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Abstract

Formation of metal hydrides is a serious complication that occur when hydride forming metals such as Zirkonium, Niobium,
Vanadium and Magnesium are exposed to long term hydrogen environment. The main concern is that the hydride, as being a brittle
material, has very poor fracture mechanical properties. Formation of hydride is associated with transportion of hydrogen along the
gradients of increasing hydrostatic stress, which leads to crack tips and other stress concentrators, where it forms the hydride. In
the present study the themodynamics of the evolving hydrides is studied. The focus is on the evolution of the interface between
the metal and the evolving hydride. The process is driven by the release of free strain, chemical, and gradient energies. A phase
field model is used to capture the driving forces that the release of the free energy causes. The study gives the conditions that lead
to hydride advancement versus retreat and under which conditions the metal-hydride interface becomes unstable and develops a
waviness. The spatial frequency spectrum leading to instability is found to depend on the ratio of the elastic strain energy density
and parameters related to the interface energy. The theory is related to the Asaro-Tiller-Grinfeld theory for surface instabilities.
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1. Introduction

When structural materials are exposed to a long term hydrogen environment they may interact with hydrogen, and
cause various kinds of structural damages due to metal degradation. The interaction and damage of hydrogen depend
on a range of conditions. In the metals that form hydride, the precipitation of small and local amounts of hydrides
strongly dfect the local mechanical properties and the over all integrity of the entire structure.

With the increasing need for green energy, hydrogen fuel cell technologies are used as renewable energy resources.
As a consequence secure vessels for transport and storage of liquid hydrogen is required. Mudficofstaeedone
to the selection and production of secure transportation and storage materials. HoweEgcthad the hydrogen to
the transportation vessels are unavoidably associated with interaction between the hydrogen and the base material. In
nuclear power production metallic zirconium is exposed to hydrogen as it used extensively as structural support for the
fuel and the control rods. Zirconium forms brittle hydrides in hydrogen environments, which may case gerinus
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lems. Other hydride forming metals of practical interest include magnesium, titanium, hafnium. In many applications
of these metals, the formation of hydride is considered to be a major life limiting factor.

When the hydrogen concentration idfstient, it reacts with the metal and forms a metal hydride. The hydride
is a binary brittle compound, which generally has a very low strength (see, Troiano (1960), Ellyin and Wu (1994),
Viswanathan et al. (2006)). Hydrogen migrates along gradients of hydrostatic stress and accumulates where the stress
obtains a local maximum (see, e.g., Singh et al. (2005)). The hydrogen, therefore, accumulates at material defects,
crack tips, dislocation pile-ups and other stress concentrators. The reason for the attraction of the hydrogen along the
gradient of hydrostatic stress is that the metal expands with increasing hydrogen concentration, which releases energy
caused by the relaxation of the hydrostatic stress. As an example, the stress free volumetric expansion of zirconium
during hydridisation can be of the order of 15 to 20%.

The hydride formation is a complicated process that results from the simultaneous operation of several coupled
processes. There is an agreement that the hydride is formed when the hydrogen concentration exceeds its terminal
solid solubility of the material, provided that a few additional conditions are fulfilled. When the hydride reaches
a certain size, it cracks at a comparably small load. A new hydride is after that, reformed ahead of the extended
crack. The result is an incremental type of crack growth Singh et al. (2008). A complete understanding involves
several disciplines such as atomic physics, electro-chemistry, materials engineering, and fracture mechanics. Many
experimental and theoretical studies have had focus on the hydride formation at crack tips and its influence on the
strength of the material (Nuttall et al. (1976)). Models of crack propagation based olff¢be af difusion was
studied by Shi (1999), Svoboda and Fischer (2012) and models that studied the importance of threshold hydrogen
concentration was studied by Singh et al. (2005). Temperature changes and hydrogen content related models have
been investigated by Bertolino et al. (2003).

The mechanical stress play a key role, not only for the transportation of the hydrogen into the vicinity of the crack
tip, but also for the morphology of the growing hydrides. Further, the hydrides apgd&sredt on diferent length
scales, i.e. on a mm length scale and above it may appear as a solid hydride, on a finer scale between of the order of
tens of microns appear as fractioned into so called platelets.

The morphological and microstructurafigirences of hydride precipitateect the fracture process and has conse-
guences for the strength of the material. A phase field model that includes mechanical, interface and gradient energies,
allows us to compute the thermodynamics of the process. In the present study the evolution of the morphology of the
metal to hydride interface is examined regarding growth, retraction and interface stability.

In Sect. 2 the theory is developed and governing parti@&dintial equations are given for the distribution of the
phase and the deformation components. In Sect. 3 the phase distribution in the interface region is derived for a few
simplified cases. Both planar and wavy interfaces are included. In Sect. 4 numerical solutions are first established by
comparative studies of the simplified cases. Here also, the limits for numerical accuracy is set.

2. Phase Field Modelling

For a virtually sharp interface, treated as a discontinuity, specific chemical and mechanical properties may be ascribed
to the interface. This simplifies the analysis and normally has no significant influence on the thermodynamical be-
haviour of the body. However, when the distance between structural inhomogeneities or other characteristic distances
are of the same order of magnitude as the thickness of the interface, e.g., at a rough interface, at the tip of a crack or
during emission of dislocations, etc., the thickness of the interface may play a role and the negligence thereof may
lead to unrealistic predictions. As opposed to this faude interface model assumes a continuous variation of compo-
sition, structure and other properties within the modelled region (cf. Landau and Lifshitz (1935)). This includes both
the hydride and the metallic matrix material and thé&udie interface between them.

Here, the solid material is assumed to be linear elastic with the elastic mdélalus Poisson’s ratie. The energy
of the system is composed of the Landau chemical potential energy, the gradient energy and the elastic energy. The
respective energy densities dfg,, Fgr, andFe. The total free energy is defined as an integral that covering the
complete system. In the formulated system the essential free energies are assumed to be chemical, gradient and strain
energies. In the total energy is assumed to be

F = f(Fch +Fgr + FeldV, (1)
\%
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whereV is the volume of the body. The chemical, gradient and elastic energy densities are defined as follows,
1 1 1
Fen = D(Zl//4 - 5%02), For = %l//,iw,i and Fei = 50ij(¢)e; - (2)

Herey is a phase variable that keep track of the phase. The permissible intenfldsy < 1, in whichy = -1
defines the original material and= 1 defines the precipitate. All material properties are in general functiops of
The summation rule is applied for double indices and the notatipe:(d( )/9%; is used.

Fcn is the Landau chemical potential energy density that represents the free energies storedfierém ghases.
The energy density is caused by the disorder that arise in mixed phases.Rihgay a significant role, the boy
is split up into two phases defined as regions consisting of almost pure original material and pure precipitate. These
regions are then separated by a thin layer called the interface consisting of an unpure material. The width of the
interface is denoted and is in this study defined as the region in whick 0.9.

Fgr is an energy density that is caused by a Brownian motion that counteracts concentration gradientskginally,
is the elastic strain energy density for materials with a traction free expansiones{ygin

The theory is based on the Ginzburg-Landau’s assumption that the evolution in any point of any state variable
depends on the release rate of the local free energy density with respect to a variation of that variable. In the present
case withF = F¢n + Fgr + Fe), the Ginzburg-Landau assumtion is formulated,

) L oF

- o5y 3

In the present study () represents the phase variablethe displacements.
According to Lagranian formalism the following relate the variation to partial derivativEsxith respect to scalar
variables () and its spatial derivatives;(gs follows,

oF _OF 9 OF
() ~a0) a0

The notation for spatial derivatives is used for indite$ andk. The variations with respect ) are readily
obtained for the chemical and gradient energy densities as

“4)

6F oF
5, = PA-vAw and = g (5)

Further, stresses are given by
i (Y, W) = 2uel (0, U) + ASijeg (¥, Ui) , (6)

whereu andA are the Larg parameters ang; is the Kronecker delta. The total strainis defined as follows,
1
&j(u) = E(Ui,j +Uij). (7)
whereeiej is the elastic strain, defined as

& (¥, u) = &) () — Sijes(y, ), ®

The stress free linear expansieg(y), is chosen to be 0 fof = —1 ande,/3 fory = 1, whereg, is the volumetric
stress free expansion. Further, it is necessaryefag) = 0 atly| = 1 to avoid discontinuous behaviour at the edges of
the permissible interval fag. The simplest polynomial that fulfils the conditions is

1

e&(y) = _1_2(¢3 =3y - 2. )
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Insertion of Eqgs. (6) and (8) into (2) gives the following expression

€ij €ij €ij 1
Fel = f Tij dEij = f Tij deﬁ +f Tij dGs = Ea'ijEﬁ + Jjj€s. (10)
0 0 0

Application of (4) and (9) gives on,

O0F¢ _1. 12
U = 40'”(1 vo)ev, (11)

Application of (3) on the results (5) and (11) gives the governing equation for the evolutipasfollows

) 1
a—f = Ly (P = )y + Qo + 771 v, (12)

Regarding the displacements, the governing equation can be found as following with the same formalism as for the
phase variable. Obviously

(ﬂ:ch _ 6':9’ _
su - ou 0. (13)
Using (4) and (7) one obtains
6Feg 0 OFq 1 _ L .
T o () = Z{Z#GJ,J + A€jji} = (34 + 2u)es(), - (14)

In the present study only quasi-static evolution is considered. The body may be in a thermodynamic state but the
mechanical state is assumed to be static. By putting the mobility paralqeterdu;/dt implying that,

oF
ﬁ =0 = 2uejj+ A€jji — 231+ 2u)es(y), = 0. (15)
]

The governing equation for the evolution of the displacementss as follows

1+v
1-2v

Ui jj + Ujji = a1y, (16)

1-2v
which is identical tarj; ; = O for a material with an isotropic stress free volumetric expansion

With the length unity/gp/p and the time unitl(, p)~* used in Egs. (12) and (16), the governing equations take the
form

7 P 2

6f (rl/,my = (4€V0-ﬁ,8 + !//) (1 @b )s (17)
- 21+ v) . 1+v)%,

Uy g + :E_ 2:) Ugap = 2(1 — ;3/ 6V(:I- - lﬁz)lﬁ,a (18)

where the following scalings are made

- . p N E
t=Lypt, %= ./—x, u-:,/—u-. 19
wp Xi ng| i U i ( )

and consequently
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/E /E 1
Aaaz —€jj, Ev = — €&y, Aaa/: ijs - 20
€, pE.J €y pfv a ,—Epo'lj ( )

The index notation for partial derivatives using greek letterandB denotes that the partial derivatives are taken with
respect to the non-dimensional coordinates, e.g.dgnotes)()/dX,, wherea=1, 2 or 3.

3. Solutions for Plane and Shallow Wavy Interfaces

In the absence of mechanical load an analytical solution is given for a straight edge by Ginzburg and Landau (1950).
Closed form solutions that include th&ext of an external homogeneous stress field are easily obtained as is shown
in the following section.

The modelled geometry is a strip with the dimensionxgf< h/2 and|x,| < 3h/2, wherehis height of the studied
geometry. The interface is parallel with the axis. and is initially placed at, = 0. In the following subsections
constant displacements along the edggg,at= h/2, respectively constant stress along the edgeslat 3h/2 are
applied. In both cases the applied load creates stress and strain fields that are only dependegtoottimate and
time.

3.1. Uniaxial stress field applied in the &lirection,y = f (%o, f)

Here the solution for an edge moving under steady state conditions in a uniaxial stress field, under plane stress
condition, is derived. The boundary conditions are

0’22(i3h/2) =0o and 0'12(i3h/2) =0, (21)
where the stress, is constant. Remaining boundaries are traction free. The phase boundary conditions are
f(£3h/2) = 1, (22)
The notationy = f(%, f) is used, withf = 9 /6f and f” = 8 /8% Equation (17) is written
f— " = (@&do/4+f)(1- ?), (23)
whered, equalso,/ VEp. The variation of the contraction across the edge creates a complicated stress-strain dis-
tribution close to where the edges meets the boundaripg|at h/2 and|x;| = 3h/2. The disturbance reside in a
region that has the linear extent of around two or three distances equivalent the width of the interface, i.e., only a
small fraction of the width of the body. To avoid the disturbance and without loosing generality Poisson’s ratio is put
tov=0.

The assumed steady-state conditions implies fii&t, f) = g(% — cf) = g(¢) by the coordinate transformation
£ =% —cf. Thus,g = —cg' (X - cf) = —cg (¢), which applied to (23) gives,

cd +9” = - (&bo/4+09) (1-g). (24)
By puttingz(X) = g’ andz () = z%dd—)é = z% one obtains,
%%2) = —cz— (&00/4 + )1 - f?). (25)

After integrating with respect ts 6ne obtains

2= 2 f (cz+ gado(1-GIdg - & + 56*+C (26)
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Fig. 1. The phase distribution for a single wave and a split wave that that is caused by large stresses.

The boundary conditions (22) giv@ = 1/2. The roots are found after factorisation of the left hand side as

(- %2(1 - @)z %(1— ) = -2 [ (ez+ z8G4(1 - )i (27)

Obviously the system has a raot —(1/ V2)(1- ¢?) if cis chosen tov2&,6-,/4 andz = (1/ V2)(1-¢?) if cis chosen
to — V2&,5,/4. The two permissible solutions are

1_de_ e
274~ V-9, (28)
with the solution
£ X _ &0,
= t+tanh() = tanh(—= * t). 29
9 €5 = tanhe 5 ¥ =20 (29)

The width,b, of the interface, i.e., the region whege < 0.9, denoted, in the present case wheny = 0 along

£=0,is
bo = 2V2 arctanh (®) . | g—;’ = 416407 /g—;’ (30)

The solution shows that the interaction between the interface at agoun@ and its surroundings is very small.
The deviation from the value it converges to at large distanceggli-e: 1 as|¢] — o is, e.g., less than one percent
for £ = 3.75 and less than 16 for & = 5.4. Itis also obvious that two or more waves can be superimposed as long as
the the distance between the waves is large and the boundary conditions are fulfilled.

3.2. Uniaxial stress field applied in the &lirection,y = f (%, f)
Here a load is applied in the direction via a prescribed displacement
u(£h/2) = +eh/2 and o22(+3h/2) =0, (31)

which gives a stress; that varies in thec, direction, i.e.,

1 -
0o = (2u+ 3Ny = 27— {e11 — 2e(f (R, D). (32)

1-2v
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Fig. 2. a) Wavy initial interface with a wavelengitrand a wave amplitude = 0.11. b) Growth rate versus the wave numbes 1/1.

where the stress, is constant. Remaining boundaries are traction free. Shear traction vanishes on all boundaries. The
phase boundary conditions are according to (22).

3.3. Wavy interface and subjected to a remote uniaxial stress field applied in theation

A wavy interface with a wave amplitudeand the wavelengthis considered. As shown in Fig. 2a the hydride initially
occupies the regior, < asin(2rx;/4) and the remaining part is the metal. The initial figlts chosen to be

¥ = —tanh E(x2 —acos(zrxy/A))|, (33)

whereb, is the half thickness of the interface according to (30). Because of the periodicity, the geometry is reduced
to one for a strip with the width & x; < 1/2. The boundary conditions are according to (22) and (31).
The amplitudea is assumed to be small and much less than the wave langtiseries expansion for small a gives

¥ = —tanh(2/b,) + (2a/by)sech(Xy/bo)? cos(2rx, /1), (34)

wherea = V2 arctan()/b. Fourier transform of (17) with respect 1 gives the following relation

0 1, .
6—‘? = (Zevao—w gb/p)wvgb/ptl’, (35)

wherew = 1/2 is the wave number (see Fig. 2b).

4. Results and Discussion

The finite element code ABAQUS is used to solve the equations (17) and (18). A geometry with the heigth five
times the width. Is used. The region is divided into 10000 equal rectangular four node isoparametric finite elements.
The number of elements in the width direction, thedirection is from 1 for one dimensional cases to 100 for two
dimensional cases.

First the problem for a straight edge is studied, i.e. the center of the straight transition region is statignar.at
The region is exposed to a constant uniaxial stress perpendicular to the edge; i=eQ ando, = 0. This leads
to a transition region that moves at constant speed in the posjtideection foro, > 0. The only relevant physical
length is y/gn/p. However, the size of the elements and the increment length in relation to the motion rate times
the time increment that is being used, introduce undesirable artificial length scales. To avoid the limitations that the
artificial dependencies and to examine the accuracy the numerical result for the variation of the phasewaitiable,
the transition region is compared with the corresponding analytical solution.

Figure 3a, shows the result for twofidirent length scales where the one with the larger scale, one with 2 to 3
elements covering the transition region and one with around twice as many elements. Obviously the denser mesh
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Fig. 4. a) Calculations made forftrent amounts of strainingéss from zero to above 6. The critical strainimggzs ~ 5.8 marks a switch from
stationary width to growing width, seemingly with a constant rate. The curvedgy > 5.8 depends on time. Here the result fer 60 is plotted.
b) Growth rate of wave amplitude for a wavy interface. The curve showing the analytical result (35) included.

follow the exact result closely whine the coarser mesh seems to underestimate the width of the transition region with
typically 5 to 15%.

The dtect of element size on the width of the interface is displayed in Fig. 3b, showing the normalizedyyitdth
wheref, is the linear size of the finite elements. The result is displayed as a function of the magnitude of the physical
length scale normalised with the element sizg/as/ p/{.. The exact result (30) is included in the figure as a dashed
line. It is observed that the linear relation betwdeand +/gy/p is accurate as long as the transition region is large
compared with the size of the elements. The numerical result more or less coincides with the exact result as long as
the length scale\/gy/p is larger than more than arounds.. The error is 37%, 12% and 2.7% fafg,/p equal to
0.4, 0.8 and 1.65 time& respectively. The same also means that the width of the interface régiasmcovered by a
minimum of around 1, 3 and 7 elements across. In the following calculations the length parameteri;@pt& le
which means that the transition regidn, is covered by at least four elements across its thickness.

Figure 4a shows the resulting width of the interface fdifesient stretching of along the the interface. The stretching
is given on non-dimensional form &sézs. The non dimensional widthy/ /g,/p, is stable and increasing with in-
creasing stretching foreZ;s < 5.8. For larger stretching the width grows with a seemingly constant speed. Therefore
the result for 27¢;; > 5.8 is time dependent. In Fig. 4a the the result is taken for the non-dimensiondli6@. The
details around what happens at the critical stretchiagz2= 5.8, is yet somewhat unclear. The implication is that
the hydride would be forming to 50% and homogeneous or complete the formation of hydride in 50% of the volume.
The present analysis does not reveal any details regarding this.

The simulations of the wavy surface where initially given an amplitude of a tenth of the wavelengihs i0211.
The growth of the amplitude aftér= 1. At the end the relation between the amplitude was in all cases less than the
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wavelength. The result displayed in Fig. 4b shows that the simulations rather closely follows the analytical result.
Some deviation is observed for the smallest frequencies. For frequencies larges tha(l/4) /gb/g—g%\,a“-o the
interface develops in a stable manner. Initial shapes with a Fourier spectrum with frequencies largewthan n

z \/%ev&o will have amplitudes that decay with time.

5. Conclusions

It was possible to perform a phase-field analysis of the evolution of a metal to hydride interface. For a plane interface,
width and growth rate is obtained analytically. Also a solution for a shallow wavy surface is obtained. The results
was reproduced using a finite element method. Very good accuracy was obtained for small loads. For lager loads an
unforseen behaviour was observed.

The implications for the fracture process of hydride forming metals are important in the sense that it inform about
the different formation processes depending on both stress levels, stress directions and the importance of elapsed time.
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