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I



AbstratStrutural optimization is a rather new branh in solid mehanis that havebeome inreasingly important during the last deades.The SIMP method is a simple and fast method frequently used to obtainoptimized strutures. The SIMP method has in a �nite element setting awell known defet in that it laks a unique solution whih appears as a meshdependeny.To irumvent this mesh dependeny a strutural optimization method allow-ing for perimeter ontrol is presented. The proedure is based on a funtionalin terms of the material density distribution and the displaement �eld. Theoptimum of the funtional is found by using the KKT onditions and Cahn-Hilliards equation. To solve the problem use is made of the �nite elementmethod. To properly resolve the interfaes of the optimized struture anadaptive spae disretization is implemented.To test the method and verify that the formulation returns feasible strutures,simulations are performed on a simple optimization problem. The resultsfrom these simulations are reasonable and we onlude that the method isworking for the simple optimization problems that are tested.
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Chapter 1Introdution
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1.1 IntrodutionMany proesses when onstruting new produts an be modeled as shemessimilar to the one illustrated in Figure 1.1.
Analysis

Design

Development

Testing and
Valuation

Not OK

OK

Constructing
the ProductFigure 1.1: Model of a produt developmentTo get a better understanding of this proess eah step is desribed beneath1 Analysis: In this step an analyze is made regarding what demandsthe produt needs to ful�ll and what the limitations for onstruting itmight be.2 Design: At this step a guess is made on how the produt should beonstruted. Here it is almost always preferable to use engineers thathave had a lot of experiene with similar produts before sine theymake the best guesses. 3



3 Development: The onstrution following the Design step is not per-fet and therefore improvements are performed in this step.4 Testing and Valuation: The produt is tested to on�rm that itful�lls the demands spei�ed in the Analysis step and also if it doesso in the best possible way. At this point it is ommon to realize thatthe produt still needs improvement and if this is the ase a �jump� ismade bak to the Design step. When this yle has been performed aouple of times or, whih sometimes is the ase, a lot of times one willhopefully be satis�ed with the produt and move on to the last step.5 Construting the produt: This is when the produt is onstrutedThe proess of performing these 5 steps is very time onsuming and there-fore also onsumes a lot of money. These issues of time and money aretwo of the main reasons why strutural optimization theory have beomeinreasingly important during the last deades. The theory behind stru-tural optimization is a rather new branh in solid mehanis but has alreadydelivered models that in many ases an advane the produt developmentbetter than the model desribed by Figure 1.1. Some of these models stillhave room for improvement and this is what motivated this thesis.1.1.1 ExampleTo show the e�et of an optimization, while simultaneously desribing dif-ferent models of performing an optimization, a simple example is given.Example 1:Assume that there lies a need of a struture that an withstand an externalfore P . Assume also that the amount of material available for the onstru-tion is limited and that the struture is to be plaed within the area A. Forlarity the problem is illustrated in Figure 1.2.
The need for a struture that an withstand an external fore P motivatesthe searh of a struture that is as sti� as possible. Maximizing the sti�nessof the struture is equivalent to minimizing the ompliane of the struture.Sine minimizing the ompliane is an easier problem to handle the ompli-ane is going to be used as an objetive of the optimization.4



P

A

Figure 1.2: Illustration of the ustomers demandsTo performing this optimization it is onvenient to de�ne an objetive fun-tion g0 = C where C denotes the ompliane and then minimize g0. Sine thestruture is limited by the amount of material available a volume onstraint
g1 must be imposed to the optimization.When dealing with optimization problems it is found useful to rewrite theproblem into a mathematial problem. Let P denote a general mathematialoptimization problem and de�ne it by:

P =























minρ∈Rm g0(ρ,u)
s.t











σkl,l + bk = 0

gi ≤ 0 for i = 1...n}
ρe ∈ χ = {ρe ∈ R

m : ρmin
e ≤ ρe ≤ ρmax

e }

(1.1)where u denotes the displaement vetor, gi denotes the onstraints and ρe ∈
χ is alled a box onstraint. When solving P use will be made of the �niteelement method whih means that the struture is disretized into a numberof elements e .The onentration ρe is for eah of these elements element eassumed to be onstant over the whole element. Due to the manufaturingproess it is in many ases desirable to end up with a distint design i.e.
ρe ∈ {0, 1} ∀ e, where ρe = 1 means there is material and ρe = 0 meansno material. Furthermore is the equilibrium equation σkl,l + bk = 0 inludedin (1.1) to impose that the loal form of the stati equilibrium is to be ful�lled.Here is σkl the Cauhy stress tensor and bk the body fore vetor.In Part A of this thesis the SIMP method is disussed. This method takesthe three demands in Example 1 in mind. However, it is well known thatthe SIMP method results in a mesh dependent solution and therefore doesnot have a unique solution.In Part B another method based on adding two penalization funtions is de-rived. The resulting equations will be solved using the Cahn-Hilliard equationand the spae-disretization is based on an adaptive three node mesh.5



Before these Parts are presented two setions are inluded desribing the�nite element formulation of the two dimensional elastiity and some prop-erties regarding minimization of the ompliane
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1.2 Finite element formulation of two-dimensionalelastiityLet the loal form of the stati equilibrium de�ne the strong form of elastiityas
σij,j + bi = 0 (1.2)Multiplying equation (1.2) with a weight funtion v̄l and integrating over thedomain Ω gives

∫

Ω

v̄lσij,jdΩ+

∫

Ω

v̄bidΩ = 0. (1.3)Applying the produt rulē
vlσij,j = (v̄lσij),j − v̄l,jσij (1.4)to substitute the term v̄lσij,j results in

∫

Ω

(v̄lσij),jdΩ−
∫

Ω

v̄l,jσijdΩ +

∫

Ω

v̄lbidΩ = 0 (1.5)Whih after making use of divergene theorem of Gauss
∫

V

qi,idV =

∫

S

qinidS. (1.6)to equation (1.5) the weak form of elastiity follows
∫

∂Ω

v̄ltid∂Ω−
∫

Ω

v̄l,jσijdΩ+

∫

Ω

v̄lbidΩ = 0. (1.7)In equation (1.7) use have been made of Cauhy's formula whih states
ti = σijnj (1.8)where ti denotes the tration vetor.Inserting the following FE-approximationsu = Nmū ε = Bmū (1.9)

v̄l = Nmv̄ v̄l,j = Bmv̄ (1.10)7



into the weak form (1.7) de�nes the �nite element formulation of the two-dimensional elastiity asKu = P (1.11)K =

∫

Ω

BT
mDBmdΩ (1.12)P =

∫

∂Ω

NT
mtd∂Ω +

∫

Ω

NT
mbdΩ (1.13)where D denotes the element sti�ness tensor whih here is de�ned byD = f̃D0 (1.14)Here f̃ is a funtion of the loal onentration ρe and D0 is the sti�nesstensor de�ned by hookes law i.e.

f̃ = f̃(ρe) (1.15)D0 =
E

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 . (1.16)Di�erent hoies of f̃ will be disussed in this thesis. Note that this de�nitionof the sti�ness tensor allow the global sti�ness matrix K(ρ) to be separatedas K(ρ) =
n
∑

e=1

f̃(ρe)K0
e (1.17)Making use of equation (1.11) the mathematial problem P is rewritten into

P =























minρ∈Rm g0(ρ,u)s.t




K(ρ)u(ρ) = P
gi ≤ 0 for i = 1...n}
ρe ∈ χ

(1.18)f. (1.1)The matries in equations (1.11) - (1.13) are de�ned in Setion 3.2
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1.3 Minimizing the omplianeTo simplify the derivation of the optimization methods this setion willpresent some properties assoiated with optimization of the ompliane.The ompliane is de�ned as
C =

∫

∂Ω

tiuid∂Ω +

∫

Ω

biuidΩ. (1.19)Using the ompliane as an objetive funtion results in a problem thatontains the two design parameters ui and ρe. These variables are oupledvia equilibrium whih is a property that an be eluded throughu(ρ) = K−1(ρ)P. (1.20)f. (1.11)Using the oupling (1.20) the nested mathematial problem Pnf originatedfrom P is obtained. Pnf is de�ned as
Pnf =















minρ∈Rm g0(ρ)s.t{ gi ≤ 0 for i = 1...n

ρe ∈ χ = {ρe ∈ R
m : ρmin ≤ ρe ≤ ρmax}

(1.21)Rewriting equation (1.19) with Cauhy's formula (1.8) and the loal form ofthe stati equilibrium equations (1.2) results in
C =

∫

∂Ω

σijnjuid∂Ω−
∫

Ω

uiσij,jdΩ. (1.22)Whih after applying the produt rule
(uiσij),j = ui,jσij + uiσij,j (1.23)and Gauss theorem (1.6) enables the seond integral in (1.22) to be rewrittenas

∫

Ω

uiσij,jdΩ =

∫

∂Ω

uiσijnjd∂Ω −
∫

Ω

ui,jσijdΩ (1.24)Sine σij = σji the displaement gradient ui,j an be replaed by the straintensor εij . Making this hange in equation (1.24) the following is obtained
C =

∫

Ω

εijσijdΩ =

∫

Ω

εijDijklεkldΩ. (1.25)9



Note that equation (1.25) states that the ompliane is proportional to thestrain energy integrated over the domain Ω sine the strain energy w isde�ned as
w =

1

2
εijDijklεkl. (1.26)Inserting the FE-approximations (f. Setion 1.2) into equation (1.25) gives

C = uTKu (1.27)Combining equations (1.11) and (1.27) results in
C = PTu (1.28)where use have been made of the fat that K is symmetriTo further motivate equation (1.28) onsider Figure 1.3 where a beam isbeing exposed to an external fore P .

P
uFigure 1.3: Beam exposed to an external fore PFrom Figure 1.3 one an interpret that a sti� beam would make the de�e-tion u smaller than a beam that is not sti� i.e maximizing the sti�ness isequivalent with minimizing PTu.
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Chapter 2Part A
2.1 Topology-Optimization using SIMPSolid Isotropi Material with Penalization, SIMP, is a simple and fast methodused to obtain an optimized struture. The SIMP-method is based on theoptimal riteria method, OC-method, and both these methods are brie�ypresented so that the reader understands the motivation for this report.When deriving these methods it is onvenient to �rst present the mathemat-ial problem P assoiated with the two methods f. (1.21).Using the ompliane as the objetive of the optimization the objetive fun-tion g0 is for these methods de�ned by

g0(ρ) = PTu(ρ). (2.1)f. (1.28)The volume onstraint g1 that is imposed in the SIMP method is de�ned by
g1(ρ) =

n
∑

e=1

aeρeth − Vmax. (2.2)where th denotes the maximum thikness of the struture, and ae the areaof element e. Finally the box onstraints whih limits the values of theonentration ρe is de�ned as
ρe ∈ χ = {ρe ∈ R

m : ρmin
e ≤ ρe ≤ ρmax

e } (2.3)where ρmin
e = 4

√
eps and ρmax

e = 1. (2.4)11



where eps denotes the mahine preision taken as eps = 2.2204 · 10−16.Elements where ρe = ρmin
e should be interpreted as elements with no material,the reason why ρmin

e 6= 0 is to avoid singularities.Inserting equations (2.1)- (2.3) into (1.21) gives
P1

nf =















minρ g0(ρ) = PTu(ρ)
s.t

{

g1(ρ) =
∑n

e aeρeth − Vmax ≤ 0

ρe ∈ χ = {ρe ∈ R
m : ρmin

e ≤ ρe ≤ ρmax
e }

(2.5)To solve problem (2.5) use is being made of onvex approximations. Tounderstand the motivation behind this the onept onvexity is presented.2.1.1 Convex ProblemA problem is said to be onvex if the objetive funtion and all the on-straints, inluding the box onstraint, are onvex. The de�nitions of a onvexset and a onvex funtion are stated as:A set S ⊂ R
n is onvex if for all x1, x2 ∈ S and all λ ∈ [0,1℄, it holds that

λx1 + (1− λ)x2 ∈ S (2.6)Note that this implies that every box onstraint on the form xmax > x > xminis a onvex set.A funtion f : S → R is onvex if for all x1, x2 ∈ S with x1 6= x2 and all λ ∈(0,1), it holds that
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2.7)From these de�nitions the following lemmas an be shown

• If f and g are onvex funtions, then the sum h = f + g is also onvex
• If f is on an a�ne form f = ax+ b, then f is onvex
• If f is on the form f = x−α where α is a positive integer and x > 0, fis onvex.
• f is onvex on I ⇐⇒ ∂2f

∂x2 ≥ 0 ∀ x ∈ I12



What the de�nitions above means is that a set is onvex if all points on aline onneting two points in the set also belongs to the set. A funtion isonvex if the set above the graph of the funtion is onvex. This implies thatif a stationarity point is found to a onvex funtion then this is also a globalminimum of the funtion.
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a) b)
Figure 2.1: Illustrations of a) a set that is not onvex b) a set that is onvex

0 1
1a)

0 1
b)

Figure 2.2: Illustrations of a) a funtion that is onvex b) a funtion that isnot onvex
2.1.2 Convex approximationOC-MethodAs a �rst step in deriving the onvex approximation gOC a Taylor expansionof funtion g is performed. The Taylor expansion is performed with respetto ye whih is an intervening variable hosen as

ye = ρ−α
e α ∈ Z+. (2.8)14



After the Taylor expansion gOC takes the form
gOC(ρ) ≈ g(ρk) +

n
∑

e=1

∂g(ρ)

∂ye
|ρ=ρk(ye − yke ) (2.9)where ρk is a known state and

∂g(ρ)

∂ye
=

∂g(ρ)

∂ρe

∂ρe
∂ye

=
∂g(ρ)

∂ρe

1
d(ρ−α

e )
dρe

= −ρ1+α
e

α

∂g(ρ)

∂ρe
(2.10)All the funtions applied to the OC onvex approximation in this thesis willhave the following property

∂g(ρ)

∂ρe
≥ 0. (2.11)Having this property implies that

∂2gOC

∂ρ2e
≥ 0 ∀ ρe ∈ χ (2.12)whih means that gOC is a onvex funtion f. Setion 2.1.1Applying the OC onvex approximation to the objetive funtion g0 de�nedin equation (2.1) the onvex approximation gOC

0 is retrieved
∂g0(ρ)

∂ρe
= PT ∂u(ρ)

∂ρe
= (K(ρ)u(ρ))T ∂u(ρ)

∂ρe
= u(ρ)TK(ρ)

∂u(ρ)
∂ρe

(2.13)where use have been made of the fat thatK(ρ) is symmetri and the sti�nesstensor is de�ned by
f̃(ρe) = ρe (2.14)f. (1.14).The derivative of K(ρ)u(ρ) = P with respet to ρe states

∂K(ρ)

∂ρe
u(ρ) +K(ρ)

∂u(ρ)
∂ρe

=
∂P
∂ρe

= 0⇒ (2.15)
∂u(ρ)
∂ρe

= −K−1(ρ)K0
eu(ρ). (2.16)Inserting (2.16) into (2.13) results in

∂g0(ρ)

∂ρe
= −(uk

e)
TK0

euk
e . (2.17)15



Sine K0
e is positive de�nite equation (2.17) implie that

∂g0(ρ)

∂ρe
≤ 0. (2.18)Inserting (2.17) into equation (2.9) together with equation (2.10) �nally de-�nes the onvex approximation of g0 as

gOC
0 (ρ) = ξ +

n
∑

e=1

bkeρ
−α
e (2.19)where bke =

1

α
((uk

e)
TK0

euk
e)(ρ

k
e)

1+α. (2.20)where ξ = gOC(0) is onstant and of no interest when seeking a minimum to
gOC
0 . Sine the onstraint g1 is linear an OC-approximation would have noa�et, i.e gOC

1 = g1.SIMP-MethodPerforming an optimization with the sti�ness tensor de�ned by equations (1.14)and (2.14) would return a struture where element e have the thikness ρeth,
ρe ∈ {ρmin

e ≤ ρe ≤ ρmax
e } f. (2.5). This means that a struture with inter-mediate onentrations is retrieved and suh a struture might be di�ultto onstrut. One way to elude this problem is to introdue a penalizationfor intermediate onentrations. This is easily done by hanging f̃(ρe) from

f̃(ρe) = ρe to f̃(ρe) = ρqe where q ∈ N+. This hange will e�et the sti�nessof eah element and an be interpreted as hanging Young's modulus from Eto ρqeE. The e�et of hanging Young's modulus is illustrated in Figure 2.3.In this �gure it is seen that the onentrations ρe = 1 and ρe = 0 give aone to one relation with the sti�ness while the onentrations 0 < ρe < 1does not sti�en the struture as muh as they would if q = 1. Note that
this penalization has the disadvantage of making the the ontinous problem
P1

nf non unique. From a pratial point of view this disadvantage appearsas a mesh dependeny where a �ner mesh implies thinner members in thestruture. 16



0 1
0

1

ρe

ρqe

ρe

Figure 2.3: In�uene of the inserted penalization term ρqe.Replaing Young's modulusE with ρqeE results in that the sti�ness tensor andthe global sti�ness matrix needs to be replaed. The new sti�ness sti�nessmatrix takes the form K(ρ) =
n
∑

e=1

ρqeK0
e. (2.21)The onvex approximation gSIMP used in the SIMP method is derived inthe same way as gOC is derived in the OC method. This means that equa-tions (2.9) and (2.10) are still valid but due to the hanged sti�ness matrixdoes the derivative of g0 hange from equation (2.17) to

∂g0(ρ)

∂ρe
= −uT

e qρ
q−1
e K0

eue (2.22)This implies that the onvex approximation gSIMP
0 is de�ned by:

gSIMP
0 (ρ) = ξ +

n
∑

e=1

bkeρ
−α
e (2.23)where bke =

1

α
((uk

e)
T q(ρke)

q−1K0
euk

e)(ρ
k
e)

1+α. (2.24)where ξ = gSIMP
0 (0) one again is onstant and of no interest during ouroptimization.2.1.3 Calulating the optimal onstrutionFinding the optimal struture the SIMP method makes use of the KKTmethod whih is a well known mathematial optimization method.
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Karush-Kuhn-Tuker (KKT)An important ornerstone when de�ning the KKT method is the Lagrangian,
L, whih is de�ned by

L(x, λ) = g0(x) +
l
∑

i=1

λigi(x) (2.25)where λi denotes the Lagrangian multipliers. The KKT method states thata stationarity point to the Lagrangian is found when the following onditionsare ful�lled
∂L(x, λ)

∂xj
=

∂g0(x)

∂xj
+

l
∑

i=1

λi
∂gi(x)

∂xj
= 0 (2.26)

λigi(x) = 0 (2.27)
gi(x) ≤ 0 (2.28)

λi ≥ 0 (2.29)for all j = 1, ..., n and i = 1, ..., l were l is the number of onstraint funtionsand n is the number of variables xj . Combining equations (2.25) and (2.27)it is lear that if this stationary point minimizes L it will also minimize theobjetive funtion g0.An important lemma, that is used to derive the SIMP method, and thatfollows from these onditions is de�ned asLemma 1 Let P be a onvex problem, and let (x∗, λ∗) be a KKT point of P.Then x∗ is a global minimum of P.From the KKT method another optimization method has been developedwhih uses the Lagrangian Duality to obtain an optimal solution. Thismethod states that
min
x∈Rm

max
0≤λ

L(x, λ) = min
x∈Rm

max
0≤λ

{

g0(x) +
l
∑

i=1

λigi(x)

} (2.30)and gives an optimal solution that ful�ll the KKT onditions on a onvexproblem. The dual problem D orresponding to the primal problem P isobtained by.
D =

{

maxλ ϕ(λ)
s.t 0 ≤ λ

(2.31)18



where the dual objetive funtion ϕ is de�ned as
ϕ(λ) = minx∈Rm

L(x, λ). (2.32)For more information about the KKT method see [7℄.For the urrent problem stated in (2.5) the Lagrangian, L, beomes
L(ρ, λ) = gSIMP

0 (ρ) + λgSIMP
1 (ρ) =

n
∑

e=1

bkeρ
−α
e + λ

(

n
∑

e=1

aeρeth − λV

)

.(2.33)From this the dual objetive funtion is de�ned as the minimum of the La-grangian i.e.
ϕ(λ) = min

ρmin≤ρe≤ρmax

L(ρ, λ) =
n
∑

e=1

min[bkeρ
−α
e + λaeρeth]− λV. (2.34)where bke =

1

α
(uk

e)
T qρq−1

e K0
euk

e(ρ
k
e)

1+α (2.35)f.[1℄Clearly the minimum of the L ours simultaneously with Lα = bkeρ
−α
e +λaeρehaving its minimum. This minimum ours either when ρe = ρmin, when

ρe = ρmax or in the interval ρmin ≤ ρe ≤ ρmax. Assuming that this ourswithin the interval ρmin ≤ ρe ≤ ρmax is ρe found through
∂Lα

∂ρe
= −αbkeρ

−α−1
e + λaeth ⇒ ρe =

(

αbke
λaeth

)η (2.36)where η = 1
1+α

. Through this an iteration sheme for �nding the optimumstruture is onstruted as
ρk+1
e = min

{

max

[

ρke

(

(uk
e)

T qρq−1
e K0

euk
e

λaeth

)η

, ρmin

]

, ρmax

} (2.37)
∂ϕ

∂λ
=

n
∑

e=1

aeρeth − V = 0 (2.38)This sheme is then repeated until the optimized state is reahed.For a more theory about the SIMP method see[1℄.19



2.1.4 Results from using the SIMP methodIn this setion the outome of a SIMP simulation is shown. During thesimulations the following parameter values were usedpenalization onstant q intervening variable onstant α initial density ρ0e3 3 0.3 ∀ eand if nothing else is mentioned a grid of 60x40 4-node isoparametri elementswere used i.e. 2400 elements.To start the analysis the hanges in the distribution of material over theiterations will be disussed. In Figure 2.4(a) the solution after 5 iterationsand 200 iterations are shown.
(a) 5 iterations (b) 200 iterationsFigure 2.4: Distribution of material after 5 iterations and after 200 iterationsIn Figure 2.4 one learly see how the penalization fore the densities to

ρe ∈ {0, 1}.The evolution of the ompliane over the number of iterations is illustratedin Figure 2.5Figure 2.5 is zoomed in on the �rst 20 iterations sine it turned out to behere the main hanges ourred in the ompliane. From this �gure it is learthat the struture beomes sti�er as the optimization proeeds.Finally the in�uene of using di�erent meshes is onsidered. In Figure 2.6a.simulations has been performed on a spae disretization of 25X24 four nodeelements i.e. 600 elements and in Figure 2.6b. on 60X40 four node elements.20



Figure 2.5: Evolution of the ompliane over the number of iterationsAfter using di�erent meshes during the simulations it an be onluded thatthe solutions onverged towards the same �main� shape but still di�er signif-iantly. This is an e�et of mesh dependeny present in the SIMP method.Referring to Figure 2.6 one an onlude that a �ner mesh results in a stru-ture with very thin threads. This property will be enhaned when �nermeshes are used. This is an example of that the SIMP method has no uniquesolution. In the next part, Part B, a new method is derived for whih thismesh dependeny is irumvented.
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(a) Coarse mesh (b) Fine meshFigure 2.6: In�uene of using di�erent spae disretization

22



Chapter 3Part B
3.1 Topology optimization based on Cahn-HilliardequationThe SIMP method is, as reently mentioned, assoiated with a defet in thesense that it generates a solution that is mesh dependent. In this setion amethod that introdue a length sale into the problem is derived. This intro-dued length sale will have the e�et of eliminating the mesh dependeny.The derivation of this new method starts with the de�ning of the objetivefuntional and the onstraints so that the optimization problem PB an beformed.3.1.1 De�ning the optimization problem PBThe objetive funtional of this method is denoted E and derived with abase onsisting of the strain energy denoted w. The expression of the strainenergy was stated in equation (1.26) and is stated one more

w =
1

2
εijDijklεkl. (3.1)To avoid non physial onentrations suh as, ρ /∈ [0, 1], and also add apenalization of intermediate onentrations a penalization funtion F (ρ) isadded to E, where F (ρ) is illustrated in Figure 3.1 and de�ned as

F (ρ) = (ρ2(1− ρ)2e15(0.5−ρ)2 + ρ2(1− ρ)210) (3.2)23



0 1
0

1

ρ

F (ρ)

Figure 3.1: Illustration of F (ρ).A onsequene of introduing the penalization funtion F (ρ) is that themethod beomes mesh dependent. To resolve this issue another penaliza-tion funtion with the aim of penalizing all gradients ρ,i is introdued. Thisseond penalization funtion is denoted S and de�ned by
S(ρ) =

∫

Ω

ρ,iρ,idΩ (3.3)Colleting equations (3.1), (3.2) and (3.3) the objetive funtional E(ρ, ρ,i,u)is de�ned
E(ρ, ρ,i,u) = ∫

Ω

(F (ρ) +
γ

2
ρ,iρ,i)dΩ+ η

∫

Ω

w(ρ, ǫij)dΩ (3.4)where η is a weight inserted to even the relation between the di�erent partsof the funtional. The parameter, γ, is introdued to de�ne a length saleinto the problem. The e�et of hanging γ an be desribed as:
Smaller γ ⇒ slim interface between material and no material

Bigger γ ⇒ wider interface between material and no materialSine F (ρ) ≥ 0, ρ,iρ,i ≥ 0 and w(ρ, εij) ≥ 0 it an be onluded that
E(ρ, ρ,i,u) is bounded by the lower limit E(ρ, ρ,i,u) > ξ where ξ > 0. Notethat the objetive funtional E is not a onvex funtional, this is easily seenby looking at the �rst term F (ρ) illustrated in Figure 3.1. This means that itan not be guaranteed that a stationary point ours in the global minimumbut merely that it is plaed in a loal minimum.Conneting to phase-�eld models an interpretation of E(ρ, ρ,i,u) is that itrepresents the total energy of the struture and that the main goal is to lowerthis energy as muh as possible. With this interpretation F (ρ) de�nes thebulk energy or the ost of intermediate material densities and γ

2
ρ,iρ,i de�nesthe surfae energy or the ost of reating surfaes.In the next setion equilibrium and volume onstraints is disussed sinethese must be enfored when minimizing E(ρ, ρ,i,u)24



ConstraintsThe amount of material available for the design is given by V0 whih impliesa volyme onstraint g1 given by
g1 =

∫

Ω

ρethdΩ− V0 ≤ 0 (3.5)reall that th denotes the maximum thikness of the struture.To ful�ll the loal form of the stati equilibrium equations the onstraints gαare imposed
gα = σkl,l + bk = 0 α = 2, 3, 4 (3.6)With the objetive funtion (3.4) and the onstraints (3.5), (3.6) the newoptimization problem denoted PB is formulated as
P2 =

{

minρE(ρ, ρ,i,u)s.t gi ≤ 0
(3.7)The idea is now to de�ne a Lagrangian, L, and then seek a stationaritypoint. The Lagrangian, L, for the urrent problem is de�ned by insertingthe objetive funtion (3.4) and the onstraints (3.5), (3.6) into the de�nitionof the Lagrangian (2.25) whih results in

L(ρ, ρ,i,u,λk, λc) = E(ρ, ρ,i,u) + ∫
Ω

λi
kgidΩ + λcg1. (3.8)where λk

i and λc denotes the Lagrangian multipliers. Note that λc is onstantover the hole domain Ω, this is a property that will be useful further downin this thesis.In the next setion is the present sti�ness tensor de�ned.Sti�ness tensorAs previously mentioned in Setion 1.2 is the sti�ness tensor de�ned by
Dijkl = f̃D0

ijkl (3.9)where f̃ is a funtion depending on ρ and D0
ijkl is an isotropi fourth ordertensor de�ned by

D0
ijkl = 2G

[

1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

] (3.10)25



For the SIMP method was f̃ de�ned as f̃(ρ) = ρq whih led to a penaliza-tion of intermediate onentrations. Sine the intermediate onentrationsalready are penalized by F (ρ) is a linear relation between onentration andelement sti�ness sought. Setting f̃(ρ) = ρ would however lead to singularitiesand to avoid these f̃ is instead de�ned as
f̃ =

ρ

1 + e−40ρ
+ ξ (3.11)where ξ should be seen as the residual sti�ness and has during implementa-tion been set to ξ = 0.01 An illustration of f̃ is shown in Figure 3.2

26



0 1
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ρ

f̃(ρ)Residual Linear
Figure 3.2: Illustration of the residual sti�ness funtion f̃From this �gure it is lear that

f̃(ρ) > 0 ∀ ρ (3.12)whih is a property of f̃ that will lead to that singularities are avoided, thiswill be disussed more later.
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3.1.2 Deriving the stationarity pointThe Lagrangian, L, assoiated with the problem was previously de�ned as
L(ρ, ρ,i,u,λk, λc) = E(ρ, ρ,i,u) + ∫

Ω

λk
i gidΩ + λcg1. (3.13)wih after inserting de�nitions (3.4), (3.5) and (3.6) reads

L(ρ, ρ,i,u,λk, λc) =

∫

Ω

(F (ρ) +
γ

2
(ρ,i)

2)dΩ + η

∫

Ω

w(ρ, ǫij)dΩ+
∫

Ω

λk
i (σil,l + bi)dΩ+

∫

Ω

λcρthdΩ− λcV0. (3.14)Using Green-Gauss's theorem on the third integral and using the boundaryondition ρ,jnj = 0 along ∂Ω results in
L(ρ, ρ,i,u,λk, λc) =

∫

Ω

(F (ρ) +
γ

2
(ρ,i)

2)dΩ+ η

∫

Ω

w(ρ, ǫij)dΩ+
∫

Ω

λk
i bidΩ+

∫

∂Ω

tiδλ
k
i d∂Ω−

∫

Ω

σijδλ
k
i,jdΩ+

∫

Ω

λcρthdΩ− λcV0. (3.15)To be able to �nd a stationary point of the funtional L use is made ofalulus of variation whih states that the stationarity point is de�ned by itsvariations being equal to zero i.e.
δL
δρ

δρ+
δL
δρ,i

δρ,i = 0
δL
δue

δue = 0
δL
δλk

e

δλk
e = 0

δL
δλc

δλc = 0 (3.16)Applying this to the Lagrangian funtional (3.15) results in
δL
δρ

δρ+
δL
δρ,i

δρ,i = 0

=

∫

Ω

(F ′
,ρδρ+ γρ,iδρ,i − f̃ ′

ρD
0
ijklεklλ

k
i,jδρ+ λcthδρ+ ηw′

,ρδρ)dΩ (3.17)
δL
δue

δue = η

∫

Ω

w′
,εkl

δεkldΩ−
∫

Ω

Dijklδεklλ
k
i,jdΩ = 0. (3.18)

δL
δλk

e

δλk
e =

∫

Ω

δλk
ebedΩ+

∫

∂Ω

teδλ
k
ed∂Ω−

∫

Ω

σelδλ
k
e,ldΩ = 0 (3.19)

δL
δλc

δλc =

(
∫

Ω

ρthdΩ− V0

)

δλc = 0 (3.20)28



For the interested reader we reommend reading [5℄ or [4℄.Rearranging (3.18) results in
∫

Ω

(

ηw′
,εkl

−Dijklλ
k
i,j

)

δεkldΩ = 0 (3.21)From this relation it is onluded that the hoie
ηw′

,εkl
= Dijklλ

k
i,j ⇒ λk

i,j = ηCijklw
′
,εkl

(3.22)results in that
∂L
∂ue

δue = 0 (3.23)Note that the ompliane tensor Cijkl = D−1
ijkl was introdued. Insertingexpression (3.22) for the Lagrange multiplier λk

i,j into (3.17) results in
∫

Ω

(F ′
,ρδρ+ γρ,iδρ,i − f̃ ′

ρD
0
ijklεklCijpnηw

′
,εpnδρ+ λcthδρ+ ηw′

,ρδρ)dΩ = 0(3.24)Two of the terms from Equation (3.24) are now rewritten as
f̃ ′
ρD

0
ijklεklCijpnηw

′
,εpn = η

f̃ ′
ρ

f̃
εijw

′
,εij

(3.25)
ρ,iδρ,i = (ρ,iδρ),i − ρ,iiδρ (3.26)Applying Green-Gauss's theorem together with these reformulated termsgives

∫

Ω

(F ′
,ρδρ− γρ,iiδρ− η

f̃ ′
ρ

f̃
εijw

′
,εij

δρ+ λcthδρ+ ηw′
,ρδρ)dΩ = 0 (3.27)

w′
,ρ =

f̃ ′
ρ

f̃
w (3.28)

w′
,εij

εij = 2w (3.29)This means that the objetive funtion, see Equation (3.4), will have a loaloptimum when
µ = −λcth =

∂F

∂ρ
− γρ,ii − ηg̃(ρ,ue) (3.30)where g̃ is de�ned by

g̃ =
f̃ ′
ρ

f̃
w (3.31)29



Note that λc is a onstant whih means that our loal minimum ours at astate where µ is onstant over the whole domain Ω. During the simulationsthis is used to see if the solution has onverged. Also note that omparingequations (2.29) and (3.30) it is seen that µ < 0 when an optimum is found.In equation (3.31) the possible singularities disussed in Setion 3.1.1 areobserved.An extrema that ful�ll (3.30) shall now be sought using the Cahn-Hilliardequation whih desribes the di�usion of material over time.
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3.1.3 Cahn-Hilliards Equation Three node elementsThe Cahn-Hilliard equation is de�ned by:
ρ̇+ Jj,j = 0 (3.32)along with the boundary onditions

ρ,jnj = µ,jnj = 0 along ∂Ω (3.33)where the �ux vetor Jj is de�ned as
Jj = −M(ρ)µ,j (3.34)and M denotes the mobility.A property that follows from using the Cahn-Hilliard equation appears afterinserting equation (3.32) into (3.5) whih results in

V̇ =

∫

Ω

ρ̇thdV = −
∫

∂Ω

JinithdS = 0 (3.35)where use have been made of equation (3.32), Gauss theorem as well asthe boundary ondition (3.33). Equation (3.35) tells us is that using Cahn-Hilliards equation results in that the method onserves the amount of mate-rial.To motivate why use is being made of Cahn-Hilliard equation the rate of thefuntional Ψ = ∂L
∂t

is derived, i.e.
Ψ =

∫

Ω

(
∂F

∂ρ
− γρ,ii − λe

i,j f̃
′
ρD

0
ijklεkl + ηg̃)

dρ

dt
dΩ+ λc

∫

Ω

dρ

dt
thdΩ+

∫

Ω

(η
∂w

∂εkl
− λk

i,jDijkl)
dεkl
dt

dΩ+

∫

Ω

(σij,j + bi)
dλk

i

dt
dΩ + (

∫

Ω

ρthdΩ− V0)
dλc

dt(3.36)Rewriting equation (3.36), together with (3.35), (3.22) and imposing thepressent onstraints (3.5), (3.6) gives
Ψ =

∫

Ω

(
∂F

∂ρ
− γρ,ii − η

f̃ ′
ρ

f̃
σijCijkl2w + ηg̃)

dρ

dt
dΩ (3.37)where use have been made of the relation

εkl
∂w

∂εkl
= 2w (3.38)31



Equation (3.31) states that g̃ =
f̃ ′

ρ

f̃
w whih rewrites equation (3.37) into

Ψ =

∫

Ω

(
∂F

∂ρ
− γρ,ii − ηg̃)

dρ

dt
dΩ =

∫

Ω

µ
dρ

dt
dΩ (3.39)whih after making use of the produt rule and Gauss theorem results in

Ψ =

∫

Ω

µ(Mµ,i),idtdΩ = −
∫

Ω

µ,iMµ,idtdΩ+

∫

∂Ω

µMµ,inidtd∂Ω (3.40)Finally using the boundary ondition µ,ine = 0 on ∂Ω de�nes the rate of thefuntional Ψ as
Ψ = −

∫

Ω

µ,iMµ,idΩ ≤ 0 (3.41)From equation (3.41) it is onluded that if the mobility is hosen as M(ρ) >
0 the method will guide the solution to a state that minimizes the Lagrangianand therefore also minimizing the funtional E, f. (3.4).Making use of Cahn-Hilliard equations imposes that a disretization in timeis needed for a numerial implementation. The disretization in time is inthis thesis hosen as

ρ̇ ≈ ρ− ρn
∆t

(3.42)where the ρn represents the old state value and ∆t the time inrement be-tween the old state and the urrent state
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3.1.4 Finite element formulationIn Setion 3.1.2 equation (3.30) was derived whih needed to be ful�lled inorder for E(ρ, ρ,i,u) to have a stationarity point. To reah this stationar-ity point and also making sure that it is a loal minimum Cahn-Hilliardsequation (3.32) is used. These two equations are now together the loalequilibrium equations (3.6) going to de�ne three strong forms from whihthe residuals f1, f2 and f3 are derived. The residual originated from the loalequilibrium equations has already been derived in Setion 1.2 and is nowdenoted f3 i.e. f3 = ∫
Ω

BT
mDBmdΩu−P (3.43)f. (1.11)- (1.13)Strong formsThe other two strong forms de�ned by equations (3.30) and (3.32) are statedas

ρ̇+ Jj,j = 0 (3.44)
∂F

∂ρ
− γρ,ii − ηg̃(ρ, ue)− µ = 0. (3.45)Weak formsMultiplying equations (3.44) and (3.45) with the weight funtions ϕ̄l and µ̄land integration over the domain Ω the following is obtained

∫

Ω

ϕ̄lρ̇dΩ+

∫

Ω

ϕ̄lJj,jdΩ = 0 (3.46)
∫

Ω

µ̄l
∂F

∂ρ
dΩ−

∫

Ω

µ̄lγρ,iidΩ−
∫

Ω

µ̄lηg̃dΩ−
∫

Ω

µ̄lµdΩ = 0 (3.47)Whih after making use of the boundary ondition ρ,jnj = 0, the produtrule Chain rule (ϕ̄lJj),j = ϕ̄l,jJj + ϕ̄lJj,j (3.48)33



and Gauss theorem (1.6) results in
∫

Ω

ϕ̄lρ̇dΩ−
∫

Ω

ϕ̄l,jJjdΩ+

∫

∂Ω

ϕ̄lJjnjd∂Ω = 0 (3.49)
∫

Ω

µ̄l
∂F

∂ρ
dΩ+

∫

Ω

µ̄l,iγρ,idΩ−
∫

Ω

µ̄lηg̃dΩ−
∫

Ω

µ̄lµdΩ = 0. (3.50)Insertion of the boundary ondition Jjnj = 0 and the time disretizationde�ned in equation (3.42) rewrittes equation (3.49) into
∫

Ω

ϕ̄l(ρ− ρn)dΩ−∆t

∫

Ω

ϕ̄l,jJjdΩ = 0. (3.51)whih together with equation (3.50) de�nes the two weak forms of the resid-uals f1 and f2.Finite element formulationDeriving the �nite element formulations that originates from these weakforms the �eld variables are approximated as
ρ = Nρ ∇ρ = Bρe (3.52)
µ = Nµ ∇µ = Bµe (3.53)u = Nmue ε = Bmue (3.54)where using Galerkins method when hoosing the weight funtions results in
ϕ̄l = Nϕ̄ ∇ϕ̄ = Bϕ̄ (3.55)
µ̄l = Nµ̄ ∇µ̄ = Bµ̄ (3.56)Inserting these approximations into equations (3.50) and (3.51) de�nes theresiduals asf1 = ∫

Ω

NT (ρ− ρn)dΩ+∆t

∫

Ω

BTM∇µdΩ (3.57)f2 = ∫
Ω

NT ∂F

∂ρ

1

ǫ
dΩ + ǫ

∫

Ω

BT∇ρdΩ− η

∫

Ω

NT g̃dΩ−
∫

Ω

NTµdΩ. (3.58)where use have been made of the de�nition of the �ux vetor Jj = −M(ρ)µ,jThe shape funtions used in the approximations of the �eld variables arede�ned by the theory based on triangular oordinates.34



3.1.5 Three-Node TrianglesThis setion will desribe the interpolation of a three-node triangle element.There are many ways to do this but here the interpolation is based on thetriangular oordinates L1, L2 and L3. The oordinate Li is best desribed asa straight line opposite the ith orner in the triangle, see Figure 3.3a,b.
1 2

3
L2 = 0.75

L2 = 0.5
L2 = 0.25

a)
1 2

3
L3 = 0.25

L3 = 0.5
L3 = 0.75

b)
Figure 3.3: Illustration of natural oordinates a) L2 b) L3.The triangular oordinates L1, L2 and L3 are related to the Cartesian systemtrough

x = L1x1 + L2x2 + L3x3 (3.59)
y = L1y1 + L2y2 + L3y3 (3.60)
1 = L1 + L2 + L3 (3.61)Solving this system of equations for x and y gives the triangular oordinates

L1, L2 and L3 expressed in the Cartesian oordinates x and y as
Li =

ai + bix+ ciy

2Ae

(3.62)Where Ae denotes the element area and the variables ai, bi and ci are de-sribed by
a1 = x2y3 − x3y2 (3.63)
b1 = y2 − y3 (3.64)
c1 = x3 − x2 (3.65)et. with yli rotation of indies 1,2 and 3. When using triangular elements
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with only three nodes the shape funtions are onveniently de�ned as
Ni =Li i = 1...3 (3.66)N =[N1 N2 N3] (3.67)Nm =

(

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

) (3.68)Referring to (3.62) B = ∇N and Bm = ∇̃TNm are de�ned byB =∇N =
1

2Ae

(

b1 b2 b3
c1 c2 c3

) (3.69)Bm =∇̃TNm =
1

2Ae





b1 0 b2 0 b3 0
0 c1 0 c2 0 c3
b1 c1 b2 c2 b3 c3



 (3.70)where ∇̃ is de�ned in Setion 3.2.Note that this means that B and Bm are onstant whih will turn out to bea useful property. For disussion related to the triangular oordinates see [2℄Numerial integration is needed to be able to solve the integrations presentin the �nite element formulation.Numerial IntegrationThe numerial integration of a funtion f over a triangle with the area Ae isformed in the following way
∫ ∫

Ae

fdAe = Ae

n
∑

i=1

wif(L1, L2, L3) (3.71)where n is the number of integration points, in our ase we have throughtest runs ome to the onlusion that n = 9 integration points are su�ient.The 9 integration points are together with their weights wi found in Table 1f. [3℄. Figure 3.4 illustrates the plaement of the integration points.
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Figure 3.4: Plaement of the nine Gauss points
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LinearizationThe onstrution of the global sti�ness matrix used in the numerial imple-mentation of the method will now be derived from the linearization of theresiduals derived in Setion 3.1.4. Linearization of f1, f2 and f3 results in
df1 = ∫

Ω

(NT +∆tBT∇µe

∂M

∂ρ
)dρdΩ+∆t

∫

Ω

BTM∇dµdΩ (3.72)
df2 = ∫

Ω

NT (
∂2F

∂ρ2
− η

∂g̃

∂ρ
)dρdΩ+ γ

∫

Ω

BT∇dρdΩ−

η

∫

Ω

NTHdεdΩ−
∫

Ω

NTdµdΩ (3.73)
df3 = ∫

Ω

BT
mf̃

′D0εdρdΩ+

∫

Ω

BT
mDBmdΩdu (3.74)where H =
∂g̃

∂εij
(3.75)To simplify the notation the following de�nitions are introdued

df1 =K11dρ+K12dµ (3.76)
df2 =K21dρ+K22dµ+K23du (3.77)
df3 =K31dρ+K33du (3.78)Whih gives the following equation





K11 K12 0K21 K22 K23K31 0 K33









dρ
dµ
du  = −





f1f2f3  (3.79)

38



where Kij i = 1, 2, 3 j = 1, 2, 3 are de�ned by:K11 =

∫

Ω

NTNdΩ +∆t

∫

Ω

BT∇µ
∂M

∂ρ
N)dΩ (3.80)K12 =∆t

∫

Ω

BTMBdΩ (3.81)K21 =

∫

Ω

NT (
∂2F

∂ρ2
− η

∂g̃

∂ρ
)NdΩ+ γ

∫

Ω

BTBdΩ (3.82)K22 =−
∫

Ω

NTNdΩ (3.83)K23 =− η

∫

Ω

NTHBT
mdΩ (3.84)K31 =

∫

Ω

BT
mf̃

′D0εNdΩ (3.85)K33 =

∫

Ω

BT
mDBmdΩ (3.86)As a next step in deriving the new method Newton-Raphson iterations willbe implemented to prevent errors from aumulating at eah time step.
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3.1.6 Newton RaphsonLet R(Y) denote the global residual at the urrent state Y whereY =





ρ

µu  R(Y) =





f1f2f3  ≈ 0 (3.87)The goal is then to �nd a state Y suh that R(Y) ≈ 0.A taylor expansion around a known residual R(Y) givesR(Y) = R(0) + δR(Y) + ... = 0 (3.88)where the dots indiate higher order terms and δR(Y) is de�ned as
δR(Y) = −∂R

∂YδY = −K(Y)δY (3.89)Here K(Y) =
∂R
∂Y (3.90)de�nes the global sti�ness matrix. Combining equations (3.88) and (3.89)results in

δY =K−1R(Y) (3.91)Yi =Yi−1 + δYi (3.92)where the i in (3.92) stands for the iteration index. This sheme will thenbe used repeatedly until a state Y that satis�es R(Y) ≈ 0 is found.
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3.1.7 Adaptive MeshIn this setion the loal errors due to the spae disretization will be reduedthrough a mesh re�nement. The proedure of re�ning the mesh starts withan error estimation for eah element, the errors are then ompared to a giventolerane. For those elements with an error that do not satisfy the toleranean adaptive sheme will be applied whih will appear as a re�nement of thespae disretization.Estimation of the loal errorsIn Setion 3.1.4 two residuals f1 and f1 were derived from equations (3.30)and (3.32) whih for ompleteness are stated again.
∂ρ

∂t
−∆µ = 0 (3.93)

1

γ
(F,ρ − µ− γρ,ii − ηg̃(ρ,u)) = 0 (3.94)where ∆ denotes the Laplaian whih is de�ned by ∆ = ∇∇. When derivingf1 and f2 approximations of the �eld variables ρ, µ and u were made. Insertingthese approximations into equations (3.93) and (3.94) introdues an error tothe equations. When alulating the residuals these errors are ompensatedby the multipliation of the weight funtions and integration over the domain

Ω f.[6℄. These errors will however still in�uene the solution on loal levelfor eah element e. The error estimated for element e is denoted Ri
e andalulated as the residual that omes from inserting the approximations ofthe �eld variables diretly into equations (3.93) and (3.94).For example would R1

e de�ne the residual that omes from inserting theapproximations into equation (3.93) i.e.
R1

e = N(ρ− ρn)

∆t
|e (3.95)Where use have been made of

ρ̇e ≈
ρ− ρn
∆t

(3.96)
∇∇ = ∆ (3.97)

∆Nµ = ∇Bµ (3.98)
∇B = 0 (3.99)41



and |e means that the �eld variable is alulated in element e.When estimating the loal error in the spae disretization the residual Ri
edoes not onstitute the whole error. The error is also in�uened by thedi�erene in the �eld variables between two neighboring element. This on-tribution to the loal error is for two elements onneted trough τ de�nedas

J2
τ (t) = (Bρ|e1 −Bρ|e2)Tn1 (3.100)

J1
τ (t) = (Bµ|e1 −Bµ|e2)Tn1 (3.101)(3.102)where τ denotes the sides of element e and with the exeption that if theurrent element has one ore more side τ onneted to the outer boundarythe following de�nition will be used instead.

J2
τ (t) = 2(Bρ|e)Tn (3.103)

J1
τ (t) = 2(Bµ|e)Tn (3.104)(3.105)Here n1 denotes the unit normal vetor to τ pointing from element e1 toelement e2 and n denotes the unit normal vetor to τ pointing away fromthe body Ω.The loal error estimators η1e(t) and η2e(t) are for eah element de�ned as

ηje(t) = he‖Rj
e‖L2(e) +

∑

τ∈∂e

(
1

2
hτ‖J j

τ‖2L2(τ))
1/2, j = 1, 2. (3.106)where he denotes the element area, hτ denotes the length of τ and ‖X‖L2(e)is de�ned as.

‖X‖L2(e) = (

∫

he

XTXdhe)
1/2. (3.107)Finally the loal error is estimated as

ηe(t) = ((η1e(t))
2 +

1

γ2
(η2e(t))

2)1/2 (3.108)Re-meshingAfter ηe(t) has been alulated for eah element they are ompared to a thetolerane LET �loal error tolerane� and depending on the results of theseomparisons the following deisions are made42



• if ηe(t) > LET split the element into two new elements, (this proedureis alled re�nement)
• if ηe(t) < LET/

√
3 oarsen the elementIf an element is about to be re�ned this is done by inserting a new nodeon the longest side τ of the element and draw a line between this node andthe node opposite the longest side. The re�nement proess is skethed inFigure 3.5.

b

b

b

b

b

b

b

b

b

b

bFigure 3.5: Illustration of the splitting proessIf the longest side is onneted to another element this element has to besplit as well sine no element should ontain a loose node. Sometimes theneighboring element has not been re�ned as many times as the element thatis supposed to by re�ned and in these ases the neighboring element has tobe re�ned before the new node is added. For better understanding of thisproedure Figure 3.6- 3.9 are shown.Imagine that element 10 in the mesh shown in Figure 3.6 is supposed tobe re�ned. Sine splitting element 10 leaves element 9 with a loose nodeelement 9 has to be split as well f. Figure 3.7. Now imagine that the newelement 19 needs to be re�ned. Splitting element 19 would leave element 11with a loose node but sine element 11 has not been re�ned as many timesas element 19 a problem ours. To resolve this problem element 11 must bere�ned before the new node is insertedAfter element 11 has been re�ned the last loose node an be onneted in aorret way f. Figure 3.9. 43
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Figure 3.6: Original mesh
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Figure 3.7: Original mesh re�ned one timeIf an element is about to be oarsened the line τ that was inserted duringa previous re�nement is supposed to be removed. However this τ an notbe removed before heking if all the neighboring elements that share thesame nodes as τ also are about to be oarsened. If any of these neighboring44
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Figure 3.8: Displaying the loose node
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Figure 3.9:elements is not set to be oarsened the element in question have to stayuntouhed during this re-meshing.
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3.1.8 Results from Part BTo demonstrate the presented sheme the proedure is applied to Example1, f. 1.1.1. The struture onsidered onsists of a antilever beam loadedwith a point load F , f. Fig.3.10a. The initial material distribution is shownin Figure.3.10b. b)
Figure 3.10: a) Illustration of the design spae, b) Initial material distributionThe initial spatial disretization is onstruted with 442 triangular elementsand is illustrated in Figur 3.11

Figure 3.11: Initial spatial disretizationThe e�et of hanging γThe optimized density distribution for γ = 6 · 10−4/m2 is shown in Fig-ure 3.12a, for γ = 2 · 10−4/m2 in Figure 3.12b and for γ = 4 · 10−5/m2 in46



Figure 3.12. From these �gures it is on�rmed that the density distributionsome lose to ρ ∈ {0, 1} with the exeption of the thin interfaes between re-gions where ρ = 1 and ρ = 0. A minor deviation from ρ ∈ {0, 1} an also beseen in the point where the load is applied, here the density is slightly above1. When omparing the optimized strutures illustrated in Figure 3.12a,band  the e�et of hanging γ beomes lear i.e a smaller γ returns thinnerinterfaes. The e�et of hanging γ is also seen in that a smaller γ allowmore regions of interfaes whih in Figure 3.12a,b and  appears as a smaller
γ returns a struture with more holes in it.MeshIn the spae disretization performed in this thesis fous were put on resolvingthe interfae. For this reason all the parts exept from J2

τ are negleted in theerror estimation f. 3.1.7. In Figure.3.13a,b, the spae disretization afteroptimization for eah γ are illustrated. Sine some data an be hard to readfrom these �gures Table I ontaining additional data for eah mesh is alsoinluded.Table I
γ /m2 Total number of Number of elements usedelements to resolve the interfae
6 · 10−4 18178 17
2 · 10−4 61215 17
4 · 10−5 251793 21Table I: Data from spae disretization shown in Figure 3.13Sine the interfae is hard to de�ne the number of elements used to resolvethese are only approximate numbers.Aording to Table I roughly the same number of elements are used toresolve the interfaes for di�erent γ but the total number of elements usedin eah spae disretization di�ers widely. This is partly an e�et of that asmaller γ allow more gradients but also an e�et of that the interfae of asmaller gamma is resolved with smaller elements whih results in that moreelements are needed to onnet these interfae elements with the rest of theelements. From these �gures one learly sees the importane of using anadaptive spae disretization. 47



Illustration of the optimization pathIn Figure 3.14 the proess of optimizing the struture shown in Figure 3.10bis illustrated. This optimization is performed using γ = 2 · 10−4/m2 and inthe �gure every 50th step is shown.Disussion of µFigure 3.15 are inluded to show that, for all three γ, the solutions onvergedto a state where µ is onstant over the whole domain. This is a propertyof the method that was derived in Setion 3.1.2 and also used as a hek toterminate the simulations.E�et of hanging LET �loal error tolerane�In Figure 3.16 two optimization simulations are performed on the same stru-ture using the same γ = 6 · 10−4/m2. What di�ers these two simulations isthat they are run with two di�erent loal error toleranes LET (f. Se-tion 3.1.7). The di�erene in LET will appear as a hange in the spaedisretization and the two simulations are ompared to emphasize that themesh dependeny is no longer present.In Figure 3.16 it is shown that the two simulations run with di�erent LETreturns basially the same struture. The number of elements needed for thespae disretization of the optimized strutures are presented in the TableII.Table IILET Total number of Number of elements usedelements to resolve the interfae
2 · 10−2 18178 33
4 · 10−3 73834 80EnergiesCommenting on the evolution of the energies in funtional E (f. Setion 3.1)is di�ult sine the funtional depends on the spatial disretization. In Fig-ure 3.17a the �rst two seonds of a simulation performed with γ = 4·10−5/m2is shown, in this �gure a �jump� in the energies an be observed. This �jump�,is the result of a hanged spae disretization. From Figure 3.17a it is learthat the total energy is dereasing for eah spae disretization. Comparing48



Figure 3.17b with Figure 3.14 the same phenomena is observed, namely thatthe main hanges in the struture ours in the beginning of the optimization.The energies that are shown in Figure 3.17 are de�ned by equations (1.26), (3.2) , (3.3) and (3.4) whih state that
w =

1

2
εijDijklεkl (3.109)

F (ρe) = (ρ2e(1− ρe)
2e15(0.5−ρe)2 + ρ2e(1− ρe)

210) (3.110)
S(ρ) =

∫

Ω

ρe,iρe,idΩ (3.111)
E(ρ,ρ,i,u) = ∫

Ω

(F (ρe) +
γ

2
ρe,iρe,i)dΩ+ η

∫

A

w(ρe, ǫij)dΩ (3.112)
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a)

b)

)

Figure 3.12: Optimized strutures for a) γ = 6 · 10−4/m2 b) γ = 2 · 10−4/m2) γ = 4 · 10−5/m2 50



a)

b)

)

Figure 3.13: Final spae disretization for a) γ = 6 · 10−4/m2 b) γ = 2 ·
10−4/m2 ) γ = 4 · 10−5/m2 51



t=1
t=300
t=600

t=100
t=400
t=700

t=200
t=500
t=800

Figure 3.14: Illustration of the optimization proess
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a)

b)

)

Figure 3.15: Distribution of µ for a) γ = 6 · 10−4/m2 b) γ = 2 · 10−4/m2 )
γ = 4 · 10−5/m2 53



a)

b)

Figure 3.16: Optimized strutures for γ = 6 ·10−4/m2 and a) LET = 2 ·10−2b) LET = 4 · 10−3

54



a)

b)

Figure 3.17: a)Energy history after 2 seonds b)Energy history after 10 se-onds
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3.2 Appendix13.2.1 The matries in equations (1.11) - (1.13)t = ( tx
ty

) b =

(

bx
by

) (3.113)Nm =

(

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

) (3.114)Bm = ∇̃TNm =





∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x



 (3.115)
∇̃ =





∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x



 (3.116)3.2.2 Derivatives of f̃iThe derivatives of f̃i are alulated as
(f̃3)

′
ρ =

a(2ρke−2kρ + b+ e−2kρ)

(b+ e−2kρ)2
(3.117)

(f̃3)
′′
ρ =− 4ake−2kρ(kρb− ρke−2kρ − b− e−2kρ)

(b+ e−2kρ)3
(3.118)where the derivatives of f̃1 and f̃2 are onsidered trivial and for that reasonnot written down.3.2.3 Derivatives of g̃

∂g̃

∂ρ
=(f̃3)

′′
ρεijDijklεkl

∂2g̃

∂ρ2
=(f̃3)

′′′
ρ εijDijklεkl

∂g̃

∂εij
=2(f̃3)

′
ρD

0
ijklεkl =

2(f̃3)
′
ρ

f̃3
σij56
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