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Abstract

Formation of metal hydrides is a serious complication that occur when hydride forming metals such as Zirkonium, Niobium,
Vanadium and Magnesium are exposed to long term hydrogen environment. The main concern is that the hydride, as being a brittle
material, has very poor fracture mechanical properties. Formation of hydride is associated with transportion of hydrogen along the
gradients of increasing hydrostatic stress, which leads to crack tips and other stress concentrators, where it forms the hydride. In
the present study the themodynamics of the evolving hydrides is studied. The focus is on the evolution of the interface between
the metal and the evolving hydride. The process is driven by the release of free strain, chemical, and gradient energies. A phase
field model is used to capture the driving forces that the release of the free energy causes. The study gives the conditions that lead
to hydride advancement versus retreat and under which conditions the metal-hydride interface becomes unstable and develops a
waviness. The spatial frequency spectrum leading to instability is found to depend on the ratio of the elastic strain energy density
and parameters related to the interface energy. The theory is related to the Asaro-Tiller-Grinfeld theory for surface instabilities.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of ECF21.
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1. Introduction

When structural materials are exposed to a long term hydrogen environment they may interact with hydrogen, and
cause various kinds of structural damages due to metal degradation. The interaction and damage of hydrogen depend
on a range of conditions. In the metals that form hydride, the precipitation of small and local amounts of hydrides
strongly affect the local mechanical properties and the over all integrity of the entire structure.

With the increasing need for green energy, hydrogen fuel cell technologies are used as renewable energy resources.
As a consequence secure vessels for transport and storage of liquid hydrogen is required. Much of the efforts are done
to the selection and production of secure transportation and storage materials. However, the effect of the hydrogen to
the transportation vessels are unavoidably associated with interaction between the hydrogen and the base material. In
nuclear power production metallic zirconium is exposed to hydrogen as it used extensively as structural support for the
fuel and the control rods. Zirconium forms brittle hydrides in hydrogen environments, which may case seriousprob-
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lems. Other hydride forming metals of practical interest include magnesium, titanium, hafnium. In many applications
of these metals, the formation of hydride is considered to be a major life limiting factor.

When the hydrogen concentration is sufficient, it reacts with the metal and forms a metal hydride. The hydride
is a binary brittle compound, which generally has a very low strength (see, Troiano (1960), Ellyin and Wu (1994),
Viswanathan et al. (2006)). Hydrogen migrates along gradients of hydrostatic stress and accumulates where the stress
obtains a local maximum (see, e.g., Singh et al. (2005)). The hydrogen, therefore, accumulates at material defects,
crack tips, dislocation pile-ups and other stress concentrators. The reason for the attraction of the hydrogen along the
gradient of hydrostatic stress is that the metal expands with increasing hydrogen concentration, which releases energy
caused by the relaxation of the hydrostatic stress. As an example, the stress free volumetric expansion of zirconium
during hydridisation can be of the order of 15 to 20%.

The hydride formation is a complicated process that results from the simultaneous operation of several coupled
processes. There is an agreement that the hydride is formed when the hydrogen concentration exceeds its terminal
solid solubility of the material, provided that a few additional conditions are fulfilled. When the hydride reaches
a certain size, it cracks at a comparably small load. A new hydride is after that, reformed ahead of the extended
crack. The result is an incremental type of crack growth Singh et al. (2008). A complete understanding involves
several disciplines such as atomic physics, electro-chemistry, materials engineering, and fracture mechanics. Many
experimental and theoretical studies have had focus on the hydride formation at crack tips and its influence on the
strength of the material (Nuttall et al. (1976)). Models of crack propagation based on the effect of diffusion was
studied by Shi (1999), Svoboda and Fischer (2012) and models that studied the importance of threshold hydrogen
concentration was studied by Singh et al. (2005). Temperature changes and hydrogen content related models have
been investigated by Bertolino et al. (2003).

The mechanical stress play a key role, not only for the transportation of the hydrogen into the vicinity of the crack
tip, but also for the morphology of the growing hydrides. Further, the hydrides appear different on different length
scales, i.e. on a mm length scale and above it may appear as a solid hydride, on a finer scale between of the order of
tens of microns appear as fractioned into so called platelets.

The morphological and microstructural differences of hydride precipitates affect the fracture process and has conse-
quences for the strength of the material. A phase field model that includes mechanical, interface and gradient energies,
allows us to compute the thermodynamics of the process. In the present study the evolution of the morphology of the
metal to hydride interface is examined regarding growth, retraction and interface stability.

In Sect. 2 the theory is developed and governing partial differential equations are given for the distribution of the
phase and the deformation components. In Sect. 3 the phase distribution in the interface region is derived for a few
simplified cases. Both planar and wavy interfaces are included. In Sect. 4 numerical solutions are first established by
comparative studies of the simplified cases. Here also, the limits for numerical accuracy is set.

2. Phase Field Modelling

For a virtually sharp interface, treated as a discontinuity, specific chemical and mechanical properties may be ascribed
to the interface. This simplifies the analysis and normally has no significant influence on the thermodynamical be-
haviour of the body. However, when the distance between structural inhomogeneities or other characteristic distances
are of the same order of magnitude as the thickness of the interface, e.g., at a rough interface, at the tip of a crack or
during emission of dislocations, etc., the thickness of the interface may play a role and the negligence thereof may
lead to unrealistic predictions. As opposed to this, a diffuse interface model assumes a continuous variation of compo-
sition, structure and other properties within the modelled region (cf. Landau and Lifshitz (1935)). This includes both
the hydride and the metallic matrix material and the diffuse interface between them.

Here, the solid material is assumed to be linear elastic with the elastic modulusE and Poisson’s ratioν. The energy
of the system is composed of the Landau chemical potential energy, the gradient energy and the elastic energy. The
respective energy densities areFch, Fgr, and Fel. The total free energy is defined as an integral that covering the
complete system. In the formulated system the essential free energies are assumed to be chemical, gradient and strain
energies. In the total energy is assumed to be

F =

∫

V
(Fch + Fgr + Fel)dV , (1)
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whereV is the volume of the body. The chemical, gradient and elastic energy densities are defined as follows,

Fch = p(
1
4
ψ4 −

1
2
ψ2), Fgr =

gb

2
ψ,iψ,i and Fel =

1
2
σi j (ψ)εi j . (2)

Hereψ is a phase variable that keep track of the phase. The permissible interval is−1 ≤ ψ ≤ 1, in whichψ = −1
defines the original material andψ = 1 defines the precipitate. All material properties are in general functions ofψ.
The summation rule is applied for double indices and the notation ( ),i = ∂( )/∂xi is used.

Fch is the Landau chemical potential energy density that represents the free energies stored in the different phases.
The energy density is caused by the disorder that arise in mixed phases. WhenFch play a significant role, the boy
is split up into two phases defined as regions consisting of almost pure original material and pure precipitate. These
regions are then separated by a thin layer called the interface consisting of an unpure material. The width of the
interface is denotedb and is in this study defined as the region in whichψ ≤ 0.9.

Fgr is an energy density that is caused by a Brownian motion that counteracts concentration gradients. Finally,Fel

is the elastic strain energy density for materials with a traction free expansion strainεs(ψ).
The theory is based on the Ginzburg-Landau’s assumption that the evolution in any point of any state variable

depends on the release rate of the local free energy density with respect to a variation of that variable. In the present
case withF = Fch + Fgr + Fel, the Ginzburg-Landau assumtion is formulated,

∂( )
∂t

= −L( )
δF
δ( )

, (3)

In the present study ( ) represents the phase variableψ or the displacementsui .
According to Lagranian formalism the following relate the variation to partial derivatives ofF with respect to scalar

variables ( ) and its spatial derivatives ( ),i as follows,

δF
δ( )

=
∂F
∂( )
−

∂

∂xi

∂F
∂( ),i

. (4)

The notation for spatial derivatives is used for indicesi, j andk. The variations with respect toδψ are readily
obtained for the chemical and gradient energy densities as

δFch

δψ
= −p(1− ψ2)ψ and

δFgr

δψ
= −gbψ,ii . (5)

Further, stresses are given by
σi j (ψ, ui) = 2μεe

i j (ψ, ui) + λδi j ε
e
kk(ψ, ui) , (6)

whereμ andλ are the Laḿe parameters andδi j is the Kronecker delta. The total strainεi j is defined as follows,

εi j (ui) =
1
2

(ui, j + ui, j) . (7)

whereεe
i j is the elastic strain, defined as

εe
i j (ψ, ui) = εi j (ui) − δi j εs(ψ, ui) , (8)

The stress free linear expansion,εs(ψ), is chosen to be 0 forψ = −1 andεv/3 for ψ = 1, whereεv is the volumetric
stress free expansion. Further, it is necessary thatε′s(ψ) = 0 at |ψ| = 1 to avoid discontinuous behaviour at the edges of
the permissible interval forψ. The simplest polynomial that fulfils the conditions is

εs(ψ) = −
1
12

(ψ3 − 3ψ − 2)εv. (9)
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Insertion of Eqs. (6) and (8) into (2) gives the following expression

Fel =

∫ εi j

0
σi j dεi j =

∫ εi j

0
σi j dεe

i j +

∫ εi j

0
σi j dεs =

1
2
σi j ε

e
i j + σii εs. (10)

Application of (4) and (9) gives on,

δFel

δψ
=

1
4
σii (1− ψ

2)εv, (11)

Application of (3) on the results (5) and (11) gives the governing equation for the evolution ofψ as follows

∂ψ

∂t
= Lψ

(

p(1− ψ2)ψ + gbψ,ii +
1
4
σii (1− ψ

2)εv

)

, (12)

Regarding the displacements,ui , the governing equation can be found as following with the same formalism as for the
phase variable. Obviously

δFch

δui
=
δFgr

δui
= 0 . (13)

Using (4) and (7) one obtains

δFel

δui
= −

∂

∂xj

∂Fel

∂(ui, j)
= −

1
2
{2μεi j, j + λε j j,i} − (3λ + 2μ)εs(ψ),i . (14)

In the present study only quasi-static evolution is considered. The body may be in a thermodynamic state but the
mechanical state is assumed to be static. By putting the mobility parameterLui � ∂ui/∂t implying that,

δFel

δui
= 0 ⇒ 2μεi j, j + λε j j,i − 2(3λ + 2μ)εs(ψ),i = 0 . (15)

The governing equation for the evolution of the displacements,ui , is as follows

ui, j j +
1

1− 2ν
uj, ji =

1+ ν

1− 2ν
εv(1− ψ

2)ψ,i , (16)

which is identical toσi j, j = 0 for a material with an isotropic stress free volumetric expansionεv.
With the length unit

√
gb/p and the time unit (Lψp)−1 used in Eqs. (12) and (16), the governing equations take the

form

∂ψ

∂t̂
− ψ,αα =

(
1
4
ε̂vσ̂ββ + ψ

)

(1− ψ2), (17)

ûα,ββ +
2(1+ ν)
1− 2ν

ûβ,αβ = 2
(1+ ν)2

1− 2ν
ε̂v(1− ψ

2)ψ,α (18)

where the following scalings are made

t̂ = Lψp t, x̂i =

√
p
gb

xi , ûi =

√
E
gb

ui . (19)

and consequently
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ε̂αα =

√
E
p
εi j , ε̂v =

√
E
p
εv , σ̂αα =

1
√

Ep
σi j , . (20)

The index notation for partial derivatives using greek lettersα, andβ denotes that the partial derivatives are taken with
respect to the non-dimensional coordinates, e.g. ( ),α denotes∂( )/∂x̂α, whereα=1, 2 or 3.

3. Solutions for Plane and Shallow Wavy Interfaces

In the absence of mechanical load an analytical solution is given for a straight edge by Ginzburg and Landau (1950).
Closed form solutions that include the effect of an external homogeneous stress field are easily obtained as is shown
in the following section.

The modelled geometry is a strip with the dimensions of|x1| ≤ h/2 and|x2| ≤ 3h/2, whereh is height of the studied
geometry. The interface is parallel with thex1 axis. and is initially placed atx2 = 0. In the following subsections
constant displacements along the edges at|x1| = h/2, respectively constant stress along the edges at|x2| = 3h/2 are
applied. In both cases the applied load creates stress and strain fields that are only dependent on thex2 coordinate and
time.

3.1. Uniaxial stress field applied in the x2 direction,ψ = f (x̂2, t̂)

Here the solution for an edge moving under steady state conditions in a uniaxial stress field, under plane stress
condition, is derived. The boundary conditions are

σ22(±3h/2) = σo and σ12(±3h/2) = 0, (21)

where the stressσo is constant. Remaining boundaries are traction free. The phase boundary conditions are

f (±3h/2) = ±1 , (22)

The notationψ = f (x̂2, t̂) is used, withḟ = ∂ f /∂t̂ and f ′ = ∂ f /∂x̂2. Equation (17) is written

ḟ − f ′′ = (ε̂vσ̂o/4+ f ) (1− f 2), (23)

whereσ̂o equalsσo/
√

Ep. The variation of the contraction across the edge creates a complicated stress-strain dis-
tribution close to where the edges meets the boundaries at|x1| = h/2 and|x2| = 3h/2. The disturbance reside in a
region that has the linear extent of around two or three distances equivalent the width of the interface, i.e., only a
small fraction of the width of the body. To avoid the disturbance and without loosing generality Poisson’s ratio is put
to ν = 0.

The assumed steady-state conditions implies thatf (x̂2, t̂) = g(x̂2 − ct̂) = g(ξ) by the coordinate transformation
ξ = x̂2 − ct̂. Thus,ġ = −cg′(x̂2 − ct̂) = −cg′(ξ), which applied to (23) gives,

cg′ + g′′ = − (ε̂vσ̂o/4+ g) (1− g2). (24)

By puttingz(x̂) = g′ andz′(x̂) = zdx̂2
dg

dz
dx̂2

= zdz
dg one obtains,

1
2

d(z2)
d f

= −cz− (ε̂vσ̂o/4+ f )(1− f 2). (25)

After integrating with respect to ˆx one obtains

z2 = −2
∫
{cz+

1
4
ε̂vσ̂o(1− g2)}dg− g2 +

1
2

g4 + C, (26)
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Fig. 1. The phase distributionψ for a single wave and a split wave that that is caused by large stresses.

The boundary conditions (22) giveC = 1/2. The roots are found after factorisation of the left hand side as

{z−
1
√

2
(1− g2)}{z+

1
√

2
(1− g2)} = −2

∫
{cz+

1
4
ε̂vσ̂o(1− g2)}dg, (27)

Obviously the system has a rootz= −(1/
√

2)(1−g2) if c is chosen to
√

2ε̂vσ̂o/4 andz= (1/
√

2)(1−g2) if c is chosen
to −
√

2ε̂vσ̂o/4. The two permissible solutions are

1
z
=

dξ
dg

= ±
√

2/(1− g2) , (28)

with the solution

g = ± tanh(
ξ
√

2
) = tanh(

x̂2
√

2
∓
ε̂vσ̂o

4
t̂) . (29)

The width,b, of the interface, i.e., the region where|g| ≤ 0.9, denotedbo in the present case whenσkk = 0 along
ξ = 0, is

bo = 2
√

2 arctanh (0.9)
√

gb

p
= 4.16407

√
gb

p
(30)

The solution shows that the interaction between the interface at aroundξ = 0 and its surroundings is very small.
The deviation from the value it converges to at large distances, i.e.|g| → 1 as|ξ| → ∞ is, e.g., less than one percent
for ξ = 3.75 and less than 10−4 for ξ = 5.4. It is also obvious that two or more waves can be superimposed as long as
the the distance between the waves is large and the boundary conditions are fulfilled.

3.2. Uniaxial stress field applied in the x1 direction,ψ = f (x̂2, t̂)

Here a load is applied in thex1 direction via a prescribed displacement

u1(±h/2) = ±εoh/2 and σ22(±3h/2) = 0, (31)

which gives a stressσ11 that varies in thex2 direction, i.e.,

σo = (2μ + 3λ)εe
11 = 2μ

1+ ν

1− 2ν
{ε11 − 2εs( f (x̂2, t̂))}. (32)



P.Ståhle et al./ Structural Integrity Procedia 00 (2016) 000–000 7

Fig. 2. a) Wavy initial interface with a wavelengthλ and a wave amplitudea = 0.1λ. b) Growth rate versus the wave numberω = 1/λ.

where the stressεo is constant. Remaining boundaries are traction free. Shear traction vanishes on all boundaries. The
phase boundary conditions are according to (22).

3.3. Wavy interface and subjected to a remote uniaxial stress field applied in the x1 direction

A wavy interface with a wave amplitudea and the wavelengthλ is considered. As shown in Fig. 2a the hydride initially
occupies the regionx2 ≤ asin(2πx1/λ) and the remaining part is the metal. The initial fieldg is chosen to be

ψ = − tanh

[
2
bo

(x2 − acos(2πx1/λ))

]

, (33)

wherebo is the half thickness of the interface according to (30). Because of the periodicity, the geometry is reduced
to one for a strip with the width 0≤ x1 ≤ λ/2. The boundary conditions are according to (22) and (31).

The amplitudea is assumed to be small and much less than the wave lengthλ. A series expansion for small a gives

ψ = − tanh(2x2/bo) + (2a/bo)sech(2x2/bo)2 cos(2πx1/λ), (34)

whereα =
√

2 arctan(0.9)/b. Fourier transform of (17) with respect tox2 gives the following relation

∂ψ

∂t̂
=

(
1
4
ε̂vσ̂o − ω

√
gb/p

)

ω
√

gb/pψ, (35)

whereω = 1/λ is the wave number (see Fig. 2b).

4. Results and Discussion

The finite element code ABAQUS is used to solve the equations (17) and (18). A geometry with the heigth five
times the width. Is used. The region is divided into 10000 equal rectangular four node isoparametric finite elements.
The number of elements in the width direction, thex1-direction is from 1 for one dimensional cases to 100 for two
dimensional cases.

First the problem for a straight edge is studied, i.e. the center of the straight transition region is stationary atx1 = 0.
The region is exposed to a constant uniaxial stress perpendicular to the edge, i.e.,σ11 = 0 andσ22 = σo. This leads
to a transition region that moves at constant speed in the positivex2-direction forσo > 0. The only relevant physical
length is

√
gb/p. However, the size of the elements and the increment length in relation to the motion rate times

the time increment that is being used, introduce undesirable artificial length scales. To avoid the limitations that the
artificial dependencies and to examine the accuracy the numerical result for the variation of the phase variable,ψ, in
the transition region is compared with the corresponding analytical solution.

Figure 3a, shows the result for two different length scales where the one with the larger scale, one with 2 to 3
elements covering the transition region and one with around twice as many elements. Obviously the denser mesh
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Fig. 3. a) Results for a transition region covered by 2 or 3 finite elements and 7 or 8 elements respectively. b) Number of elements per per calculated
width bo/`e vs. the ratio of the selected interface length scale and the element size

√
gb/p/`e.

Fig. 4. a) Calculations made for different amounts of straining ˆεvε̂ββ from zero to above 6. The critical straining ˆεvε̂ββ ≈ 5.8 marks a switch from
stationary width to growing width, seemingly with a constant rate. The curve for ˆεvε̂ββ > 5.8 depends on time. Here the result fort̂ = 60 is plotted.
b) Growth rate of wave amplitude for a wavy interface. The curve showing the analytical result (35) included.

follow the exact result closely whine the coarser mesh seems to underestimate the width of the transition region with
typically 5 to 15%.

The effect of element size on the width of the interface is displayed in Fig. 3b, showing the normalized widthbo/`e,
where`e is the linear size of the finite elements. The result is displayed as a function of the magnitude of the physical
length scale normalised with the element size as

√
gb/p/`e. The exact result (30) is included in the figure as a dashed

line. It is observed that the linear relation betweenb and
√

gb/p is accurate as long as the transition region is large
compared with the size of the elements. The numerical result more or less coincides with the exact result as long as
the length scale

√
gb/p is larger than more than around 1.6`e. The error is 37%, 12% and 2.7% for

√
gb/p equal to

0.4, 0.8 and 1.65 times̀e respectively. The same also means that the width of the interface region,bo, is covered by a
minimum of around 1, 3 and 7 elements across. In the following calculations the length parameter is set to

√
gb/p ≤ `e

which means that the transition region,bo, is covered by at least four elements across its thickness.
Figure 4a shows the resulting width of the interface for different stretching of along the the interface. The stretching

is given on non-dimensional form as ˆεvε̂ββ. The non dimensional width,b/
√

gb/p, is stable and increasing with in-
creasing stretching for 2ˆεvε̂ββ < 5.8. For larger stretching the width grows with a seemingly constant speed. Therefore
the result for 2ˆεvε̂ββ > 5.8 is time dependent. In Fig. 4a the the result is taken for the non-dimensional timet̂ = 60. The
details around what happens at the critical stretching, 2ˆεvε̂ββ = 5.8, is yet somewhat unclear. The implication is that
the hydride would be forming to 50% and homogeneous or complete the formation of hydride in 50% of the volume.
The present analysis does not reveal any details regarding this.

The simulations of the wavy surface where initially given an amplitude of a tenth of the wavelength, i.e.a = 0.1λ.
The growth of the amplitude aftert̂ = 1. At the end the relation between the amplitude was in all cases less than the
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wavelength. The result displayed in Fig. 4b shows that the simulations rather closely follows the analytical result.

Some deviation is observed for the smallest frequencies. For frequencies larger thanω > (1/4)
√

gb/
gb

p ε̂vσ̂o the

interface develops in a stable manner. Initial shapes with a Fourier spectrum with frequencies larger than nω >
1
4

√
gb

p ε̂vσ̂o will have amplitudes that decay with time.

5. Conclusions

It was possible to perform a phase-field analysis of the evolution of a metal to hydride interface. For a plane interface,
width and growth rate is obtained analytically. Also a solution for a shallow wavy surface is obtained. The results
was reproduced using a finite element method. Very good accuracy was obtained for small loads. For lager loads an
unforseen behaviour was observed.

The implications for the fracture process of hydride forming metals are important in the sense that it inform about
the different formation processes depending on both stress levels, stress directions and the importance of elapsed time.
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