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Abstract 
This master thesis is done in collaboration with the division of Solid Mechanics and the 
division of Structural mechanics at Lund University and Kockums AB. The assignment 
designates from the fact that there is no accurate method to model rubber dampers 
exposed of shock load. The rubber dampers are often used in submarines to protect 
sensible equipment from shock load and vibration. In this master thesis, different kinds 
of constitutive models for rubber will be investigated. The purpose is to find differences 
between models and to find out what properties that can be simulated and what cannot. 
The only investigated models are the ones that are available in LS-DYNA. 
 
After a theoretical examine of the material models in LS-DYNA material tests were 
performed at Trelleborg Automotive. Simple shear tests were performed, where both 
purely elastic and dynamic tests were considered, since these tests are suited for calibra-
tion of both the Yeoh model and the Arruda & Boyce model. These two visco- hyper-
elastic models were the only ones that were found useful for this application and the 
possible material tests. Unfortunately, was it impossible to manufacture suitable test 
specimens, the only alternative was to use the damper themselves. The disadvantage 
was that the deformation was not uniform, bending modes was included. This error was 
corrected when the fitting of the models was done. The magnitude of the error at 
different strains could be established with help of FE analysis by considering a simple 
shear case and one on a case where bending was included. 
 
Shock tests were performed in order to evaluate the shock simulations in LS-DYNA. 
The shock tests were done with a drop table at Kockums laboratory. The dampers were 
exposed to a short acceleration, after that the dampers were allowed to oscillate. The 
deformation in these tests turned out to be purely compression and tension. The accel-
eration was controlled by the drop height while the frequency of the free vibrations was 
controlled by the weight of a mass. The achieved frequencies cover the range from 
about 9 Hz to 17 Hz. The shock accelerations were used as input in the FE simulations. 
The achieved accelerations and displacements were compared with the experimental 
ones. 
 
The results from the simulations correspond quite well to the experimental tests. 
Especially the Yeoh model gives remarkably good results despite many approximations 
in the adaptation of the model. The response of the Arruda & Boyce model did, 
however, not fit very well for the lowest mass, for the two highest the response were 
similar to the on for the Yeoh model. Unfortunately, the rubber material depends more 
on the strain amplitude than the strain frequency at these relatively low frequencies. The 
frequency dependency can almost be neglected in this frequency range. This is a 
problem since the models depend only on the frequency and not the amplitude. This 
result in large deviations at the shock phase where the amplitude are considerable 
higher, due to too high damping, while the free vibration phase is better. If the interest-
ing part is the shock phase it might be more suitable to use a purely hyperelastic model, 
the disadvantages is a large error at the free vibration phase. The free vibration phase is 
however better simulated with the visco-hyperelastic model 
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1 Introduction 

1.1 Presentation of Kockums AB 
Kockums AB is an old Swedish company. It was establish in Malmö in 1840 it was 
known as Kockums Mekaniska Werkstad. The founder Frans Henric Kockum and his 
family had been active with business and industrial activities since 1820. Kockums 
Mekaniska Werkstad was mainly manufacturing agricultural implement, distillery 
devices, stoves and ovens. From 1850, they also produced railway carriage. In 1870, the 
first shipyard was build close to the engineering plant in Malmö. Investments under the 
forties and fifties in metal industry lead to Kockums Jernverks AB in 1875, it was after 
Frans Henric Kockum’s death. The new company produced steel products, for example 
galvanised and enamelled products. At the same time Kockums Mekaniska Werkstad 
became more specialised to manufacture ship, railway carriage and bridges.  
 
The company expanded heavily after the World War II it was not until the seventies the 
profitability decreased. This lead to the liquidation of Kockums Jernverks AB and a 
change of structure at Kockums Mekaniska Werkstad. They were now more concen-
trated on ship manufacturing. At the same time in 1977, the company took the name 
Kockums AB. Unfortunately, the profitability problem remained so in 1979 Kockums 
was taken over by Svenska Varv AB (since 1987 Celsius Industrier) owned by the 
Swedish government. 
 
Kockums AB is to day only producing military equipment, such as submarines, small 
naval surface vessels and mobile bridges. The company is especially famous for its 
Stirling engines in the submarines and the stealth carbon fibre composite ship invisible 
to radar.  Kockums AB was recently (October 1999) bought by the German shipyard 
Howaldswerke-Deutsche Werft AG or HDW located in Kiel. 
 

1.2 Background to the assignment 
In submarines elastic rubber mounts is used to protect sensible equipment from shock-
load and vibration. Today, there is no accurate method to model rubber dampers for this 
kind of dynamic loading. A method commonly used in simulations is to replace the 
rubber dampers with linear springs and in some cases supplemented with a linear 
damper. This will, however, not fulfil all the properties of the rubber. The free oscilla-
tions achieved in the simulations will differ from the motion of the real physical 
material. It is for that reason desirable to find a rubber damper model with an accurate 
constitutive equation.  
 

1.3 Objective 
In this master thesis, different kinds of constitutive models for rubber will be investi-
gated. The purpose is to illustrate differences between models and to find out what 
properties can be simulated and what cannot. The work can be described by the follow-
ing tasks: material testing will be conducted in order to find the material parameters of 
the constitutive models. After that, the rubber damper will be modelled in the finite 
element program LS-DYNA and used in shock load simulations. Finally, the result of 
the simulation will be compared with the results of laboratory tests.     
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1.4 Demarcation  
There are many different kinds of material models for rubber. As it is not possible to 
investigate them all, only suitable models in LS-DYNA will be considerd. Unfortu-
nately, the limited time in a master thesis does not allow implementing models or any 
combinations thereof. Test specimen for the material test cannot be manufactured, again 
due to lack of time as well as due to the difficulties to vulcanise the same rubber quality 
as found in the existing rubber dampers. The material test will be performed on the 
existing rubber dampers. 
 

1.5 Practical conditions 
The FEM simulations were made in LS-DYNA version 950 [10] on a Hewlett Packard 
workstation. Some purely static calculations were also made in Abaqus version 5.8 [1] 
The available rubber dampers were manufactured by Trelleborg AB. The dampers have 
the design number T06 and the material is TR 4273. They have the shape of a 
rectangular parallelepiped with the size according to figure 1.1. 
 

Figure 1.1. Shape and size of the rubber damper. 

75 mm 

85 mm 

65 mm 

 
The rubber damper is made of natural rubber with a specified hardness of 60 IRH. The 
rubber is vulcanised to two steel plates. These plates are 20 mm thick and have three 
threaded holes each for mounting purpose.  
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2 Presentation of rubber 

2.1 History 
Rubber is a material, which today is often used in different kinds of construction 
elements. The important properties for this type of elements are shock absorption, 
vibration absorption and a dominating elastic behaviour for large deformations without 
any major plasticity. The Young’s modulus is up to 100 000 times smaller than for steel. 
 
The history of rubber is described in the National encyklopedin [14] as follow: The 
human being has known the rubber material for many years. The Maya Indians pay 
homage to the rain gods by burning rubber. The industrial use arose in to Europe at the 
end of the 18th century. The first major applications came when Joseph Priestley in 
1770 discovered that rubber removed lead from paper, hence the English name rubber.  
 
Natural rubber is the first discovered species. It can be retrieved from more then 500 
different plants. The most important source is the gumtree growing in Southeast Asia. 
The sap, latex, is collected, coagulated, washed and dried. This results in a sticky lump. 
In 1839, Charles Goodyear discovered that sulphur and heat transforms this sticky lump 
into an elastic and shape permanent material. The vulcanisation was invented. To 
further improve the properties of rubber different kinds of additives are added prior to 
the vulcanisation. For example, carbon black is used to improve the mechanical proper-
ties and organic amines or phenols are added to give the rubber a better ageing 
protection. 
 
The production of synthetic rubber began under World War II, but the demand grew 
first under the Korean War. The reason was new inventions and a low oil price, which 
made the synthetic rubber economically competitive. The main raw material to manu-
facture synthetic rubber is namely petroleum products. 
 
Today the total world rubber production is about 15 million tons of which 70% is used 
in the tyre production.  
 

2.2 The characteristic of rubber 
Rubber is built up by long molecule chains which forms a polymer. A more scientific 
name, which often is used, is elastomer.  The raw material of natural rubber, latex, have 
no links between the molecule chains. It is first during the vulcanisation that these 
chains are connected with cross-links. 

 3



Rubber is highly elastic, of which some kinds can bear deformations of upto 500-800%. 
The elasticity is not linear in any way. It is usually described by a S-shaped stress-
stretch curve (see figure 2.1).  
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Figure 2.1. Example of a stress- stretch curve in a uniaxial 
stress case. λ = 1 corresponds to the undeformed state. 

 
The behaviour of rubber material is very time dependent. The strain rate has a major 
effect on the stiffness, which increase dramatically in rapid processes. This behaviour 
can partly be described as viscoelastic. The major part of the relaxation occurs in a very 
short time. The relation between the shear modulus and the bulk modulus is large, the 
bulk modulus is usually 1000-2000 times higher than the shear modulus. This makes 
rubber nearly incompressible. Thus in many cases the approximation of incompressibil-
ity is quite appropriate [3].  
 
When rubber is exposed of cyclic loading this partly viscoelastic behaviour leads, to a 
phenomenon called hysteresis. The consequence is that loading gives a higher stress at 
the same strain than unloading will give. This results in energy lost such as heat. In a 
case of free oscillations, the energy lost will act as damping. 
 
The stiffness of the rubber is also affected by other factors. At a harmonic load, the 
frequency and the amplitude have a great influence. A higher frequency will increase 
the stiffness, while increased amplitude will decrease the stiffness. The temperature is 
an important factor as well. At temperatures over 0°C, the stiffness will be relatively 
constant, provided it is not close to the vulcanisation temperature. At lower temperature, 
the stiffness will be remarkable higher. Below -60 to -80°C the rubber will be in a 
glassy state [3]. Figure 2.2 shows the frequency dependency of the dynamic modulus 
and the phase shift of the natural rubber. 
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Figure 2.2. The frequency dependency of the dynamic modulus and the 
phase shift. (Source: Austrell [3]). 
 

 
The mechanical properties of rubber are controlled by the amount carbon black mixed 
in the material. A higher amount of carbon black unfortunately leads to a phenomenon 
called Mullins´ Effect [6]. The phenomenon can be described as decreasing stiffness 
with strain, sometimes identified as damage. That means, the first time a material is 
stretched to a certain level the stress will be higher than the next time the material is 
stretched to the same level. The reason is that the cross-links between the molecular 
chain break down. If the material is allowed to rest there will, however, be some 
recovery. 
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3 Definitions and notations 
The definitions and notations below are a brief summary of the designation used in the 
continuum mechanics to describe large deformations. The expressions are, if not stated 
otherwise, taken from Lundgren [11] 

r0 r 

Z, z 

X, x 

Y, y 

Figure 3.1. The reference and deformed configuration. 

 
The capital letters and r0 denote the reference configuration while the lower-case letters 
and r denote the deformed state. r0 and r are vectors to a arbitrary point in the same 
body (see figure 3.1). F is the deformation gradient and is defined as follow 
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A conversion between r and r0 can now easily be made 
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As an example a uniaxial strain deformation field can look like this 
 

 
Zz
Yy

kXXx

=
=

+=
 (3.3) 

 
This will give the following deformation gradient 
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The deformation gradient F can then be used to form the left and right Cauchy-Greens 
deformation tensor 
 
      left Cauchy-Greens deformation tensor (3.5) TFFB =
 
       right Cauchy-Greens deformation tensor (3.6) FFC T=
 
The Lagrangian strain tensor can now be defined 
 

 ( ICE −=
2
1 )  (3.7) 

 
A measure of deformation is the stretch  
 

 
dS
ds

=λ  (3.8) 

 
where ds is the length of the arbitrary vector dr, while dS is the length of dr0. 
 
The principal stretches λi. can be calculated as the eigenvalue to the right Cauchy-
Greens deformation tensor C. The principal stretches can be used to calculate the strain 
invariants Ii
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An invariant that also often is used is the volume relation J 
 
 Fdet321 == λλλJ  (3.10) 
 
There are several different stress tensors. The stress tensor, which represents the “true” 
stress, is called Cauchy stress tensor σ. The stress definitions are taken from Ristinmaa 
[17]. 
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The first Piola-Kirchhoff stress tensor is defined as follow 
 
  (3.13) ( )TJ 1−= FP σ
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The second Piola-Kirchhoff stress tensor 
 
  (3.14) ( )TJ 11 −−= FFS σ
 
Finally, the Kirchhoff stress tensor is defined as 
 
 σJ=τ  (3.15) 
 
For more detailed derivations it is referred to Lundgren [11], Ristinmaa [17] or Ogden 
[15]. 
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4 Description of constitutive models for rubber 
The characteristic of a material is described by a constitutive model. It is a mathematical 
relation between the stress and the strain. The stress is in some material dependent on 
more than just the strain, it can for example be factors like strain rate, magnitude of 
strain, temperature, plasticity and strain amplitude and frequency in a case of cyclic 
loading. Rubber is a material which is dependent on most of the mentioned factors. 
There are a few different kinds of constitutive models which can be used to model 
rubber. The ones that will be treated here are viscoelastic, hyperelastic and a combina-
tion of them visco- hyperelastic models. These models describe different kinds of 
material properties, the load type decides which is most appropriate.  
 

4.1 Hyperelastic material models 

4.1.1 Strain energy  
Hyperelastic constitutive models describe the elastic property of a material from the 
strain energy. The strain energy is a potential energy function, which means that normal 
potential theory is valid [15]. A potential energy function is independent of the integra-
tion path, the strain energy is thereby just dependent on the current strain. The strain 
energy is defined according to the following expression [17]. 
 

  (4.1) ( ) ( )∫=
ijE

ijklijij EdESEW
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~ ~

 
where 
 
  is the strain energy W
 is the Lagrangian strain tensor ijE
 is the second Piola-Kirchoffs stress tensor ijS
 
In the one-dimensional case the strain energy can be described as the area below the 
stress- strain curve. Figure 4.1 gives an example. 
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Figure 4.1. Strain energy in a one-dimensional case 
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If W is differentiated with respect to E and the derivative is worked out using (4.1), the 
following expression will be obtained   
 

 ij
ij
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The expression above will give the second Piola-Kirchoff stress tensor as a function of 
the strain energy  
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The second Piola-Kirchoff stress tensor, Sij, can only be seen as a fictitious stress. To 
convert the strain energy to yield σij  and to be dependent on the strain invariants 
instead, the theory of conjugated tensors can be used [14]. Sij is conjugated to       and 
correspond to the reference configuration, while the nominal stress tensor equal to JF-1σ 
corresponding to the deformed configuration is conjugated to . The strain energy can 
thereby also be expressed as a function dependent of the left Cauchy-Green deformation 
tensor B, which for an isotropic material means that the dependency is reduced to the 
principal stretch λ

F&

i. The strain energy can now be written as 
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     where I( ) ( )321 ,, IIIWW ⇒B i are the strain invariants  
 
If incompressibility is assumed then I3 = 1. The following expression can be derived [3] 
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Where σ is the Cauchy stress tensor and p is an independent field quantity. 
 

4.1.2 Strain energy functions 
The specific form of the strain energy controls the elastic material properties of the 
model. There are many different kinds of functions. They all try to follow the stress- 
stretch curve for different loading cases. At the same time they shall be as uncompli-
cated as possible. The simplest ones are built as a polynomial. They are usually written 
in the following form [15] 
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In the case of incompressibility (4.6) is reduced to 
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The threes appearing in the equations the makes strain energy equal to zero in an 
undeformed state where λi = 1. 
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Neo-Hook 
A couple of famous strain energy function is based on the polynomial approach (4.7). A 
Neo-Hook function uses only the first term. It will be a polynomial of the first order 
with one constant to determine [15] 
 
  (4.8) ( 3110 −= ICW )

)

 
The figures below show that the stiffness of the Neo-Hook model increases when it is 
exposed to compression, while the stiffness decreases in a case of extension. The 
relation between shear stress and deformation is purely linear. Figure 4.2 and 4.3 
illustrate the relations. The model has of course the disadvantage that it does not 
completely describes the response of the rubber at large deformation. Moreover, it is 
hard to adjust the model by a laboratory experiment with just one constant.  
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Mooney-Rivlin 
Another model derived from (4.7) is the well-known Mooney-Rivlin function. It is 
gained if two terms is included [15] 
 
  (4.9) ( ) ( 33 201110 −+−= ICICW
 
This strain energy function shows similar characteristics as the Neo-Hooke model. The 
main difference is that there are two parameters to determine. The possibility to adjust 
the model to experimental data will be better. 
 
Multiparameter polynomial functions 
The ability to adjust the strain energy function to a stress-stretch curve will increase 
with more parameters and a higher order of the polynomial. An example of a third 
degree polynomial with only three constants is the Yeoh model [18]. It contains only 
three terms dependent on the first strain invariant I1, i.e. 
 
 ( ) ( ) ( )3
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2
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The constants can in an approximate way be obtained from the initial shear modulus. 
The approximate relations are as follow 
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These multiparameter functions are much better to reflect a stress-stretch curve from a 
laboratory test. However, the work needed to determine the constants grows with the 
number of terms. The rest of the multiparameter functions look like the Yeoh model, the 
only difference is different sets of constants and therefore they will not be treated any 
further. An example of an uniaxail and a shear curve is shown in the figures below.  
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Ogden model 
Ogden [15] has developed a model, which also has its roots in the polynomial (4.7). The 
differences are that Ogden uses principal stretches λi instead of strain invariants Ii. In 
addition to the integer exponent in the ordinary polynomial Ogden uses real numbers. 
The benefit of this method is better adjustment possibilities to experimental curves. 
 

 ( ) (∑
=

−++=
N

p p

p pppW
1

321321 3,, ααα λλλ
α

)µ
λλλ  (4.12) 

 
When the stress is to be calculated the derivative of W with respect to Ii must be con-
verted to derivative with respect to λi this can be done using the chain rule. The dis-
advantages of this function is that it is complicated to obtain the material constants µp 
and αp. An iterative method must be used instead of a simple least squares method. 
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Arruda & Boyce model 
Arruda & Boyce [2] have in this model assumed that an element consist of eight chains. 
These link the corner of the cube to the centre. The chains decides the characteristic of 
the model. Factors, which affect the behaviour are the length of the chain and the 
number of cross-links between them. In [2] it was conducted that the strain energy can 
be written as 
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The advantage of the model is that there are only two parameters to determine, despite 
that, the model is easy to adjust to a stress-stretch curve, according to Arruda & Boyce. 
The constant N is the amount of cross-links between the chains. The factor nkΘ  can be 
seen as one constant but n and Θ can be seen as a measure of the chain density and a 
temperature factor respectively. nkΘ  is dependent on the initial shear modulus while N 
controls when the shear modulus shall rise after the decrease. 
 
Strain energy function of compressible materials 
The strain energy functions above are derived with the assumption of incompressible 
material. The explicit code in LS-DYNA can, unfortunately, not handle complete 
incompressibility, the material models must of that reason be modified. The presented 
hyperelastic functions can also be used for compressible material if the deformation is 
divided into one isochoric and one dilatational part. The dilatational part is a purely 
hydrostatic part. In incompressibility, the relative volume change J is equal to 1 i.e. 
 
 1321 =λλλ  (4.14) 
 
For the compressible case the relative volume change J is equal to λ1λ2λ3. To be able to 
use the earlier functions without any changes the principal stretches is modified [15] 
 
 ii J λλ 3
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which gives  
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the invariants will in a corresponding way be defined as 
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In the same way a deformation gradient related to the isochoric deformation can be 
defined as 3

1* −= JFF . 
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The remaining part is to add the hydrostatic part to the strain energy. A simple form of a 
hydrostatic term can be expressed by the following [8]  
 

 ( ) ( 21
2

−= JKJWH )  (4.18) 

 
Where K is the bulk modulus. The hydrostatic stress is equal to 
 

 
J

Wp
∂

∂
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*

     W* is the modified strain energy calculated of  (4.19) *
iI

4.2 Viscoelastic material models 
Hyperelastic material models only describe the purely elastic properties of a material. 
These models are thereby most suited for static calculations. In dynamic applications 
phenomenon such as damping and hysteresis must be included in the simulation. 
Viscoelastic models are based on rate dependent linear dampers and linear elastic 
springs, these elements in different combinations form a rheological model. The most 
common model describing rubber, is the Zener model [3]. It consists of one elastic 
spring connected in parallel with a Maxwell element. See figure 6 
 

η 

E∞

E
σ σ 

Figure 4.6. The Zener model. η  denotes a rate 
dependent damper and E an elastic element  

 
For a special strain history the stress in a one-dimensional loading case can be 
calculated as the sum of all stress changes up to a time t2. This expresses an integral [3]  
 

 ( ) ( )∫ ∞−
−=
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t
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dttEt εσ  (4.20) 

 
where ER is the relaxation modulus, i.e. stiffness dependent on time. See figure 4.7. 
 

ER(t) 

t

E0

E∞ 

Figure 4.7. Relaxation modulus as a function of time. 
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The expression for the relaxation modulus can be derived as 
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t
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where tr is the relaxation time, which influence the shape of the curve. 
 
A more general form of the viscous model can be done if several different Maxwell 
elements are included in the model. This results in more parameters to determine and an 
increased possibility to fit the model to experimental data. The relaxation modulus can 
be expressed by Prony series [3]  
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In the three-dimensional case equation (4.20) can according to Christensen [4] be 
expressed as 
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where g0 corresponds to E0, while g corresponds to ∑
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Hysteresis is the energy that is lost during one cycle when a rubber element is subjected 
to harmonical loading. The energy lost can be described by the area enclosed by a 
stress-stretch curve. The hysteresis phenomena can be mapped in a shear case if a 
harmonic strain is assumed 
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This example follows Christensen [4]. If (4.24) is used in (4.23) and the variable change 
s= t-τ is made. The following expression is obtained.  
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The hysteresis curve is plotted in figure 4.8. The three, different, curves represent 
different frequencies. 
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ε 

Figure 4.8. Hysteresis curve, The three curves are 
made for different frequencies. The most horizontal 
has the lowest frequency. 

 
In figure 4.8, it is clearly seen that the hysteresis change with the frequency. The 
frequency for the middle curve has the largest enclosed area and consequently the 
largest damping in a free oscillating case. It can also be seen that the dynamic modulus 
is dependent on the frequency, where the dynamic modulus is defined as 
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The dynamic modulus can be derived by using a complex harmonic strain like the one 
in equation (4.24). The complex stress can then be expressed as [3] 
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The complex modulus can now be obtained  
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In a generalised model with an arbitrary number of Maxwell element complex modulus 
would become  
 

 ∑
=

∞
∗

+
+=

n

j rj

rj
j ti

ti
EEE

1 1 ω
ω

 (4.29) 

 
The dynamic modulus is equal to the absolute value of E* and the phase angle, which is 
the phase shift between the stress and the strain, is the argument of E*. 
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The phase shift is strongly connected to the damping. The energy dissipation can be 
expressed as Uc = πσ0e0sin δ. 
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Visco- hyperelastic material models 
The viscoelasic models are better than the hyperelastic to reflect the dynamic behaviour 
of rubber, one imperfection is that the elastic behaviour is linear. A solution to that 
problem is to consider a combination of hyper- and viscoelastic models. The Cauchy 
stress is given by an expression where the viscoelastic part is added to the hyperelastic 
stress and the hydrostatic pressure [8]  
 
  (4.27) hvee σσσσ ++=
 
where σe correspond to the viscoelatic part of equation (4.4) while σh is the hydrostatic 
pressure. The viscoelastic deviator stress σve is as follow (cf. equation (4.23)). 
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0      G0  is the initial shear modulus (4.30) 

 
The model can be described as the Zener model in figure 4.6 with the difference that the 
single spring E∞ is non-linear. Similarly to the viscoelasic material models the visco- 
hyperelastic models show a hysteresis curve when they are cyclically loaded. In figure 
4.8, it is clearly seen how the non-linearity in the Neo-Hook model has affected the 
curve. 
 

ε 

σ 

Figure 4.9. Hysteresis curve for a uniaxial loaded Neo-Hook 
model. The non-linearity is clearly seen compared to a linear 
case. See figure 4.5. 

These models are, as the hyperelastic models applicable to compressible materials. The 
isocoric part of the principal stretch is separated from the dilatational part and a hydro-
static work term is added. See equation (4.14-19). 
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5 Test to determine material parameters 
The material models are mathematical expressions, which try to mimic the properties of 
the rubber as accurately as possible. To determine the parameters in the models, it is 
necessary to have experimental data of the rubber material. In this chapter, suitable 
measuring methods will be presented. The test results will, in the next chapter be used 
to calibrate the material model and to determine the parameters with a least squares 
method. Unfortunately, it was not possibility to manufacture test specimens. This mean 
that all tests have to be done on the damper itself, which can affect the precision of the 
test results. 
 

5.1 Experimental methods  
LS-DYNA has just one type of material model useful for large deformations of rubber 
material in dynamic applications, namely the visco- hyperelastic model. More compli-
cated models like visco- hyperelasticity combined with viscoplasticity must be imple-
mented by the user himself. As the time scope of this thesis does not allow this, this task 
must unfortunately be left as a suggestion for further studies. There are three different 
possibilities to model visco- hyperelasticity. Based on three different kinds of hyper-
elasticity namely the Ogden model, the polynomial model and the Arruda & Boyce 
model. The viscoelastic behaviour is implemented as outlined by Christensen [4], cf. 
also section 4.2. The hyperelastic part can, also, be separated from the rest and be 
treated alone. 
 

5.1.1 Method to determine hyperelastic constants 
The hyperelastic behaviour can be measured if the strain rate in the shear test is kept 
low enough during the deformation. The three hyperelastic strain energy functions 
describe the same behaviour of the rubber, it is therefore convenient to find a measuring 
method suitable for all functions. A shear test will give different stretches but the strain 
invariants I1 and I2 will be equal. This test is sufficient for the Ogden model (dependent 
of the stretches) and the Arruda and Boyce model (dependent of just the first strain 
invariant I1). It is, however, not sufficient for an arbitrary polynomial function depend-
ent of both I1 and I2. The Yeoh strain energy function is, however, just dependent of the 
first strain invariant and it is according to Yeoh [18] and Austrell [3] well suited for 
modelling the hyperelastic behaviour of carbon black filled rubber. The Ogden model 
will not be treated any further. It is deemed too complicated to determine the parameters 
and it is according to the Abaqus User’s Manual [7] hard to calibrate the model with 
just one deformation mode. 
 

 21



Shear test can be divided into pure shear and simple shear. A pure shear test is usually 
performed on a thin rectangular rubber strip attached to metal strips. The height of the 
rubber shall be small compared to the length. The shear deformation is measured with 
stretch. The deformation field, which leads to deformation gradient F can be expressed 
as follow (incompressibility is assumed) 
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The strain invariants I1 and I2, equation (3.9), can now be calculated out of the 
eigenvalues of the right Cauchy-Greens deformation tensor C, equation (3.6).  
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An easier shear test, more adapted for ordinary uniaxial testing machines is the simple 
shear test. There are at least two different test objects, for example the quadruple shear 
test and the double shear test. The quadruple shear test specimen consist of four rubber 
pieces placed as shown in figure 5.1. 
 
 

25 4

Figure 5.1. Quadruple shear specimen   

 
Both the force and the displacement are doubled. The shear deformation is measured 
with the shear strain κ. The height of the rubber is not held constant in the quadruple 
shear test. A specimen easier to manufacture is the double shear specimen, it consists of 
two rubber pieces mounted in a fixture so the height of the rubber is constant. (See 
figure 5.2)  

6 

∅25

Figure 5.2. Double shear specimen 
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This is the method, which is most applicable to our rubber damper. The relation 
between shear stress and strain can, in the simple shear case, be derived from the 
deformation field, which yields the deformation gradient F. 
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where κ is the shear strain defined as 
h
δκ = , δ  is the displacement and h the height. 

Equation (5.3) leads to the expression of the invariants. 
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Note that J = 1 for this loading situation, i.e. and , cf. equation (4.17). 
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In the stress calculation connected with the calibration of the material models, 
incompressibility will be assumed.  
 

5.1.2 Method to determine viscoelastic constants 
The dynamic behaviour of the rubber is simulated by the viscoelastic models. Both 
damping and stiffness are dependent on the frequency and the amplitude. The visco-
elastic model handle the strain rate dependent energy dissipation, but to be able to 
completely model the frequency and amplitude dependency is it also necessary to 
include an energy dissipating term, which is not dependent on the strain rate. This term 
is on the other hand not implemented in LS-DYNA.  
 
The test can be performed with the same double shear test specimen as in the determina-
tion of the hyperelastic parameters. To determine the parameters several different stress- 
strain curves is measured. Each curve comes from a cyclic deformation with a specific 
amplitude and frequency. The model can then be fitted to the curves and the dynamic 
modulus.  
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5.2 Experimental Tests 
The material tests are made at Trelleborg Automotive with a MTS 810 dynamic testing 
machine. It is a hydraulic machine with capacity of 100 kN static loading. A test rig is 
built where the rubber dampers are exposed to simple shear. The rig consists of a bridle, 
which keep the outer distance of the damper constant and a plate between the damper. 
See figure 5.3. 

Figure 5.3. Test rig for the dampers.

 
The rig is attached to the test machine by a screw joint. 
 

5.2.1 Conditioning  
A rubber material become softer at repeated deformation, i.e. if a material is deformed 
to a certain strain the material will be softer the next time it is deformed up to that 
strain. This is designated as Mullin´s effect [6]. If the test shall be done on a conditioned 
test specimen or on an unconditioned one is controlled by the application of the rubber 
element. A rubber element which is just statically loaded is better evaluated with an 
unconditioned test specimen. In this case is it realistic just to perform conditioned tests, 
because it would otherwise be necessary to change rubber dampers for every test. The 
results would also be less accurate in that case because of dispersion of the rubber 
quality. 
 
There are a lot of different methods of conditioning. The easiest way is to apply a cyclic 
loading to the specimen, with an amplitude which is as large as the largest in the test, 
until the stress-strain curve is stabilised. There are of course better methods but they are 
more complicated and it is hardly meaningful to use them with out any closer 
examination. 
 

5.2.2 Results of the hyperelastic test 
To determine the non-linear elastic behaviour the deformation rate must be so slow that 
the viscoelastic behaviour can be neglected. Yeoh [18] recommend a stretch rate of 
maximum 50 % min-1, which is equal to a shear strain rate of 0.83 min-1, according to a 
combination of equation (5.2) and (5.4). However Austrell [3] have found that a stretch 
rate lower than 3% min-1, equal to a shear strain rate of 0.06 min-1, is needed to 
eliminate the viscoelastic behaviour.  
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The test specimen in form of rubber dampers has an allowed shear strain, κ, of 1.3. To 
cover the whole region, the dampers were deformed to a shear strain of about 1.5. Due 
to lack of time at Trelleborg Automotive the strain rate was set to 0.18 min-1. It appears 
that the stress in loading was higher than the one in unloading. This is caused by the 
strain rate independent energy dissipation and it can also be an effect of a not com-
pletely eliminated viscoelactisity, due to too high strain rate. The curve can be seen in 
figure 5.4. 
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Figure 5.4. Stress- strain curve, simple shear 

The shear stress is calculated as the engineer stress τ = F / A, where A is the original 
area. 
 

5.2.3 Results of the viscoelastic tests 
The viscoelastic behaviour, which include rate dependent stress and damping, can be 
evaluated if several cyclic stress-strain curves is made for different amplitude and 
frequencies. The tested amplitude and frequency shall correspond to the ones, which can 
be achieved in a shock test with drop table. It is not likely to get a frequency less then 
10 Hz of the oscillations after the shock. It is however possible to obtain larger ampli-
tudes then the test machine can make. Frequencies were of that reason tested from 1 Hz 
to 20 Hz with shear strain amplitudes from 0.015 up to the limit of the test machine. The 
combinations can be seen in figure 5.5. 
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Figure 5.5. Tested combinations of frequencies and amplitudes  



The higher frequencies were tested at twice as many amplitudes as planed, to avoid 
overloading the testing machine when the amplitude was increased. Unfortunately, we 
missed to go back and fill in the missing amplitudes at the lowest frequency. The lowest 
frequency was tested with the largest strain amplitude first in order to see the deforma-
tion softening. It was however impossible to see any major difference. The tests were 
made with a constant prestrain of 0.15. The prestrain was adjusted to be a little bit larger 
than the largest amplitude. The constant prestrain is necessary if the different frequency 
and amplitude combination shall be compared with each other. It is also desirable to be 
able to extrapolate the missing part of the frequency - amplitude plane. Unfortunately, 
the curves in the higher frequencies were not reliable, the registered forces were to 
small when the strain increased and to big when it decreased. The reason is probably 
that the load cell could not make a correct registration at that high rates and the inertia 
of the rig and other masses attached to the load cell could reduce the force in the load 
cell. This phenomenon is clearly seen in a graph over the dynamic modulus. See figure 
5.6. The results is also presented in numbers in appendix A. The dynamic modulus is 
calculated as 
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Where the maximum resp. minimum stress and strain is manuelly read from the curves. 
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Figure 5.6. Dynamic modulus dependent of the frequency and the amplitude.   
 

 
The result in figure 5.6 is impossible to use to determine the viscoelastic behaviour. One 
alternative is to continue the work with theoretical values, there is however a possibility 
that an estimation of the missing points could be done. Hopefully, such a estimation 
given in figure 5.7 are better than completely theoretical values. The estimation is based 
on the values in the lower frequency and figure 2.2 (showing the frequency dependency 
of natural rubber).  
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Figure 5.7. Estimated dynamic modulus dependent of the frequency and the amplitude.   
 

 
The phase shift δ  between the force and displacement curve is measured. The resolu-
tion on the curves and disturbance made it impossible to find out any major differences 
between the amplitudes. It can however be seen that the phase shift increase when the 
frequency gets higher. In the same way as the dynamic modulus are the values at the 
higher frequencies incorrect especially the ones at 15 Hz. δ is calculated as δ = ω∆t, 
where ∆t is the phase shift in time. The measured values are visualised in figure 5.8.   
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Figure 5.8. The phase shift dependent on the frequency at left and on the strain amplitude at right. 
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6 Adaptation of material models 

6.1 Adaptation of hyperelastic material models 
To calibrate the model the stress strain curve, which reflect the elastic behaviour will be 
considered. As previously discussed in section 5.2.2 it turned out that a too high loading 
rate was used, i.e. small viscous effects could be detected, therefore an average curve 
will be used. The average curve is shown in figure 6.1 
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Figure 6.1. Average curve (solid line) of loading and 
unloading curve (dash-dot line). 

 
The damper is unfortunately not optimum device for use as a shear test specimen, the 
damper is much weaker compared to values found in the literature of the same rubber 
quality. The reason is the influence of bending induced by the relative big height com-
pared to the length of the damper. The material parameters will therefore not be accu-
rate if the experimental values are accepted as they are. A solution to the problem is to 
fit the parameters with help of a FE analysis. Since the load case is purely static, the FE 
analysis is made with Abaqus ver 5.8 [1]. 
 
Finite element model in Abaqus 
The geometry is very simple, the damper is modelled as a rectangular parallelepiped 
with 8 node brick element. The chosen elements are fully integrated hybrid elements, 
with a large deformation element formulation. Hybrid element is recommended by 
Abaqus User’s manual [7] when the material is incompressible or nearly incompressi-
ble. To model the damper 15×15×15 elements are used. The nodes in the bottom surface 
are locked in all direction, while the nodes on the opposite surface are locked in two 
directions and the third is given a prescribed displacement. See figure 6.2.  
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The model in figure 6.2 is compared with a model where just the shear stresses are 
present. The simple shear stress state can be obtained if only one element between the 
surfaces are used. Otherwise are the two models equal. The mesh and boundary 
conditions used to obtain the simple shear stress state are shown in figure 6.3 

 
The shear stress is calculated as the engineers stress, i.e. the sum of the nod force at the 
constraints divided with the original area. The strain comes from the displacement 
divided with the original height. 
 

6.1.1 Yeoh model 
In the Yeoh model the constants can in an approximately way be obtained from the 
initial shear modulus. The three constants can however in a more accurate way be 
determined by a simple least squares method from a stress strain curve.  
 
Recall the Yeoh model 
 
 ( ) ( ) ( )3

130
2

120110 333 −+−+−= ICICICW  (6.1) 
 
The theoretical value of the strain energy in the different experimental data points (i) 
can be expressed as a linear equation system. 
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Figure 6.3. Side view of the 3 dimensional mesh. 
Simple shear.  
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Figure 6.2. Side view of the 3 dimensional mesh. 
Shear with bending included  
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The relative residual e can be expressed as 
 

 exp1
τ
Ace −=  (6.3) 

 
Where τteor=Ac is obtain by using (5.4) and (6.2) in (5.5). To find the minimum of e the 
L2- norm eTe is used, i.e. 
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Calculating the derivative with respect to Ci and the following linear equation system is 
obtained 
 
  (6.5) expτTT AAcA =
 
Where the solution c to the equation system determines the material parameters. 
Applying least squares method the follow Ci0 constant were found  
 
 C10 = 0.4512 
 C20 = -0.0660 
 C30 = 0.0225 
 
The fit between the Yeoh model and the FE analysis of both simple shear and shear with 
bending can be seen in figure 6.4. 
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Figure 6.4. Calibration of the Yeoh model to experimental data. The dots are 
the analytical simple shear model, while the upper solid line is the FE model 
of simple shear. The lower solid line is the FE model where bending is 
included. Finally the dash-dotted line is the experimental curve.  
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A comparison between the shear with bending and without reveals that the maximum 
error is about 17%. To find better estimates of the material parameters an iterative 
process is performed. The error, dependent on κ, is added to the experimental data and a 
new fit is made and continued until a closer agreement between the results obtained 
from the FE analysis and the experimental data is obtained The following material 
parameters were obtained from this iterative procedure. 
 
 C10 = 0.529 
 C20 = -0.0958 
 C30 = 0.0293 
 
The fit between the FE analysis and the experimental data can be seen in figure 6.5. 
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Figure 6.5. Calibration of the Yeoh FE model, to experimental 
data. Bending is included. 

The material parameters can, unfortunately, after this approximation only be seen as an 
estimation of the parameters obtained from a real simple shear test. 
 

6.1.2 Arruda & Boyce model 
The Arruda & Boyce model have also constants related to physical properties. One of 
the constants controls the initial shear modulus whereas the other one controls the 
location where a stiffness change in the stress-strain curve takes place. 
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Where nkΘ controls the initial shear modulus and N controls the up bend. To determine 
the two constants a non-linear least squares method has to be used. In the optimisation 
algorithm the residual e = 1-τexp/τteor is minimised for all experimental data points. This 
is done with a Nelder-Mead algorithm, which is a built in function (fminsearch) in 
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Matlab ver. 5.3 [12]. In fminsearch a L2-norm of the residual e is minimised. The used 
norm is 
 
 eee T=2

2
 (6.7) 

 
The Nelder-Mead algorithm is a slow converging algorithm, there exists much faster 
algorithms. But the Nelder-Mead has however the advantage that no gradient of the 
function has to be determined as in the case of a Levenberg-Marquardt method. The 
theoretical values of shear stress are worked out with equation (5.4), (5.5) and (6.6). 
 
From the minimasation proces the following material parameters were obtained. 
 
 N = 3.3605 
 nkΘ = 0.5853 
 
The fit of the model compared to the experimental points is shown in figure 6.6 The FE 
analysis on shear with and without bending can also be seen. 
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Figure 6.6. Calibration of the Arruda & Boyce model to experimental data. 
The dots are the analytical simple shear model, while the upper solid line is 
the FE model of simple shear. The lower solid line is the FE model where 
bending is included. Finally the dash-dotted line is the experimental curve.  

 
The maximum error between the result obtained in the FE analysis and the experimental 
data has about the same magnitude as the Yeoh model i.e. about 17%. To obtain a better 
estimation of the material parameters an iterative process similar to the one used for the 
Yeoh model is adapted. From this iterative procedure the following parameters were 
found. 
 
 N = 4.09 
 nkΘ = 0.705 
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In figure 6.7 it is shown that the shear curve including bending differs slightly from the 
experimental curve, but as revealed by figure 6.6 and 6.7 the difference in the FE 
solution is not remarkable. 
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Figure 6.7. Calibration of the Arruda & Boyce FE model to 
experimental data. Bending is included.  

 

6.1.3 Comparison between FE model and uniaxial tests 
In the shock tests only compression and stretch will take place. The response of the 
material models during stretch and compression is therefore very important. The tension 
and compression deformation field can be described as 
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which reveals that first strain invariant can be written as 
 
 λλ += ⊥21I  (6.9) 
 
but due to incompressibility i.e. λ1λ2λ3 = 1 it follow that 
 

 
λ

λ 12 =⊥  (6.10) 

 
 
i.e. the first strain invariant takes the form 
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The FE analysis is done with the same model that was used for shear with bending 
included. The only difference is the boundary condition. In this case there is a 
prescribed displacement in y-direction and the other directions are locked see figure 6.2. 
The results of the simulations are shown in figure 6.8. At large compression the results 
can be affected by some boundary effects, since those effects near the boundary condi-
tions are not considered in this simple model. The experimental test data are obtained 
from a report concerning the dampers [9] as well as compressions test made at Kockums 
laboratory. The used test machine is a Zwick Z250, it is a thread rod machine with a 
capacity of 250 kN. The damper was loaded until the compression was about 35 mm. 
The speed was set to 0.09 mm/s that corresponds to a shear strain rate of 0.18 min-1. The 

comparison is made by letting the rate of the first strain invariant be equal in (6.11) and 
(5.4). 
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Figure 6.8. Stretch comparison between Abaqus simulation and experimental 
tests. Solid lines are from the experimental tests. The lower curve is the 
compression test made at Kockums laboratory. The dashed line is the Yeoh 
model, while the dashed-dotted is the Arruda & Boyce model. 

 
From figure 6.8 it follows the response of material models are in good agreement with 
the experimental tests at stretches between 0.6 and at least 1.4. Below 0.6 are the 
models far to stiff. At moderate stretches the Arruda & Boyce model displays a softer 
response than the Yeoh model. All results from the compression tests are presented in 
appendix B. 
 

6.2 Adaptation of viscoelastic material models 
The viscoelastic part of the model will now be calibrated to the harmonic curves. One 
way of doing this is to propose a function for the stress strain relation and optimise that 
to the different curves. That is however a rather complicated process and very time 
consuming. Fortunately, for moderate prestrain and strain amplitudes the calibration can 
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be done in a much easier way. The almost linear stress- strain relation makes it possible 
to assume linear elasticity, which means that the prestrain does not affect the dynamic 
modulus. The model can of that reason be fitted to the measured dynamic modulus and 
phase shift by using the complex modulus and its absolute value (dynamic modulus) 
and argument (phase shift). The complex modulus is given by 
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There is however a problem with the measured dynamic modulus and phase shifts, the 
values at higher frequencies are not accurate, cf. the discussion in section 5.2.3. The fit 
must be done on the estimated values given in figure 5.7, this will of course affect the 
result, but the alternative would be continued calculations on theoretical values. Another 
problem is that the bending of the damper makes it considerably weaker than a uniform 
shear case. To compensate that the dynamic modulus is corrected based on the error 
obtained in the hyperelastic shear test. In the dynamic modulus calculations the maxima 
respective the minima of the stress in the cycle are increased with the calculated error 
from the hyperelastic parameter fit. That makes an increase of the dynamic modulus 
with 16.5% for a strain amplitude of 0.015 and 12.6% for the strain amplitude of 0.15.  
 
The calibration is done with a non-linear least squares method similar to the one for the 
Arruda & Boyce model. A suitable number of terms are four i.e. eight parameters. It 
was not possible to follow both the phase shift and the dynamic modulus with fewer 
parameters. To obtain the long-term modulus G∞ the equation (5.5) is used as well as 
the Yeoh model restricted to small deformations, i.e. τ = 2C10κ =  G∞κ, accordingly 
G∞ = 1.06 MPa The calibrations are made for both the smallest and the largest ampli-
tude. The calibration for the largest amplitude is the one used for the shock test simula-
tions. The material parameters obtained from the minimisation process are given by  
 
Strain amplitude 0.015 
 
G1= 0.432 MPa G2= 0.230 MPa G3 =0.0740 MPa G4= 0.0181 MPa 
tr1 = 1.24 s tr2 = 0.00718 s tr3 =0.0443 s tr4 = 0.00327 s 
 
Strain amplitude 0.14 
 
G1= 0.487 MPa G2= 0.241 MPa G3 = 0.123 MPa G4= 0.00190 MPa 
tr1 = 0.00119s tr2 = 0.690 s tr3 = 0.0196 s tr4 = 0.248 s 
 
The fit of the dynamic modulus can be seen in figure 6.9 and of the phase shift in 
figure 6.10 
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Figure 6.10. Fit of the viscoelastic parameters to the 
measured phase shift. The dashed line is the measured 
values. The small graph shows the behaviour of the largest 
strain amplitude up to 200 Hz.   

Figure 6.9. Fit of the viscoelastic parameters to the 
estimated dynamic modulus. The solid lines are the models 
and the dashed ones are the estimated curves, where the 
smallest amplitude is the top curve. The behaviour of largest 
amplitude up to 200 Hz is shown in the small graph.   

 
 
The peek in the phase shift is a result of the calibration of the viscoelastic parameters to 
a long-term modulus G∞ equal to the elastic shear modulus. This relation is not com-
pletely correct, since the amplitude dependency of the rubber gives a considerably 
higher long-term modulus. The largest amplitude would probably have a long-term 
modulus of about 1.28 MPa. It is, however, necessary to use the same modulus as LS-
DYNA, i.e. the elastic modulus. There have been no experimental tests of the rubber 
dampers at higher frequencies. The most important is however that nothing dramatically 
happen in the models when the frequency rise. It can be seen in figure 6.9 and 6.10 that 
the dynamic stiffness increase slowly, just like the phase shift below 120 Hz after that 
there is a decrease. This decrease is not correct but it would probably not affect the 
results of simulations with oscillations of 5 to 25 Hz. In the determination of the visco-
elastic parameters severals of approximations and assumptions were made so the 
parameters can only be seen as estimated values.   
 
FE analysis of the experimental harmonic curves. 
To control the result of the viscoelastic parameters a FE analysis in LS-DYNA is 
performed. That gives a possibility to verify the results and the estimations. The model 
consist of a mesh containing 7×7×15 elements. The 15 elements are between the plane 
with boundary conditions. Otherwise is the model similar to the one used to determining 
the hyperelastic behaviour, except that the prescribed displacement is replaced with a 
strain history. The strain history consist of a ramp up to the prestrain after that is the 
strain kept constant for about 3 seconds in order to let the material relax completely, 
then the sinus shaped harmonic strain is started. The used material model is the Yeoh 
model with viscoelasticity. In LS-DYNA completely incompressibility can not be 
assumed. That makes it necessary to specify a Poisson’s ratio or a bulk modulus. The 
Poisson’s ratio is assumed to be 0.499. In figures 6.11 - 6.13 the viscoelastic parameters 
related to the strain amplitude of 0.015 are used and in figure 6.14 the ones related to 
the amplitude of 0.14 are used. 
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Figure 6.11. Comparison of harmonic loading 
between experimental data and LS-DYNA model. 
The frequency is 1 Hz. The strain amplitude is 0.015.
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The frequency is 5 Hz. The strain amplitude is 0.015.
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Figure 6.14. Comparison of harmonic loading 
between experimental data and LS-DYNA model. 
The frequency is 1 Hz. The strain amplitude is 0.14. 
 

Figure 6.13. Comparison of harmonic loading 
between experimental data and LS-DYNA model. The 
frequency is 10 Hz. The strain amplitude is 0.015. 

 
 
The experimental curves are lowered to the ones from the simulations. This is done 
because of a force offset in the data from Trelleborg. It was impossible to track the right 
level. The curves from the simulation fit quit well, the one with the largest amplitude is 
a bit too weak. It is, however, the one with almost completely estimated viscoelastic 
parameters. 
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7 Shock test 
The shock test was done in order to have experimental results to verify the shock 
simulations in LS-DYNA. The test was made with a machine with a drop table. It is an 
Impac 3636 delivered from Montery Research Laboratory INC, se figure 7.1. The table 
consists of a mass of about 700 kg, the test object is mounted on top of the mass. The 
mass and the test object are then released from a predestined height of fall. The table 
will hit a dashpot, which gives the mass an acceleration in shape of a half sinus wave. 
The test machine can handle test object weights of up to 2000 kg and accelerations of 
about 2000g, with a weight of 2000 kg the accelerations can be up to 350g. The duration 
of the half sinus pulse can be varied from 1.4 to 45 ms.  
 

Test object  
 

Table with the mass 
 

Dashpot  

Figure 7.1. The shock test machine 

 
The object of this test is to measure the response of the rubber dampers when they are 
exposed to a shock. The impulse was measured so it can be used as input in LS-DYNA. 
The responses of the rubber dampers were measured both for the shock and for the 
oscillations afterwards.  
 

7.1 Test arrangement and performance 
The shock test of the rubber dampers was performed with the arrangement of four 
dampers attached to the table and a weight fixed on top of them. The deformation of the 
dampers are exclusively compression and tension. The weight controls the frequency of 
the oscillations after the shock. The accelerations were measured with a few accelero-
meters, one was placed on the table and it registered the impulse (see figure 7.2), 
another one was placed in the middle of the weight and one as close to a damper as 
possible. The two accelerometers on the weight were placed so in order to estimate 
distortions in the fundamental oscillations. In the same way, two accelerometers meas-
ured the acceleration perpendicular to the direction of motion of the table. A displace-
ment transducer gave the distance between the table and the weight, i.e. the deformation 
of the rubber dampers. This displacement transducer was placed as close to the damper 
with the accelerometer as possible. The arrangement of the accelerometers and 
displacement transducer is shown in figure 7.3 and 7.4. 
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Accelerometer 
 

Dashpot 

Figure 7.2. Photo of the drop table. The accelerometer me
the impulse and the dashpot giving the impulse are in the middle 
of the picture. 

asuring 

Figure 7.3. The arrangement of four accelerometers on the mass 
(marked with arrows). The displacement transducer is located to 
the left in the picture. 

 

Figure 7.4. The displacement transducer. 
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The used accelerometers have an upper limit of 200 g, it is piezoresistive meter model 
2262A-200 from Endevco. They were supplied with a voltage of 5 V the output from the 
accelerometer were then after an amplification and a A/D transformation recorded by a 
DAT recorder. The used tape recorder was a Heim DATaRec-A160, the current supply 
and the receiving of the signal from the accelerometers were done by the module Strain 
gage amplifier typ SGA4. The displacement transducer type ACW 2000B/7 was manu-
factured by RDP electronics. It was connected to an extern amplifier type S7AC also 
from RDP electronics and an alternating current source. The output signal was in this 
case sent to the tape recorder through a Direct input module DIC 20. The recorded 
signals were transformed into tables in ascii format with the parallel signal processor 
Zonic 7000. The signal processor contains also a digital filter, which reduce the higher 
superposition frequency. The whole scheme is visualised in figure 7.5.  
 

+-

∼

×5 
signal processor 

digital 
filter 

DAT tape 

A/D

A/D

amplifier 

amplifier 
displacement 
transducer 

accelerometer 

tape recorder 

Ascii 
tables 

Figure7.5. Scheme over the gauging equipment.  

 
 
The accelerometers measure acceleration related to the ground, which corresponds to 
the fixed reference axis in figure 7.6. While the displacement transducer measure the 
distance between the table and the weight corresponding to the coordinate x. 
 

x xtot

fixed reference axis 

m

k k 
xg 

Figure 7.6. Definition of coordinate system 
and reference coordinate system 

 
The acceleration related to the x-coordinate can be expressed as 
 
     or    gtot xxx &&&&&& −= gtot aaa −=  (7.1) 
 
The test was made with different masses to achieve different frequencies of the 
oscillations. To obtain various amplitudes the initial velocity when the table hit the 
dashpot was varied. That means different height of falls. The height was calibrated to 
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achieve a maximum compression of about 50%. The peak acceleration on the table is 
controlled by the initial velocity and the properties of the dashpot on the test machine. 
The used dashpot was a liquid spring that gives a duration of the acceleration pulse of 
about 20 ms dependent on the total mass of the table and the test object.  
 

7.2 Results 
The tests were made with three different masses when each mass was tested with 
several fall heights. The highest height is controlled by the maximum compression. The 
lower heights have in some cases been too small so the brake in the table did not work, 
which results in that the table bounced against the damper. The masses, the fall heights, 
maximum compression, the maximum acceleration of both the table and the mass and a 
approximate achieved frequency is presented in the table below.  
 
Mass 210 kg     
Fall Height [mm] Compression 

[mm] 
Acceleration 
table [m/s2] 

Acceleration 
mass [m/s2] 

Frequency [Hz] 

75* 13 89 130 17.5 
150 18 140 218 16.5 
190 21 165 260 16.2 
225 23 182 295 16.1 
300 26 221 365 16.0 

 
Mass 460 kg     
Fall Height [mm] Compression 

[mm] 
Acceleration 
table [m/s2] 

Acceleration 
mass [m/s2] 

Frequency [Hz] 

50* 15 65 102 12.7 
75* 19 85 141 13.5 
100 22 102 173 11.1 
125 24 119 209 11.1 
150 26 135 241 11.1 
175 28 149 273 11.1 
200 30 163 305 11.1 

 
Mass 570 kg     
Fall Height [mm] Compression 

[mm] 
Acceleration 
table [m/s2] 

Acceleration 
mass [m/s2] 

Frequency [Hz] 

25* 11 38 58 9.2 
50* 16 60 97 9.2 
75* 21 82 137 9.5 
100 24 99 172 10.2 
125 26 115 205 10.2 
150 29 132 243 10.2 
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A * marked fall height indicate that the table have bounced. The frequencies related to 
those heights are very approximate. Curves for the table and the mass acceleration and 
the displacement of the mass are shown for a few different masses and fall heights in 
figures 7.7-7.10. The rest of the tests can be found in appendix C. It shall be noticed that 
the used accelerometers have a certain sensitivity for transversal acceleration in their 
measuring direction. That is a great importance when the curves over the transversal 
acceleration of the mass are studied. About 1% of the principal acceleration is added to 
the real transversal acceleration. 
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Figure 7.7. Accelerations and displacement of the mass and acceleration of the table. 
The displacement and the acceleration except the transversal of the mass are relative 
the table. The mass is 210 kg and the fall height is 300 mm. 
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Figure 7.8. Accelerations and displacement of the mass and acceleration of the table. The displacement 
and the acceleration except the transversal of the mass are relative the table. The mass is 460 kg and 
the fall height is 125 mm.
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Figure 7.9. Accelerations and displacement of the mass and acceleration of the table. The displacement 
and the acceleration except the transversal of the mass are relative the table. In these curves can it 
clearly be seen that the table has bounced. The mass is 570 kg and the fall height is 75 mm. 
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Figure 7.10. Accelerations and displacement of the mass and acceleration of the 
table. The displacement and the acceleration except the transversal of the mass are 
relative the table. The mass is 570 kg and the fall height is 100 mm.  

The rather equal acceleration on the mass, i.e. at the damper and in the middle, together 
with the relative small acceleration in the transverse direction indicates that the 
oscillation have been in the planed direction without any major disturbance. The brake 
is supposed to lock the table when its velocity is zero. The time it takes for the brake to 
lock the table can be seen as a disturbance in the acceleration curve for the table.  
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8 Simulation of shock test in LS-DYNA 
The test results of the shock test are used to evaluate the material models. The 
acceleration on the table on the shock test machine is used as input in LS-DYNA and 
the relative displacement and acceleration between the table and the mass is compared 
with the results from the FE simulation.  
 

8.1 Modelling of the damper  
The damper is modelled as simple as possible. The shape of the damper makes it natural 
to choose brick elements, the used element formulation is a constant stress formulation 
which is default in LS-DYNA. The element is uniformly distributed along the sides. To 
save processing time the damper is split at its symmetry planes and just a fourth of the 
damper is modelled. The mass consists of a plane of element with density corresponding 
to the weight of the mass. The material used in the mass is linear elastic with material 
constants for steel except the density. The surface between the different material is con-
strained in order to prevent bending and strain perpendicular to the direction of motion 
on the mass element. The boundaries between the steel plates and the rubber are compli-
cated to model in an accurate way. If nothing is done with these boundaries the rubber 
elements at the boundaries will be very distorted and they will finally penetrate the mass 
elements. This is solved by extending the mass with one row of elements on each side 
of the rubber. The LS-DYNA option CONTACT_NODES_TO_SURFACE prevents the 
nodes in the rubber elements to penetrate the mass. The deformation of the model will 
in this way be similar to the deformation of the damper. A similar mass is attached to 
the opposite side for the same reason. The surface between is however locked in all 
direction so the extra mass will not affect the dynamic behaviour. The model with 
boundary conditions and constraints can be seen in figure 8.1. 
 

Nodes locked i
y-direction 

n 

Nodes locked in all 
direction 

Nodes constrained in 
z direction and locked 
in the other

x 

z 

y

Mass

Nodes locked 
in x-direction 

Rubber 

Figure 8.1. Model of the damper with boundary conditions and constraints.  
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The evaluated material models are the Yeoh model and the Arruda & Boyce model with 
viscoelasticity. The Yeoh model is implemented in LS-DYNA as general hyper elastic 
rubber material type 77 adapted for the Yeoh model i.e. the constants Cij except C10 , 
C20 and C30 are zero. The model Arruda and Boyce rubber material type 127 provides 
the Arruda & Boyce model. The used hyperelastic material parameters are presented in 
chapter 6.1. The mass density approximated to be 1100 kg/m3  and the Poisson’s ratio is 
assumed to be 0.499 that corresponds to a bulk modulus of 520 MPa. The relation 
between Poisson’s ratio ν and the bulk modulus K is derived from the following 
equations 
 

 µλ
3
2

+=K  (8.1) 

 
cf. Ogden [15] and λ and µ are defined as [16]  
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the bulk modulus can then be expressed as 
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+
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The viscoelastic material parameters are the same in both models, they are taken from 
chapter 6.2. The decay constant tr is in LS-DYNA denoted as β =1/tr.   
 
The acceleration from the drop table is applied to all nodes on the model as body loads. 
That corresponds to a prescribed base acceleration equal to     in figure 7.6. As input the 
measured acceleration on the drop table and the gravity g are used. The brake on the 
table causes some acceleration, which has been neglected due to the high frequency. 
The distortion in the pure tension-compression deformation mode is also neglected. This 
would be rather complicated to apply and since this distortion is not significant, it is 
neglected. An example of an input curve can be seen in figure 8.2. 

gx&&
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Figure 8.2. Example of acceleration used as input to LS-DYNA. 
The doted line is the neglected acceleration from the brake 
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To determine a suitable number of elements is a simple convergence study performed in 
next section.  
 

8.2 Element convergence study 
It is almost impossible to know, in before hand, how many elements necessary in order 
to obtain an accurate solution. It is therefore convenient to do some kind of simple con-
vergence study. No racy of the result driving the processing time. But 
the solution usually seems to converge to a curtain number of elements. The quarter of 
the damper is modelled so the height has twice as many elements as the sides. The 
elements have all the same size. The convergence study is performed on the case with 
the highest compression. The study is o for the Yeoh model, this test controls 
the element and it is not likely that the Arruda & Boyce model would give a tendency 
different from th hown in figure 
8.3. 
 

 
The used processing time is presented below. If the damper is used as a component in a 
larger model these values are probably not accurate, but they can perhaps serve as an 
estim ion of time consumption in relation to the different numbers of elements. The 
time step and consequently the processing time are controlled by the bulk modulus. A 
higher bulk modulus gives a higher wave propagation velocity, which leads to a smaller 
time step. The length of the smallest element side is also affecting the time step. 
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Figure 8.3. Acceleration and displacement curves from different numbers of elements. In the 
magnification is the curve from the smallest number of elements, 6×3×3, on top and the one from the 

est number, 30×15×15, at the bottom. The input, which generates the largest compression, is used. larg



 
Number of elements Cpu processing time
6×3×3 9 min 
10×5×5 30 min 
15×8×8 2 h 27 min 
20×10×10 8 h 5 min 
24×12×12 15 h 1 min 
30×15×15 91 h 27 min 

 is not an obvious choice, which element configuration that is most suitable to use. The 
ferences are, however, so small that any number of elements could do. 10×5×5 ele-
nts seems to be a good balance between processing time and accuracy. The deformed 

0×5× bee  8.5. The deformed shape is taken 
from t n in of 473 kg, the compression is 
about 30 mm. Figure 8.4 shows the corner of the model while figure 8.5 is a view over 
the sy lane. Although, 
convergence test reveals that the results are not very sensitive to the numbers of 
elements. No test have been made on larger pressions, so it is not advisable to use 
this m e case without further evaluation. 
 

 

8.3 Results from the shock test simulations 
Some selected shock tests are simulated in LS-DYNA. The selected situations are the 
cases with the highest respective the lowest input acceleration for all three masses. The 
cases where the drop table has bounced are skipped. The curves over the acceleration 
and deformation relative the drop table or the locked surface on the model and the input 
acceleration are presented in figures 8.5-8.10. The simulations are made for both the 
Yeoh and Arruda & Boyce material models. 
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Figure 8.4. The deformed shape of the 10×5×5 element 
model. The mass is 473 kg and the compression 30 mm. 

Figure 8.5. View

 
 
 

 of the figure 8.4 from the symmetry plane. 
The view plane has no deformation perpendicular to plane 

The undeformed 
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Figure 8.5. Results from the shock simulations with the Yeoh model respective the Arruda 
& Boyce model. The weight of the mass is 215 kg and the drop height is 150 mm  
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Figure 8.6. Results from the shock simulations with the Yeoh model respective the Arruda 
& Boyce model. The weight of the mass is 215 kg and the drop height is 300 mm  



 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50
0

50

100
150
200

Acceleration mass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-20

-10

0

10

20
Displacement

0 0.1 0.2 0.3 0.4

Figure 8.7. Results from the shock simulations with the Yeoh model respective the Arruda
& Boyce model. The weight of the mass is 473 kg and the drop height is 100 mm
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Figure 8.8. Results from the shock simulations with the Yeoh model respective the Arruda
& Boyce model. The weight of the mass is 473 kg and the drop height is 200 mm 
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Figure 8.9. Results from the shock simulations with the Yeoh model respective the Arruda
& Boyce model. The weight of the mass is 590 kg and the drop height is 100 mm  
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Figure 8.10. Results from the shock simulations with the Yeoh model respective the Arruda
& Boyce model. The weight of the mass is 590 kg and the drop height is 150 mm  
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A comparison between the simulations and the experimental test can be made easier if 
any numerical values can be obtained. It is however not easy to find a way of doing it at 
the shock phase since the oscillations are not harmonic. The free vibrations can easily 
be measured if a simple system consisting of a linear spring, a damper and a mass is 
assumed. the equation of motion for this system can be expressed as [5] 
 
 ( ) ( ) ( ) 0=++ tkxtcvtma  (8.1) 
 
the solution to the equation is 
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where 
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=ω        
ω
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If equation (8.2) is fitted to the displacement curves at the free vibration phase is it 
possible to find out the frequency and the damping for the different material models and 
for the experimental data. The results of it ented in the table below. 
 

 Exp. data Yeoh A & B
215 kg 150mm    
frequency [Hz] 16.6 16.3 15.1 
damping ξ 0.053 0.044 0.05 
    
215 kg 300 mm    
frequency [Hz] 15.9 16.2 15.1 
damping ξ 0.048 0.044 0.05 
    
473 kg 100 mm    
frequency [Hz] 10.9 11.0 10.2 
damping ξ 0.041 0.042 0.049 
    
473 kg 200 mm    
frequency [Hz] 10.8 11.0 10.3 
damping ξ 0.044 0.042 0.048 
    
590 kg 100 mm    
frequency [Hz] 9.9 9.9 9.2 
damping ξ 0.04 0.042 0.049
    
590 kg 150 mm    
frequency [Hz] 9.9 10 9.3 
damping ξ 0.04 0.042 0.049 

 
 

 

are pres
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The calibration of equation (8.2) to the experimental data was not perfect. The fre-
quency in the experiment had a tendency to increase when the amplitude decreases due 
to the amplitude dependency and non-linear elastic behaviour. The equation (8.2) does 
not cover those effects.  
 

8  results .4 Evaluation of the

n Arruda & Boyce and Yeoh 
he simulations with the Yeoh model correspond quite well with the experiment. The 
rgest error can be found in the displacement at the fir

28 % for the worst case 590 kg with the drop 
eight of 100 mm. An explanation of this is given in next section. The Arruda & Boyce 

hows also good results in the shock phase. The two models follow each other in 
ses. 

he damping in the free vibration phase seems als
It can be noticed that both models seem to be out of phase in the free vibration phase. 

ne reason can of course be that the stiffness deviate, but the frequency is quite alike. 
-

 most of the 
igher frequencies generated by the brake on the drop table is neglected from the input 

acceleration make the phase d
 
Figure 8  a phe on that d to fi explanation for. The 
Arruda all res in th vibration phase. Obvi-
ously is there a damping mechanism that affects the model. It is possible that the 
damping is controlled by the frequency. The higher frequency achieved by the 215 kg 
mass, d ck ph ore dam ompared with the Yeoh model. The 
two low es worked erably It is ossible that superposed 
higher f quencies, at for exam over 0.2 s in figure 8.5, damp the Arruda & 
Boyce m  The p enomenon s ems however not come from the parameter 
fit since enera mping  with j lightly increasing damp-
ing. The is at most about twize th or th ing at 20 Hz. This makes 
it precarious to use the Arruda & Boyce model until there is an explanation.  
 

8.4.2 Amplitude depende
The results from the simulations especially for the Yeoh model behave quite well, the 
largest most c se in the shock phase. The error of the displacement can 
be up to 28 %, while the accelerations seem t better  part of the decrease in 
extensio ression can aced fro act t amplitude dependency is 
not included in the material m els. A. I. M  that the dynamic stiffness 
and especially the phase angel, i.e. the damp g, are ver dependent on the amplitude. 
The cha tiffne es not af is cas plitude 
is so hig iffness is a  constan igure he change in amplitude 
ffects on the other hand the damping quite a lot. Figure 8.12 shows the phase angle 
epended on the strain amplitude on different rubber types. It can be seen that the 

8.4.1 Comparison betwee
T
la st peaks during the shock phase. 
The tension peak has a deviation of about 
h
model s

ost cam
 
T o to fit quite well (cf. previous table). 

O
So the main reason is probably that LS-DYNA cannot handle the high input frequen
cies. It can clearly be seen in figure 8.10 that the models especially the Yeoh model do 
not follow high frequency acceleration response. This together with fact that
h

rift. 

.5 and 8.6 show nomen  is har nd an 
& Boyce model gives a too sm ponse e free 

isplays in the sho ase m ping c
er frequenci  consid  better. also p
re ple just 
odel quite a lot. h e

 the parameters g te a da curve ust a s
 magnitude e one f e damp

ncy 

deviations are in a
 to fi . One

n and comp  be tr m the f hat the 
od edalia [13] shows

in y 
nge in dynamic s ss do fect th e very much since the am
h that the st lmost t, see f  8.11. T

a
d
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damping for natural rubber (NR) increases with falling amplitudes. The translation 
the tension and compression scale is done with equation (5.4) and (6.11). The compari-
son is built on the assumption of equal strain energy. Both graphs shows filled natural 
rubber not necessarily sa

to 

me compound, unfortunately is the hardness unknown.  

he fact that the damping is too high in the shock phase can also be established by the 
r-
 

per-

 

 

0.02 0.2 1.9 20.5 

0.02 0.2 1.9 16.9 
Compression [mm] 

Tension [mm] Tension [mm] 
0.02 0.2 1.9 20.5 0.002

Compression [mm] 
0.02 0.2 1.9 16.9 0.002

e 8.11. Dynamic shear modulus for filled 
al rubber. (Source: Medalia [12]). 

Figure 8.12. Phase angle different rubber types. The 
natural rubber is marked NR. (Source: Medalia

Figur
natur  [12]). 

 
T
results of a FE simulation where the viscoelastic behaviour is disabled and the hype
elastic parameters are adjusted to be valid for the initial stiffness. The Yeoh model is
used on the case with a mass of 215 kg and a drop height of 300 mm. The used hy
elastic material constants are C10 = 0.6899 C20 = -0.06899 and C30 = 0.00689, i.e. the 
approximate relation for the constants is used. This would correspond to an approximate 
initial shear modulus of 1.38 MPa compared to the original of 1.06 MPa. Figure 8.13. 
shows the result. 
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The model mimics the experimental result considerable better at the first two peaks A 
and B with a material model without any damping. But when the amplitude decrease 
more damping must be included, cf. also figure 8.12. The displacement at point B is 
affect by the damping and if the shock phase is of particular interest is it possible that a
material model wi

 
thout any damping is more suitable. If the important quantity is just 

e transmitted acceleration the deviation at point B is so small that the damped model 
ems to be a better choice. 

hese conclusions are not surprising, since the visco- hyperelastic material models 
annot model amplitude dependency.  
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Figure 8.13. The FE model without any damping compared to the ordinary FE model and 
the experimental test. Mass 215 kg and drop height 300 mm 
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8.4.3 Frequency dependency 
The frequency dependency on the material models are harder to evaluate, since neither 
the stiffness nor the phase angle vary much at these relative low frequencies, see figure 
8.14. 

 
It is also difficult to separate the more dominant amplitude dependency from the 

odel at the free 
vibrations phase m

frequ ker at 
smal  this 

ehaviour. The reason can be wrong weight of the mass, the hyperelastic behaviour has 

Figure 8.14. The frequency dependency of the dynamic 
modulus and the phase angle. (Source: Austrell [3]). 

frequency dependency. The achieved frequencies from the Yeoh m
atch the measured ones quite well (see table in section 8.3). The 

largest deviation is about 2 %. The Arruda & Boyce shows generally a bit too low 
encies, it can be explained by the fa  that the Arruda & Boyce model is wea
l strains than the Yeoh model. It is of course impossible to trace the cause of

ct

b
also a deviation from the real elastic behaviour and finally the parameter fit of the visco-
elastic parameters is very approximate. The calibration is made at a corresponding 
uniaxial amplitude of about 6mm. The achieved damping is not quite as good as the 
achieved frequency the largest error is about 18 % for both models. The damping is 
however influenced by the shock phase so it is very difficult to find out if the frequency 
dependency of the damping is correct. 
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9 Conclusion 
The results from the simulations correspond quite well to the experimental results. 
Especially the Yeoh model gives remarkable good results despite the many approxima-
tions in the calibration of the model. There are, of course, also other sources of error, 
like the measurements in the material tests and the shock test. The approximations and 
errors have, of course, affected the results, but it seems like the corrections of both the 
static and dynamic stiffness have worked quite well. A comparison of the results from 
the simulations and the tests indicate, also, that measuring errors were not significant. If 
they were significant the accuracy of results would differ more between the different 
conditions. The fact that the material tests were done in shear deformation and the shock 
tests in tension and compression eliminates the possibility that the material models are 
valid for just one deformation mode.  
 
The two examined models, Yeoh and Arruda & Boyce, show in most cases a similar 
behaviour. The Arruda & Boyce model did, however, in the cases with the lowest mass 
not respond very we . This effect makes 
the model insecure t y explanation can be 

und. 

e 

an 

e oscillation phase. To achieve an accurate result 
in the shock phase is it recommended to use a purely hyperelastic model where no 
damping exist. The Yeoh model with the following constants  
 
 C10 = 0.6899 
 C20 = -0.06899  
 C30 = 0.00689 
 
worked quite well.

ll. The reason could unfortunately not be found
o use and it is not advisable to use it before an

fo
 
Unfortunately, the rubber material is more dependent on the strain amplitude than th
strain frequency at these relatively low frequencies. The frequency dependency can 
almost be neglected in this frequency range. It would be much more useful to have 
amplitude dependent material model than a frequency dependent one. The calibration of 
the material models to a amplitude of about 6 mm works quite well. The deviations at 
the shock phase where the amplitude are considerable higher are quite large due to too 
high damping, while the free oscillation phase is better. It is possible that a fit to higher 
amplitude is better, this was not tested since it would require the whole dynamic 
modulus curve. 
 
Today, with the visco-hyperelastic models it is necessary to choose if the results shall be 
accurate in the shock phase or in the fre
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If the free oscillations are of importance it is better to use the visco- hyperelastic model 
scribed by the Yeoh model. The following constants are 

esponse of the models in a case with considerable 
impossible to achieve higher accelerations 

 also important to fit the existing models to proper test results. When a new 

 

etails 

where the hyperelasticity is de
used in the simulations 
 
 C10 = 0.529 
 C20 = -0.0958 
 C30 = 0.0293 
 
and 
 

G1= 0.487 MPa G2= 0.241 MPa G3 = 0.123 MPa G4= 0.00190 MPa 
tr1 = 0.00119s tr2 = 0.690 s tr3 = 0.0196 s tr4 = 0.248 s 

 
It would be interesting to find out the r

igher input accelerations. It was, however, h
in the shock test with a frequency of less than 20 Hz. The compression of the dampers 
would be too high in that case. The absence of experimental tests made any simulations 
meaningless, since the results could not be evaluated. 
 
A material model dependent on the strain amplitude is, of course, in the future desirable. 

ut it isB
rubber element is developed is it advisable to obtain test data from real test specimen. 
The test that shall be performed is a simple shear test where the elastic behaviour is 
measured and a dynamic shear test where the dynamic modulus and the phase shift are
measured. The frequency and the amplitude shall cover the whole region. It is also 
advisable to do some tests at higher frequencies in order to obtain asymptotic values. 
Finally a compression and tension test can be useful to verify the hyperelastic model 
and the tests can also be used in the calibration of the material model. The simple shear 
test specimen can for example be shaped like the example in figure 5.2. Further d
are for example described in Austrell’s thesis [3]. 
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Appendix A 
The dynamic modulus and the phase shift are here presented in tables. The values are 
calculated with no adjustments for error like bending modes included in the fundamen-
tal simple shear deformation. Description of the calculations can be found in 
section 5.2.3. 
 
The dynamic modulus Gdyn [MPa]: 
 
Shear strain   Frequency [Hz] 

amplitude 1 5 10 15 20
0.015 1.23 1.28 1.28 1.16 1.12
0.031  1.23 1.26 1.11 1.11
0.046 1.17 1.20 1.24 1.10 1.12
0.062  1.18 1.24 1.08
0.077 1.15 1.16 1.12
0.092  1.15 

0.11 1.12 1.14 
0.12   
0.14 1.11  

 
 
The phase shift δ: 
 
Shear strain   Frequency [Hz] 

amplitude 1 5 10 15 20
0.015 0.0546 0.0664 0.0737 0.025 0.0828
0.031  0.0706 0.0749 0.057 0.0919
0.046 0.0609 0.0747 0.0711 0.0703 0.0954
0.062  0.0723 0.0295 0.0763
0.077 0.0581 0.0715 0.0061
0.092  0.0725 

0.11 0.0578 0.0758 
0.12   
0.14 0.0555  
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Appendix B 
A compression test was performed at Kockums. The test object, i.e. the damper, was 
first compressed two times in order to condition the damper. The real test was then 
made with a deformation rate of 0.09 mm/s. The next test with a rate of 8 mm/s (the 
limit of the test machine) was made just to see if there was any difference between the 
deformation rates. The stress is calculated as the engineer stress. the force divided by 
the original area (85 mm × 75 mm). The stretch is calculated as 
 

 
65

1 δλ −=    (B.1) 

 
where δ is the compression. 
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Figure B.1. Compression tests made at Kockums. 
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Appendix C 
In this section are all measurements from the shock tests presented. The test arrange-
ment with the accelerometer and displacement transducer setup are described in section 
7.1. It is also referred to figure 7.6 and equation (7.1) for a description of the notations 
ag, atot and x. 
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Figure C.3. Mass 215 kg and drop height 190 mm.
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Figure C.2. Mass 215 kg and drop height 150 mm 
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Figure C.4. Mass 215 kg and drop height 225 mm. 
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Figure C.5. Mass 215 kg and drop height 300 mm. 
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Figure C.7. Mass 473 kg and drop height 50 mm (test 2). 
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Figure C.8. Mass 473 kg and drop height 75 mm.
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Figure C.9. Mass 473 kg and drop height 100 mm. 
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Figure C.11. Mass 473 kg and drop height 150 mm. 
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Figure C.10. Mass 473 kg and drop height 12
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Figure C.12. Mass 473 kg and drop height 175 mm. 
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Figure C.13. Mass 473 kg and drop height 200 mm. 
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Figure C.14. Mass 590 kg and drop height 25 mm. 
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At a damper 
In the centre of the mass 

igure C.15. Mass 590 kg and drop height 50 mm.
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Figure C.17. Mass 590 kg and drop height 100 mm. 
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Figure C.16. Mass 590 kg and drop height 75 mm. 
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Figure C.18. Mass 590 kg and drop height 125 mm. 
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Figure C.19. Mass 590 kg and drop height 150 mm. 
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