grain boundary

energy, γ, first appearing in (5), is related to the relative misorientation θ between adjacent

grains. For low-angle grain boundaries with θ less than approximately 15◦, the grain

boundary energy is often assumed to follow the Read-Shockley relation, cf. [4, 32]. The

Read-Shockley relation is in its original form, however, valid only for small misorientation

angles. A more appealing approach is to use the modified Read-Shockley model by [33],

also employed by e.g. [34], which reads

γ = γm sin (2θ) {1 − rγ ln [sin (2θ)]} , 0 ≤ θ ≤ 90◦ (8)

where γm and rγ are constants, specified below in relation to the calibration of the model.

The format in (8) is adopted in the present model.

The mobility of the grain boundaries is described through the Turnbull estimate, cf.

[35], and can be written as

M (T ) = M0 (T ) exp

(

−Qm

RT

)

(9)

where Qm is the activation energy for boundary migration. The mobility laws used by

e.g. [4, 8, 9, 11, 22, 28, 30, 36] are obtained from (9) by choosing different forms of the

pre-exponential term M0. This quantity is further considered during the calibration of the

model. The recrystallization process may now be described by nucleation according to (2)

and subsequent growth by (4), with driving pressure and boundary mobility given by (7),

(8) and (9).
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3 Cellular automaton formulation

A representative volume element of dimensions 200×200 microns is discretized using 46800

hexagonal cells with typical cell dimension lc, cf. Fig. 2. Each cell is interacting with its

closest neighbors and is characterized by four state variables: the orientation, the disloca-

tion density, the status (pre-existing grain or recrystallized grain) and an identifier (which

grain number the cell belongs to). An initial microstructure is generated with a chosen

number of grains by allowing a fixed number of nuclei to grow until they impinge upon each

other, cf. Fig. 1. The number of grains and the dimensions of the cellular automaton are

chosen to obtain a certain initial average grain size. Next, the grains are given a random

initial dislocation density taken from a normal distribution with mean 1011 m−2 and stan-

dard deviation 1010 m−2, representative for the annealed state, cf. [37]. The dislocation

density is for simplicity assumed to be homogeneously distributed within each grain. In

addition to the dislocation density, the grains of the undeformed microstructure are also

given a random initial orientation from a uniform distribution in the interval between 0

and 90◦, resulting in an isotropic orientation distribution.

Figure 1: The initial microstructure used in the simulations. The size of the analysis
domain is 200× 200 microns. The colors are randomly set in order to distinguish between
the different grains.

Recalling (4), it was found that the surface energy term is dependent on the curvature

r of the grain boundary. In the present work the local grain boundary curvature is ob-

tained from an expanded neighbor region, including the first-, second- and third-nearest

cell neighbors. The local grain boundary radius is found by evaluating

r = ar

n + 1

nk − ni
(10)

where ar is a coefficient further discussed in the following, n = 36 is the total number of

neighbor cells, ni is the number of neighbors within the current neighborhood that belongs
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Figure 2: The definition of a hexagonal cell i in the cellular automata grid. (a) Nearest-
neighbor area of influence (shaded gray). (b) Geometrical definition of a cell with side
length lc.

to the grain and nk = 18 is the number of neighbors belonging to the grain in the case of

a locally planar boundary. Note that for a locally planar boundary, nk = ni and r → ∞ is

obtained. A local curvature estimate on the form (10) was first introduced by [38] and has

since been used also by e.g. [22, 39].

To obtain an estimate for the average grain size in the microstructure under consid-

eration, average sizes for each grain are needed. Following [40], the 2D microstructure is

viewed as a cross-section of a corresponding 3D microstructure, allowing the average radius

of a grain to be obtained as

r̄ =

√

ncAc

π
(11)

where nc is the number of cells belonging to the grain and where Ac = 3
√

3
2

l2c is the area of

one cell, cf. Fig. 2.

Once the critical strain εc is reached, the number of new nuclei to appear is obtained by

integration of the nucleation rate equation (2), giving ∆N = Ṅ∆t. Possible nucleation sites

are then obtained by considering all grain boundary cells pair-wise across the boundaries.

If the average dislocation density of the two cells is ≥ ρc, this is a viable nucleation site.

All possible nucleation sites are then given a probability wnucl. for nucleation where the

possible nucleation site with the highest stored energy receives the nucleation probability

1. Effectively, the ratio between the local and the maximum dislocation densities among

the possible nucleation sites is evaluated according to

wnucl. =
ρlocal

ρmax

where ρlocal ≤ ρmax (12)

Going through the possible nucleation sites, a random number ξ ∈ [0, 1] is generated and

compared to the nucleation probability of the current site. If ξ ≤ wnucl. the nucleus is placed
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at the site and if ξ > wnucl., the site is rejected. This is done until all nuclei appearing

in the current step have been placed. Each new nucleus is given the average orientation

of the two boundary cells involved, cf. [41], and zero dislocation density. A zero initial

dislocation density is here chosen for simplicity although it is noted from e.g. [42] that the

new grains are not entirely free of dislocations.

After the nucleation step, growth of the recrystallized grains is considered. The grain

boundaries in the microstructure will have different local migration rates due to variations

in driving force and boundary mobility. Since the cell size of the cellular automaton is

fixed it appears unphysical that all moving boundaries are able to switch the status of

neighboring cells during one time step. In the present work the approach used by e.g.

[11] is adopted, where a probabilistic switching condition is employed. The local switching

probability wgrowth is taken as the ratio between the velocities of the local grain boundary

and the fastest moving grain boundary in the cellular automaton. The cell switching

probability is thus calculated as

wgrowth =
vlocal

vmax

where vlocal ≤ vmax (13)

In each step, and for each cell, a random number ξ ∈ [0, 1] is again generated. If ξ ≤
wgrowth the switch is accepted and if ξ > wgrowth it is rejected. This approach allows a

synchronous update of the cells. If a cell has two or more growing, recrystallized, neighbors,

the neighbor with the highest grain boundary velocity will be the one to possibly consume

the current cell. Since the driving force for boundary migration is based on the difference

in stored energy, this selection rule gives the greatest reduction in the stored energy of the

system. Recrystallized grains will continue to grow until the driving force becomes zero.

The evolution of the dislocation densities in the grains is considered in each time step by

evaluating (1) and using the current time increment, i.e.

∆ρ =

(

k1

√
ρ − k2ρ +

1

bd

)

∆εp
eff (14)

By noting that for given dislocation densities and given orientations, an analytical ex-

pression for the growth velocity of a grain can be obtained from equations (4), (7) and

(9). In order to study the growth of such an analytical grain, the parameter choices

k1 = 7.3 × 8 m−1, k2 = 24.1, µ = 30 GPa, b = 0.256 nm, γm = 0.625 J·m−2 and rγ = 0.66

are made, corresponding to pure copper at 725 K. The initial difference in dislocation den-

sity across the boundary is set to [ρ] = 1 × 14 m−2 and the misorientation is taken as

θ = 45◦. This procedure allows tuning of the cellular automaton algorithm to the analyt-

ical exact solution in terms of the timestep ∆tc, the reference boundary velocity vc and

the parameter ar, appearing in the local radius estimation (10). By choosing the values

∆tc = 0.465 s, vc = 4.3 µm/s and ar = 2 µm, a comparison between the growth of an
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Figure 3: (a) Comparison of the sizes of a cellular automaton grain (shaded gray) and
an analytical grain (solid line). The numbers correspond to the points indicated in the
figure to the right. The square frame shows the boundaries of the cellular automaton. (b)
Radii of the cellular automaton grain (solid line) and an analytical grain (dashed line) as
functions of time.

analytical grain and a cellular automaton grain is obtained as shown in Fig. 3. Next, when

performing analyses using a polycrystalline cellular automaton, the timestep ∆t is obtained

by scaling the maximum occurring grain boundary velocity vmax with the tuned growth

distance λc = vc∆tc by setting ∆t = λc/vmax. The current cellular automaton algorithm is

summarized as a pseudo-code in Box 1.

Considering a representative volume element, consisting of several grains, the flow stress

related to the average dislocation density, ρ̄, is classically described by

σ = αµb
√

ρ̄ (15)

where α is a parameter related to the strength of the dislocation interactions, cf. [43], and

µ is the shear modulus. To obtain the average dislocation density a homogenization of the

plastic power ẇp is considered, i.e.

ẇp = σε̇p
eff =

1

V

∑

i

∫

Vi

ẇp
i dV =

1

V

∑

i

∫

Vi

σiε̇
p
eff,idV (16)

where a subscript i denotes quantities related to grain i and where V is the total volume of

the representative volume element under consideration. Using σi = αµb
√

ρi and ε̇p
eff = ε̇p

eff,i

results in

√
ρ̄ =

1

V

∑

i

∫

Vi

√
ρidV (17)

Note that in (16) and (17), summation is performed over all grains.

DOI: 10.1016/j.commatsci.2010.04.012 9



Computational Materials Science 2010, 49(25-34)

Box 1 The cellular automaton algorithm used for the present model.
Generate the initial microstructure

Establish global conditions: T , M , ε̇p
eff , λc and final strain εp

eff,final

Calculate the maximum possible boundary velocity vmax in the initial microstructure

while εp
eff < εp

eff,final

Calculate the timestep ∆t = λc/vmax

Calculate the increment in effective plastic strain: ∆εp
eff = ε̇p

eff∆t

if εp
eff > εc

Calculate the increase in number of nuclei ∆N = Ṅ∆t

Find all possible nucleation sites by using (3)

Obtain a random number ξ ∈ [0, 1]

Distribute grain nuclei according to the probability condition (12)

for each cell

· Calculate the local boundary radius r from (10)

· Calculate the local grain boundary energy γ from (8)

· Calculate the driving pressure P from (7)

· Calculate the local boundary velocity vlocal according to (4)

· Calculate a random number ξ ∈ [0, 1]

· Calculate the new cell state according to the probability switch (13)

· Calculate the updated dislocation density ρ according to (14)

end for

end if

Store the maximum boundary velocity vmax that occurred during the step

Update the state of all cells simultaneously

end while
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4 Results

Pure Cu, a low stacking-fault energy material prone to dynamic discontinuous recrys-

tallization, is taken as model material. Beginning with the temperature-dependent shear

modulus, first appearing in (15) this quantity is assumed to have a temperature dependence

as given by [36], i.e.

µ(T ) = 35.4 × 109

[

1 − 0.5

(

T − 300

Tm

)]

Pa (18)

where Tm = 1356 K is the melting point temperature. The analysis region is assumed to

be crystallographically oriented so that the grain misorientations can be described by [001]

tilt boundaries. Data on the dependence of the boundary energy on misorientation for

99.98 %-purity Cu at 1065 K is presented by [44]. Since the material considered here is of

higher purity and since the present temperature interval goes below 1065 K, the maximum

boundary energy is instead taken as γm = 0.625 J·m−2 according to [36]. The boundary

energy parameter is, however, set to rγ = 0.66 motivated by the appearance of the data in

[44]. The resulting boundary energy is shown in Fig. 4. The material parameters used are
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Figure 4: Description of the grain boundary energy (8) for the current 99.99 %-purity Cu
(solid line) shown together with experimental data taken from [44] regarding 99.98 %-purity
Cu at 1065 K (symbols).

summarized in Table 1. Calibration of the temperature dependent parameters εc, c, k1,

k2 and M0 is conducted using experimental data from hot compression tests, cf. Fig. 5b,

giving the temperature dependencies presented in Table 2. Experimental data is taken from

[46]. The resulting flow stress curves, obtained from the cellular automaton simulations,

are shown i Fig. 5a.
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Table 1: Material parameters entering the present model. The values are valid for pure
Cu.

Parameter Value Description Source
Tm 1356 K Melting temperature [36]
γm 0.625 J·m−2 Grain boundary energy [36]
rγ 0.66 Grain boundary energy parameter [44]
α 0.5 Dislocation interaction strength parameter [22]
Qm 126 kJ·mol−1 Activation energy for grain boundary migration [45]
b 0.256 nm Magnitude of the Burgers vector [15]
Qn 261 kJ·mol−1 Activation energy for nucleation [46]
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Figure 5: Stress strain response for different constant temperatures. The final grain sizes,
df , are stated at each temperature. (a) Simulation results obtained using an initial average
grain size of 77 µm. (b) Experimental results from hot compression tests presented in [46].
Initial average grain size 78 µm.

Table 2: Temperature dependencies of the critical strain εc, the nucleation parameter c,
the parameters k1 and k2 in the evolution law for the dislocation density and the pre-
exponential grain boundary mobility parameter M0.

T [K] εc c [m−2] k1 [m−1] k2 M0 [m3·N−1·s−1]
725 0.4 3.5 × 1022 379.5 1.3×10−5 3.6 × 10−5

775 0.23 3 × 1021 405.6 1.7×10−5 3.6 × 10−5

875 0.15 4 × 1018 458.0 3.4×10−5 6.4 × 10−5

975 0.1 8 × 1016 510.3 6.5×10−5 9.5 × 10−5

1075 0.1 6.7 × 1015 562.7 9.3×10−5 1.6 × 10−4

Since the experimental results used for calibration of the model stem from axisymmetric

compression tests, the deformation of the cellular automaton can be obtained to visualize

the flattening of the grains due to compression. Denoting the compressive axis by 3 and
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the radial and circumferential axes by 1 and 2 allows the total logarithmic strain rates in

the different directions to be calculated, under the assumption of von Mises plasticity, as

ε̇1 = ε̇2 = −ν
σ̇

E
− 1

2

σ

|σ| ε̇
p
eff

ε̇3 =
σ̇

E
+

σ

|σ| ε̇
p
eff

(19)

where ν = 0.3 and E = 110 GPa is the Poisson ratio and the elastic modulus, respectively.

Note that the compressive stress σ3 = σ, as obtained from (15). The results in (19)

allow a post-processing step to be performed on the cellular automaton results where the

deformation is imposed on the analysis domain.

With the initial microstructure shown in Fig. 1, the evolution of grain size and grain

shape with increasing strain is shown in Fig. 8. Nucleation of new grains occur at the

grain boundaries present in the microstructure. If there is a large difference in the sizes

of the previously existing grains and the newly recrystallized grains there is a tendency

for formation of so-called necklace patterns of recrystallized grains along the boundaries

of the pre-existing grains. In contrast, if the relative size difference between old and new

grains is smaller, there is less tendency for necklace formation, cf. [4, 42, 47]. It can be

noted that at the lower temperatures of 725 K and 775 K, there is a tendency for necklace

patterns of new grains along the pre-existing grain boundaries. Moving up in temperature,

this tendency is weakened. At these higher temperatures, larger recrystallized grains are

growing, consuming the previous grain boundaries before a clear necklace pattern can form.

The recrystallization is thus more rapid at higher temperatures, not allowing one cycle of

recrystallization to finish before the next one is initiated. This results in the oscillations of

the flow stress curves, shown in Fig. 5, at higher temperatures. At the lower temperatures

of 725 K and 775 K, each cycle of recrystallization is allowed be completed – or at least

nearly completed – before the next one sets in, resulting in more stable flow stress behavior.

The recrystallization kinetics during experimental analysis is often studied according

to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory using the Avrami equation, cf.

[48, 49, 50], which can be formulated as

X = 1 − exp (−Btn) (20)

where X is the recrystallized volume fraction and t is the time. In the present simulations,

X is taken as the recrystallized area fraction since the two-dimensional analysis region

is viewed as a cross-section of a corresponding three-dimensional domain. The simulated

volume fraction of recrystallized material is illustrated in Fig. 6a. The two parameters B

and n in (20) are determined from a double-logarithmic Avrami plot of the experimentally

measured extent of recrystallization as a function of time. The n-parameter corresponds to

the slope of the linear Avrami plot and the B-parameter is related to the nucleation rate
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and grain boundary kinetics of the microstructure under consideration, cf. [7, 10, 18, 51].

The Avrami model (20) was formulated under the assumptions of site-saturated and ho-

mogeneous nucleation with constant grain boundary velocity. Results from experiments

where heterogeneous and non-constant grain boundary velocity comes into play deviates,

however, from the linear appearance of the theoretical Avrami plot, cf. [7, 10]. This occurs

at the initial stages where the assumption of site-saturated nucleation is least applicable

and at the last stages of recrystallization where growing grains to a large extent has con-

sumed possible nucleation sites. For a constant nucleation rate, which is the case in the

present model at constant temperature, experimental results predict a value of n = 3 for

two-dimensional grain growth while n = 2 correspond to two-dimensional, site-saturated,

nucleation, cf. [10]. Considering the nucleation parameter c, specified in Table 2, it can be

noted that by moving down in temperature, the value of c increases. High values of c will

lead to full population of all possible nucleation sites at all stages of the recrystallization

process, i.e. site-saturated nucleation. This trend from almost site-saturated towards a

more heterogeneous, but still constant, nucleation rate with increasing temperature is seen

in Fig. 6b where the simulated recrystallized fraction is fitted with the Avrami function

(20). As the temperature is increased – i.e. as the nucleation becomes more heterogeneous

– the value of n shifts from n = 2 for 725 K and 775 K to n = 3 at 875 K and 975 K, in

accordance with the findings in [10].
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Figure 6: (a) Recrystallized volume fraction obtained from simulations at different tem-
peratures. (b) Avrami plot of the recrystallized volume fraction. Simulation results (solid
lines) from the present model are fitted with the theoretical model (dashed lines) given by
(20). Note that logarithmic axes are used in (b).

The effect of varying the initial grain size is illustrated in Fig. 7. As the initial grain

size is reduced, flow stress oscillations appear while an increased initial grain size stabilizes
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the flow stress behavior. The simulations replicate the experimentally obtained behavior

as presented by [46], cf. Fig. 7b. A decreased initial grain size could be the result of e.g.

changed heat-treatment conditions prior to the forming process. As the initial grain size

is refined the volume fraction of grain boundary area – and thus the number of possible

nucleation sites for recrystallization – increases. This allows repeated and simultaneous

cycles of recrystallization to take place, giving increasing flow stress serrations. In contrast,

an increased initial grain size reduces the number of possible nucleation sites and slows

down the recrystallization process. As shown in Fig. 5, the final grain size at some of the
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Figure 7: Stress strain response at 775 K for three different initial average grain sizes d0.
(a) Simulation results. (b) Experimental results from hot compression tests presented in
[46].

considered temperatures deviates slightly from the experimental values. This could in part

be explained by the assumption of spherical grains in the simulations and in part by the

nucleation which in the model only occur at grain boundaries, while additional nucleation

sites in the grain interiors, e.g. at inclusions, could also be present in reality. In Fig. 5, the

flow stress corresponding to 1075 K, the highest of the considered temperatures, exhibit

some excessive serrations initially. This is due to the chosen cellular automaton size of

200 × 200 microns which might be inadequately small in comparison to the grain size of

approximately 100 microns, present at this temperature. Fig. 8 also illustrate the tendency

for formation of equiaxed grains with progressing recrystallization, rendering more regular

grain shapes throughout the microstructure at larger strains. This is especially the case at

the lower of the considered temperatures. The development of a more regular, equiaxed,

microstructure with a relatively constant mean grain size with progressing deformation is

also discussed in relation to experiments by e.g. [2]. The compressive deformation imposed

onto the workpiece using (19), of course result in the equiaxed grains becoming elongated
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perpendicular to the compressive axis as seen in Fig. 8.

The evolution of the average grain size at different temperatures is shown in Fig. 9. It

can be noted that the rapid and over-lapping cycles of recrystallization at the lower of the

studied temperatures result in more distinct grain size distributions. The states of effective

plastic strain εp
eff = 0, 0.5 and 1 correspond to the microstructures shown in Fig. 8.

5 Conclusions

In materials of low stacking-fault energy, stored energy release due to dislocation annihi-

lation processes such as cross-slip and climb is slow in favor of dynamic recrystallization.

The material undergoing this type of microstructural change is characterized by nucleation

of grain embryos at the grain boundaries and subsequent growth of equiaxed grains. If

the process is allowed to proceed, a steady-state grain size is obtained with increasing

macroscopic plastic deformation. The changes in material behavior by softening due to re-

crystallization and competing deformation hardening is reflected in the appearance of the

macroscopic flow stress. Under thermomechanical processing characterized by relatively

lower temperatures and higher strain-rates, single-peak flow is observed while further el-

evated temperatures and lowered strain rates promote serrated multiple-peak flow. The

effects of temperature and strain rate on the flow stress behavior is further influenced by

the grain size in the initial microstructure. Keeping temperature and strain rate fixed,

changes in the initial grain size may cause transitions between single- and multiple-peak

flow.

The present model of dynamic recrystallization builds on evolution laws and recrystal-

lization kinetics formulated on the microlevel. Driven by the effective plastic strain, the

dislocation density evolves under an interplay between dislocation generation and annihi-

lation. The extent of recrystallization is proportional to the level of plastic deformation

exerted onto the material, motivating an expression for the nucleation rate of new grains

that is proportional to the rate of plastic deformation. Grain growth is described by the

competing processes of stored energy minimization and grain boundary area reduction.

This leads to an analytical expression for the local grain boundary velocity in the mi-

crostructure. Grain boundary energy is calculated by means of a modified Read-Shockley

formulation, valid in the entire range of misorientations. The recrystallization model is em-

ployed in a cellular automaton algorithm with probabilistic cell updating switches, allowing

simulation of both the spatial and temporal microstructural changes in a representative

volume element under hot deformation conditions. An important feature of the cellular

automaton algorithm is the consideration of the analytical exact solution for the grain

boundary velocity, allowing tuning of parameters to ensure correct behavior of the algo-

rithm. Following classical JMAK theory, the slope of Avrami plots of the recrystallized

volume fraction should change from 2 to 3 as heterogeneous constant rate nucleation shifts
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1075 K
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875 K
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725 K

Figure 8: Microstructural evolution at five different and constant temperatures under de-
formation at a constant strain rate of 0.002 s−1. The left and right columns show the
microstructure at 50 and 100 % effective plastic strain, respectively. The coloring is ran-
domly applied, just in order to distinguish between the different grains.
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Figure 9: Probability density functions (PDF) for the grain size distribution at constant
temperatures under deformation at a constant strain rate of 0.002 s−1. The initial average
grain size is 77 µm in all cases. The final grain size, df , is stated at each temperature.
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towards site-saturated nucleation. This is shown to be captured by the present model as

the nucleation rate is drastically increased – and thus tending towards site-saturation – as

the temperature is reduced. In addition, tracing the strain state allows a post-processing

step to be performed where the deformation of the material is imposed onto the analysis

domain.

Calibration of the model parameters to pure Cu allows simulations to be performed of a

hot compression process. The results replicate the expected nucleation of new grains along

grain boundaries, giving a distinct necklace pattern. Following experimental evidence, this

patterning effect is gradually lost as the temperature is increased and as larger saturation

grain sizes are considered. The nuclei grow into equiaxed grains as predicted and with

progressive plastic deformation a saturation grain size is reached where the average grain

size obtained in simulations correspond well to experimental data. Flow stress curves based

on the simulations exhibit the effects of cyclic recrystallization with the common transi-

tion from single-peak to multiple-peak serrated flow as the thermomechanical processing

parameters are changed. Studying the effects of varied initial grain size, corresponding

to having exposed the material to different heat treatment conditions, the macroscopic

flow stress is influenced as expected. The extent of the flow stress serrations increases as

the initial grain size is reduced while larger initial grain sizes stabilize the flow behavior,

resulting in single-peak flow and a slower recrystallization process.

The proposed recrystallization model and cellular automaton formulation provide a

versatile tool for studying the microstructural changes in a material during thermome-

chanical processing, where experimental results are replicated with good agreement by the

simulations.
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