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Abstract 
 
The objective of this thesis is to investigate how the mechanical environment of healing 
tissue influences the tissue formation. Tägil et al [2] made an experimental study of the 
mechanical control of tissue differentiation in vivo at the Biomechanical Laboratory at 
Lund University Hospital. In that study a bone chamber was designed and implanted in 
the tibia of a group of rats. After 3 weeks, when tissue had grown up into the empty bone 
chamber, it was mechanically loaded during another 7 weeks. The result from that study 
is compared with the finite element analyses of the tissue within the chamber. To decide 
which type of tissue that formed, two mechanobiologic hypotheses and a fuzzy logic 
model have been tested. The hypotheses where proposed by Carter et al [7] and Claes et 
al [3]. In Carters hypothesis an osteogenic factor is introduced, expressed in terms of 
principal stresses. In Claes hypothesis quantitative boundaries have been given in order to 
predict weather cartilage, bone or connective tissue will be formed, depending on the 
amount of hydrostatic pressure and strains the tissue experience. The fuzzy logic model is 
proposed by Hofer et al [10] and is based on the concept of a modified osteogenic factor 
and a degree of membership. The results from the analyses with Carters hypothesis and 
Hofers model were similar to the results from the experiment, but the result from the 
analysis with Claes hypothesis did not correlate so well. In a future experiment with the 
bone chamber different values of applied load at the top are suggested, to get a better 
verification of the results from the finite element analyses. The value of the pressure is 
recommended to be below 2MPa, which was used in the experiment. Further the bone 
chamber should be harvested at several different points of time, which is needed to get 
more detailed information of the course of events during the time of loading. 
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Chapter 1 

Introduction 
 
This master thesis has been carried out at the Division of Solid Mechanics, Department of 
Mechanical Engineering at Lund Institute of Technology in collaboration with the 
Department of Orthopedics at Lund University Hospital. It is the final assignment of my 
education at the Mechanical Engineering program at Lund Institute of Technology.  

1.1 Background  
 
There are a number of factors which influences the mechanical environment at the 
fracture site in terms of interfragmentary strain. The loads applied and the characteristics 
of the fixation device are maybe the most important. The relation between the levels of 
strain induced at the fracture site and the progression of healing, in that only certain types 
of tissue can exist in areas of specific strain magnitude, is complex.  
 
Primary fracture healing, i.e. the fracture healing by direct bone filling of the fracture gap 
without the intermediary phase of cartilage formation, is rare. It only exists when a 
fracture is rigidly fixed surgically and interfragmentary strain is minimal. Secondary 
healing is the most common healing process when fractures heal spontaneously or are 
stabilized by various forms of external fixation or intramedullary nailing. In this healing 
process the fragments are stabilized by the formation of periosteal callus. Initially, the 
fracture gap is occupied by the fracture haemotoma, which differentiates through 
granulation tissue, fibrous tissue and fibrocartilage to woven and lamellar bone. Each of 
these tissues have different mechanical properties optimized for the mechanical 
environment. The stiffness increases with the advance from granulation tissue to bone, 
whereas the ultimate tensile strain decreases. Therefore, the interfragmentary movement 
is reduced as healing progresses. However, the progression to the next tissue is impeded 
or the tissue is damaged, if the loads across a healing fracture are too large. A lack of 
sufficient stability can lead to a non-union with excessive periosteal hard callus and a 
cartilaginous endpoint at the fracture line. 
 
An understanding of the general relationship between specific biological tissues and the 
mechanical environment is essential for the future development of orthopedic implants 
and treatment methods for fractures [1]. 

1.2 Objective and restrictions 
 
Tägil et al [2] made an experimental study of the mechanical control of tissue 
differentiation in vivo at the Biomechanical Laboratory at Lund University hospital. In 
that study a bone chamber was designed and implanted in the tibia of a group of rats. 
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After 3 weeks, when tissue had grown up into the empty bone chamber, it was 
mechanically loaded during another 7 weeks. The result from that study is compared with 
the finite element analyses of the tissue within the chamber. The objective of this thesis is 
to investigate how the mechanical environment of healing tissue, influences the tissue 
formation. The main tasks of the thesis are 
 

• Study of medical and biomechanical literature to understand the medical issues 
involved in tissue formation and find tissue differentiation models.  

• Create finite element models with the bone chamber experiment as basis. 
• Implementation of the medical models of tissue formation and differentiation into 

finite element models. 
• Evaluate the finite element models. 

 
Since the study of tissue differentiation is a complex problem, the fluid flow acting 
within the tissue has not been considered.  
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Chapter 2 

Medical issues 
 
In this chapter the architecture and function of bone and cartilage are described. For 
further information about bone and cartilage the reader is referred to [1,3,4,5,6]. The 
language used in biomechanical literature is different from what a mechanical engineer is 
used to. In Appendix A some of the medical terms used in the thesis are explained.  

2.1 The anatomy of bone 
 
Bone is the stiffest tissue and the main component of the skeleton in the adult human. 
There are three major types of bone cells; osteoblasts, osteoclasts and osteocytes. The 
osteoblasts are the surface bone forming cells, whereas the osteoclasts resorb bone. The 
osteocytes are embedded in the bone matrix and function as modulator of the formation 
and resorption by sensing strain. At the macroscopic level there are two types of bone; 
compact and cancellous bone. Compact bone, is a dense material whereas cancellous 
bone has a spongy appearance. Cancellous bone, also called trabecular bone, is composed 
of short struts of bone tissue called trabeculae [3] forming a sandwich construction 
whereas cortical bone is more like a tube with thicker walls. Compact bone is mainly 
found in the diaphysis of the long bones, whereas cancellous bone makes up the meta- 
and epiphysis of the long bone, see Figure 2.1. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1: Long bone. 
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At the microscopic level three types of compact bone can be seen; woven, lamellar and 
haversian. Woven bone is a bone type with random orientation formed early in a healing 
bone or when no load is sensed by the bone. The osteoblasts deposit the matrix in 
compact bone, in thin sheets which are called lamellae. Lamellar bone is bone composed 
of lamellae when viewed under the microscope. A majority of the individual lamellae in 
compact bone form concentric rings around larger canals (approx. 50 µm in diameter) 
called the haversian canals within the bone tissue. The haversian canals and surrounding 
lamellae are called haversian systems. Haversian bone consists of these haversian 
systems. The basic structure of compact bone can be seen in Figure 2.2. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: The structure of compact bone. 
 
Cancellous bone does not form haversian systems. It is made up of a series of 
interconnecting plates perforated by holes [1], see Figure 2.3 below. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.3: The structure of cancellous bone. 
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2.2 Cartilage 
 
Cartilage is a specialized type of connective tissue and does not contain vessels or nerves. 
It is formed by chondroblasts and resorbed by chondroclasts.  Three different kinds of 
cartilage can form due to the mechanical environment; hyaline cartilage, elastic cartilage 
and fibrous cartilage, see Figure 2.4. The most common is hyaline cartilage which is 
found in the nose, larynx and joints. Hyaline cartilage is nearly transparent and is blue 
shimmering in the colour with thin, collagen fibers, which do not appear because they 
have about the same refractive index as the matrix. This leads to the vitreous appearance 
of the hyaline cartilage [4]. Elastic cartilage is found in the external ear and corresponds 
histological to hyaline cartilage, but in addition, it contains a dense network of fine 
branched elastic fibers. Fibrous cartilage is found in the discs of the spine and contains a 
large number of collagen fibers and a very small amount of matrix.  
 
 
 B A C  

Elastic fibers 

Cartilage cell 
Middle substance Cartilage cell 

Fibers in  
the middle substance 

 
 
 
 
 
 
 
 
 
 
 
 

Cartilage cell 

 Middle substance 
 

 
Figure 2.4: (A) Hyaline cartilage; (B) Elastic cartilage; (C) Fibrous cartilage. 

 

2.3 The process of bone growth 
 
Two mechanism of bone formation can be distinguished due to the mechanical 
environment of the healing tissue; intramembranous ossification and endochondral 
ossification.  

2.3.1 Intramembranous ossification 
Intramembranous ossification refers to the growth of bones, in mechanically less loaded 
bone such as the frontal and parietal bones of the skull [5]. The process takes place within 
an embryonic tissue membrane through the apposition of bone on tissue. Membrane-like 
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layers of connective tissue are provided with dense networks of blood vessels, which 
attract the connective tissue cells. These cells increase in size and differentiate into 
osteoblasts. The osteoblasts then deposit osteoid and mineralize it to create a matrix of 
trabecular bone. Outside the periosteum lie the cells of the primitive connective tissue. 
The cells produce a layer of compact bone to cover the surface of newly formed 
trabecular bone [5]. 

2.3.2 Endochondral ossification 
 
The majority of bones in the skeleton grow through the process of endochondral 
ossification. In this process the deformations are too large for bone to survive and the 
final bone is preceded by cartilage more apt to harvest the initial deformations. Ribs, 
vertebrae, the cranial base and bones of the extremities begin as cartilage models in an 
environment in which the function of support is less necessary. Blood vessels infiltrate 
the center of the diaphysis within the cartilage model and ossification take place. This 
region is called the primary ossification center. The cartilage model is surrounded by a 
thin membrane called perichondrium. Osteoblastic progenitor cells produce osteoblasts in 
this region. The osteoblasts deposit a thin layer of compact bone around the primary 
ossification center. The diameter of the diaphysis is increasing when the resulting 
periosteum continues to deposit bone layer upon layer. With this increase, osteoclasts on 
the endosteal surface, the inner side of the bone tube, resorb bone while osteoblasts on 
the periosteal, outer surface deposit bone. Thus appositional growth allows diaphyseal 
diameter to increase and the medullary canal to develop [5]. 

2.4 The process of fracture healing 
 
Healing begins as undifferentiated mesenchymal cells migrate from the surroundings and 
produce initial connective tissue around the fracture site, forming an initial stabilizing 
callus. The development of the callus is influenced by the size of the fracture gap and by 
the amount of mechanical stability. There are two major processes of fracture healing: 
primary healing and secondary healing. Primary healing occurs in cases of extreme 
stability and negligible gap size [6]. However, most cases, which involve moderate gap 
sizes and fracture stability, heal by secondary fracture healing [6]. The process of primary 
healing is slow and takes months or years to complete, whereas secondary healing is 
relatively rapid, with bony union achieved in weeks to months [1]. The process of 
secondary healing is described in Chapter 2.4.1 

2.4.1 Secondary healing 
 
In the process of secondary healing mesenchymal cells differentiate into cartilage and 
bone forming cells, which leads to the formation of cartilage and bone tissue in the callus. 
In successful secondary healing the initial connective tissue and cartilage are entirely 
replaced by bone, leading to osseous union across the fracture gap and completion of the 
healing process. Consider an intact long bone, see Figure 2.5.  
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Marrow cavity 

Periosteum Blood vessels 

Cortical bone  

Symmetry line 

 
Figure 2.5: Schematic of a section through an intact long bone. 

 
The fracture healing process can be divided into four stages; inflammation, callus 
differentiation, ossification and remodeling (see Figure 2.6). Immediately after the bone 
fracture, when blood quickly fills the fracture gap space, an inflammatory reaction starts. 
A connective tissue matrix consisting of fibrin is created by platelets and thrombotic 
factors. White blood cells migrate to the fracture site and promote the formation of a 
matrix, necessary for the migration of mesenchymal cells, which originate from 
surrounding tissues. These cells replace the fibrin matrix by a new connective tissue 
matrix and form the initial callus [6].  
 
In the second stage of fracture healing, bone and cartilage is formed in distinct regions of 
the callus. Along the bone, within the first 24 hours, mesenchymal cells differentiate into 
osteoblasts which begin to create intramembranous woven bone. In the interior of the 
initial callus and adjacent to the fracture, at approximately day 7, mesenchymal cell 
differentiate into chondrocytes which create cartilage. As healing progresses the 
intramembranous ossification front advances towards the center of the callus until 10-12 
days of healing and the chondrous callus grows in size.  
 
Now the third healing stage of the soft tissue starts. Endochondral ossification continues 
until all cartilage has been replaced by bone and an entirely bony bridge closes the 
fracture gap [6]. Once the gap has ossified and the fracture is stabile, the fourth stage of 
repair begins lasting for several years. It ends with the restoration of the original form of 
the bone 
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a) b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) 
Endochondral ossification 

d) 

Chondrous tissue 
Intramembranous 
osseous tissue Haematoma 

Initial callus 
Fracture gap 

 
Figure 2.6: The fracture healing stages of an intact long bone:  

a) the first stage, inflammation ; b) the second stage, differentiation of callus;  
c) the third stage, ossification; d) the fourth stage, remodeling.  
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Chapter 3 

Theory 
 
The hypothesis proposed by Carter et al [7] uses two stress invariants: octahedral shear 
stress and hydrostatic stress. In this chapter the octahedral shear stress and hydrostatic 
stress are introduced. 
 
In a principal stress direction, the shear stresses are equal to zero. Further, the principal 
stress directions are always orthogonal. A plane with a normal that makes equal angels to 
the three principal stress directions is defined as an octahedral plane [8], see Figure 3.1. 
The three principal stress directions are here denoted by 1, 2 and 3. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1: The octahedral plane. 

 
The unit vector to the octahedral plane in Figure 3.1 is given by  
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If a coordinate system collinear with the principal stress directions is chosen the stress 
tensor takes the form 
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( )3.3

( )4.3

( )5.3

( )6.3

( )7.3

Consider a surface with the outer normal unit vector n . The traction vector  acting on 
the surface is defined as 

t

 σnt =
 
The traction vector can always be resolved into one component parallel to n  and one 
component perpendicular to n . The component parallel to  is called the normal stress in 
direction  and denoted by

n
n nσ . From Equation 3.3 it follows that 

 
  σnntn TT

n ==σ
 
The component of t perpendicular to n  is called the shear stress and is defined as 
 

      σnmtm TT
n ==τ

 
where the unit vector is perpendicular to n  and located in the plane ABCD, illustrated 
in Figure 3.2.  

m

 
Figure 3.2: The normal stress nσ  and shear stress nτ . 

 
With Equations 3.1 and 3.2 it then follows that the normal stress and tensorial shear stress 
on the octahedral plane are given by 

  
201 3

2;
3
1 JIo == τσ 

 
where oσ  is called the octahedral normal stress or hydrostatic stress and oτ  is called the 
octahedral shear stress.  and  are the stress invariants. In index notation they read as 1I 2J
  

  

ijij

ii

ssJ

I

2
1

2

1

=

= σ
 
 
 
where ijσ  is the stress tensor and  is the deviatoric stress tensor given by ijs
 

 
ijkkijijs δσσ

3
1

−= ( )8.3 
 
Note that an invariant always takes the same value irrespective of the coordinate system. 
For further information the reader is referred to [8]. 
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Chapter 4 

The bone chamber experiment 
 
Tägil et al [2] made an experimental study of the mechanical control of tissue 
differentiation in vivo at the Biomechanical Laboratory at Lund University Hospital. To 
perform the study a bone chamber was designed and implanted in the tibia of a group of 
rats. The bone chamber consists of two threaded titanium half cylinders held together by 
a cap. The interior of the chamber has a diameter of 2 mm, and a length of 7 mm. At the 
bottom of the chamber there are two bone in-growth openings where tissue can grow into 
the chamber, which is empty from the beginning, see Figure 4.2a. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.1: The bone chamber. 

 
The loading device consists of a 1.8-mm-diameter piston and a spring, see Figure 4.2b. 
When a force (F) is applied on the top, the piston (P) protrudes into the chamber, and the 
tissue (C) within the chamber is mechanical loaded. The piston returns to its original 
position by means of the spring (S) when loading is interrupted, leading to no further 
mechanical stimuli acting on the tissue.  
 
One end of the implant was screwed into the bone, the rat tibia. The chamber was then 
unloaded for 3 weeks, allowing tissue to grow into the empty chamber through the two 
in-growth openings, see Figure 4.2a. The tissue within the chamber contained three 
different zones. At the bottom there was a zone with cancellous bone, with a marrow 
cavity. Higher up there was more immature woven bone. Above this frontier there was a 
zone of fibrous tissue (soft tissue). Subsequently load was applied by hand on the top of 
the chamber, during 3 seconds followed by an unloaded interval of another 3 seconds. 
This 6-second-cycle was repeated 20 times, twice a day. 
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 b) a) 
 

 
Figure 4.2: Sketches of the bone chamber: 

a) Arrows point at in-growth openings. b) The loading device. 
 
The loading was estimated to produce a compressive hydrostatic stress of 2 MPa. After 7 
weeks of loading, the chambers, which all contained newly formed bone, were harvested. 
Cartilage was then found next to the piston.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 
 
Figure 4.3: Tissue specimen from one of the bone chambers after 7 weeks of loading. 
 

a) A layer of cartilage has formed on the top next to the loading piston. Beneath the 
cartilage layer there is a bone plate followed by a marrow cavity at the bottom. 

b) Detail of induced cartilage, where the cartilage cells look like rolled oats. 
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Chapter 5 

Methods to describe the correlation between 
loading and tissue differentiation 
 
To simulate the experiment described in Chapter 4, finite element analyzes were 
performed with the two models described in Chapter 6. The two hypotheses and the fuzzy 
logic model presented in this chapter were used to decide whether cartilage will form due 
to the mechanical loading situation or not.  

5.1 Hypothesis by Carter 
 
Carter et al [7] studied the correlations between mechanical stress history and tissue 
differentiation in initial fracture healing. A finite element analysis was performed with 
two-dimensional models of a healing osteotomy in a long bone. In the study it was 
suggested that high compressive hydrostatic stresses encourage the transformation from 
connective tissue into cartilage. An osteogenic index I was introduced, reflecting the 
tendency for ossification. A low value of the osteogenic index reflects the prediction of 
cartilage and a high value indicates formation of bone or fibrous tissue. The osteogenic 
index is given by  
 

  ( )∑
=

+=
c

i
iii kDSnI

1

( )1.5

( )2.5

 
 
where the subscript  indicates a specific loading case, i =in number of loading cycles, 

=iS cyclic octahedral shear stress, =iD  cyclic hydrostatic (dilatational) stress, and =k  
empirical constant to be determined. With 1=c  and 11 =n , Equation 5.1 is reformulated 
into 
 

   kDSI +=
 
The shear octahedral stress S, and the dilatational or hydrostatic stress D, are given by 
 

  ( ) ( ) ( )

( )321

2
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2
32

2
21

3
1
3
1

σσσ

σσσσσσ

++⎟
⎠
⎞

⎜
⎝
⎛=

−+−+−⎟
⎠
⎞

⎜
⎝
⎛=

D

S 
 ( )3.5
 
 
 
where 1σ , 2σ  and 3σ  are the peak principal stresses.  
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A schematic view of the hypothesis is presented in Figure 5.1. The hypothesis has been 
plotted in the SD-plane i.e. Equation 5.2 is rewritten on the form 

 14

( )4.5
 

  kDIS −=
 
If there is poor vascularity within the tissue there are three different regions represented 
in the SD-plane; cartilage, bone and fibrous tissue, see Figure 5.1a. With good vascularity 
there will only be two regions, i.e. there is no region of bone represented in the SD-plane, 
see Figure 5.1b. The vascularity of the tissue inside the bone chamber is supposed to be 
in somewhere between poor and bad.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5.1: Carters hypothesis: a) Good vascularity; b) Poor vascularity.  

Cartilage 

0 
 

S 
 

a) D 
 

0 
 

S 
 

D 
 b) 

Bone 

Fibrous Tissue 

The arrow in (a) points at the straight line, which divides  
the regions of cartilage and bone. 

 
The slope and position of the two straight lines, which can be seen in Figure 5.1a, have to 
be identified before any conclusion can be drawn, whether cartilage, bone or fibrous 
tissue will be formed. In this thesis fibrous tissue is not considered and consequently the 
straight line which divides the region of bone from the region of fibrous tissue has not 
been identified in this thesis. The slope of the straight line corresponds to the negative 
empirical constant in Equation 5.4. The slope and position of the line gives the reference 
value for the osteogenic index. The reference value serves as a threshold value for 
determining whether bone or cartilage will form. An osteogenic index which exceeds the 
reference value leads to prediction of bone, whereas an osteogenic index below the 
reference value predicts cartilage. If the slope of the line and the value of the dilatational 
stress where the line intersects with the D-axis are known, the reference value for the 
osteogenic index can be calculated with Equation 5.2.  
 
It seems that there is an analogy between the initial yield criteria proposed by Drucker 
and Prager [8] and the hypotheses of tissue differentiation proposed by Carter et al [7], 
see Appendix B.  



5.2 Hypothesis by Claes 
 
The hypothesis proposed by Claes et al [9], related the local tissue formation in a fracture 
gap to the local stress and strain. In their study the results from a finite element model 
were compared with histological findings from an animal fracture model. They suggested 
that the differentiation of the callus tissue is determined by the size of the strains and 
hydrostatic pressure along existing calcified surfaces in the fracture callus. For 
compressive pressures larger than about -0.15 MPa and strains smaller than ±15% the 
hypothesis predict endochondral ossification, in which bone is preceded by cartilage. 
Intramembranous ossification is predicted for strains smaller than approximately ±5% 
and hydrostatic pressure smaller than ±15 MPa. Strains and stresses which do not fulfill 
the conditions stated above leads to connective tissue or fibrous cartilage. A graphical 
interpretation of the hypothesis is shown in Figure 5.2. In the regions denoted by A and 
B, bone respectively cartilage is predicted. Connective tissue/fibrocartilage is indicated in 
the region termed C. 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Strain [%]

Tensile 

Hydrostatic  
Pressure [MPa]

 Strain [%]

Compressive 

Hydrostatic  
Pressure [MPa] 

A 

    -0.15 

C 

   -15 

 -5 

15 

  5 B 

  0.15 

 
 
 

A   : Intramembranous ossification 
B   : Endochondral ossification 
C  : Connective tissue / Fibrocartilage 

 
Figure 5.2: Schematic view of Claes hypothesis. 
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5.3 Fuzzy logic model by Hofer 
 
Hofer et al [10] made a biomechanical model, which describe the tissue transformation 
during fracture healing of a sheep metatarsal. The model uses fuzzy logic and a feed back 
signal to predict the tissue repair. Three types of tissue are distinguished in the model; 
bone, cartilage and fibrous connective tissue. The soft tissue that initial was found in the 
bone chamber experiment described in Chapter 4 is a type of fibrous connective tissue. 
For simplification fibrous connective tissue will be termed as connective tissue in this 
chapter. In Figure 5.3 the feedback regulation system is presented, which shows the 
procedure for the calculations. The system can be divided into four parts; “identification 
of the tissue composition”, “calculation of stimuli”, “the fuzzy controller” and 
“calculation of a new tissue composition”.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

External load 

Calculation of a new 
tissue composition 
with Eq. 5.13 c(x)n u(x)n 

F

Calc. En,νn
with Eq 5.7 

Calc. 
ost.factor 
with Eq. 5.6 

Finite element 
analysis: 
calc. u(x)n 
with Eq. 5.8 
 

Calculation of stimuli 

En,νnIdentification of   
the tissue composition 

{µbone, µcartilage, µconnTissue } 
for all elements n =1,..,nmax

Fuzzy 
rules 

The fuzzy controller 

Fuzzy- 
fication

Defuzzy- 
fication 

 
Figure 5.3: The feedback regulation system of the fuzzy logic model. 
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5.3.1 Identification of the tissue composition 
 
The tissue composition of the element is defined by the degree of membership for bone 
(µBone), cartilage (µCartilage) and connective tissue (µConnTissue), which varies between 0 and 
1 continuously. For example, if one element consists of 50 % bone, 25% cartilage and 
25% connective tissue the degrees of membership read as 
 

{µBone = 0.5, µCartilage = 0.25, µConnTissue = 0.25}  
 
For every elements the following balance equation must be satisfied 
 

( )5.5

( )6.5

µBone + µCartilage + µConnTissue = 1 
 
This is under the assumption that each element is completely composed by the three 
different types of tissue discussed previously. In the first loop the tissue composition is 
given by the initial state. In the next following loops the tissue composition is obtained 
through the last part of the loop, which is described in Chapter 5.3.4. 

5.3.2 Calculation of stimuli 
 
The osteogenic factor  is given as the absolute value of the derivative of the degree of 
membership. 

( )xc

 

( ) ( )
x

xxc Bone

∂
∂

=
µ 

 
 
 
The osteogenic factor is calculated for every element in the finite element model. Note 
that this definition of the osteogenic factor is different from the one introduced by Carter 
et al [7]. All the tissues are assumed to be isotropic and linear elastic. For the 
determination of the Young’s modulus E and the Poisson’s ratio ν a mixture rule is 
applied. It uses a weighted sum of the material properties of the three types of tissue.  
 

  E

ConnTissueConnTissueCartilageCartilageBoneBone

ConnTissueConnTissueCartilageCartilageBoneBone EEE

µνµνµνν

µµµ

⋅+⋅+⋅=

⋅+⋅+⋅=
( )7.5 

 
 
The material properties used in the simulation are presented in Table 5.1 below. 
 

Tissue Connective tissue Cartilage Bone 
Young’s modulus (MPa) 6a 40b 4000b

Poisson´s rate 0.47a 0.35b 0.3b

                         a[7] 
                         b[10] 

Table 5.1: Material properties for the tissues. 
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The mechanical stimulus can be calculated if the material properties and the external load 
are known. The strain energy density ( )xu  is used as an indicator for the mechanical 
stimulus and is given by 
 

  ( ) ( ) ( )

( ) [ ]
( ) [ ]Tzxyzxyzyx

T
zxyzxyzyx

T

x

x

xxxu

τττσσσσ

γγγεεεε

σε

,,,,,

,,,,,
2
1

=

=

⋅= 
 ( )8.5 
 
 

5.3.3 The Fuzzy controller 
 
If the stimulus u  and c  are known, the tissue reaction can be model. For that 
purpose a fuzzy controller has been designed. It contains three parts; fuzzyfication, fuzzy 
rules and defuzzyfication.  

( )x ( )x

5.3.3.1 Fuzzyfication 
 
In order to include the representation of both stimuli ( )xu  and ( )xc  in the concept of 
fuzzy logic, they must be assigned to fuzzy sets. The mechanical stimulus ( )xu  is 
classified into four fuzzy sets; low, physiological, increased and pathologic. For the 
osteogenic factor  the fuzzy sets: poor and high are distinguished. The degrees of 
membership of these fuzzy sets varies between 0 and 1 continuously, and are defined by 
membership functions ( see [10] ) for all values of 

( )xc

( )xu  and ( )xc . Subsequently the fuzzy 
formulation for the mechanical stimulus ( )xu  is 

 
( )9.5{µLow, µPhysiological, µIncreased, µPathologic} 

 
and the fuzzy formulation for the osteogenic factor ( )xc  is 

 
( )10.5{µPoor, µHigh} 

 

5.3.3.2 The fuzzy rules 
 
Hofer et al [10] derived a set of fuzzy rules, based on the obtained fuzzy formulations of 
the stimuli, the tissue composition and medical knowledge. These rules describe tissue 
transformation, such as intramembranous or endochondral ossification, atrophy or 
destruction, see Figure 5.4.  
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Figure 5.4: Tissue transformation processes. 

 
 
There are two processes of ossification: intramembranous ossification and endochondral 
ossification. Furthermore there are two ways of tissue resorption: atrophy and destruction 
of tissue. Intramembranous ossification needs a high osteogenic factor and a 
physiological or increased mechanical stimulus. A low mechanical stimulus leads to 
atrophy of bone or cartilage and a high mechanical stimulus results in destruction of bone 
or cartilage. The fuzzy rules, R1-R9 are summarized in Table 5.1.  
 
 
 

R1 IF µConnTissue AND µHigh AND µPhysiologic THEN
intramembranous ossification 

R2 IF µConnTissue AND µHigh AND µIncreased THEN 
intramembranous ossification 

R3 IF µCartilage AND µHigh AND µPhysiologic THEN 
endochondral ossification 

R4 IF µCartilage AND µHigh AND µIncreased THEN 
endochondral ossification 

R5 IF µConnTissue AND µPoor AND µIncreased THEN 
chondrogenesis 

R6 IF µBone AND µLow THEN 
atrophy of bone 

R7 IF µCartilage AND µLow THEN 
atrophy of cartilage 

R8 IF µBone AND µPathologic THEN 
destruction of bone 

R9 IF µCartilage AND µPathologic THEN 
destruction of cartilage 

 
Table 5.1: The fuzzy rules. 
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The structure of the fuzzy rules is 
 

IF premise THEN conclusion 
 

The premise has the notation µa AND µb is replaced by  
 

( )11.5 baRn
p µµ=

 
 
Where  is the degree of membership for the premises corresponding to rule R

nRp n  
and . 9...1=n

5.3.3.3 Defuzzyfication 
 
To achieve the effective tissue transformation rates d/dt(µBone), d/dt(µCartilage) and 
d/dt(µConnTissue), the rates of Table 5.2 (see [10]) are weighted by the degree of 
membership for the corresponding premise, and summed up over the whole set of rules. 
The effective tissue transformation rates d/dt(µBone), d/dt(µCartilage) and d/dt(µConnTissue) are 
then given by 
 

  
nRn Rate_Rp ⋅=tdt

d µ ( )12.5 
 
where the subscript t  indicates the tissue type, i.e. bone, cartilage or connective tissue, 
pRn is the degree of membership for the premises corresponding to rule Rn given by 
Equation 5.11, and Rate_Rn is the tissue transformation rate for rule Rn, which can be 
found in Table 5.2. 
 
 
 

Fuzzy rule, Rn From (-) To (+) Rate_Rn (±) (%/day) 
R1 and R2 Connective tissue Bone 1 
R3 and R4 Cartilage Bone 2 

R5 Connective tissue Cartilage 5 
R6 Bone Connective tissue 4 
R7 Cartilage Connective tissue 8 
R8 Bone Connective tissue 10 
R9 Cartilage Connective tissue 20 

 
Table 5.2: Tissue transformation rates of the fuzzy rules. 
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5.3.4 Calculation of a new tissue composition 
 
If the tissue composition in step k is known, the tissue composition in step (k+1) can be 
calculated as  
 

 ( ) ( ) ( )k
t

k
t

k
t dt

dt µµµ ∆+=+1 ( )13.5 
 
where the subscript t  indicates the tissue type, i.e. bone, cartilage or connective tissue, 

 is the time step and t∆ tdt
d µ  is the effective tissue transformation rate given  

by Equation 5.12. 
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Chapter 6 

Models 
 
At 3 weeks after implantation of the bone chamber in the rat tibia, the tissue within the 
chamber contains four parts; soft tissue, bone plate, bone and marrow. After studying 
several samples, a simplified model of the content in a typical chamber was constructed, 
see Figure 6.1.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

0.5 mm 

1.5 mm 

Marrow 

Bone 

Bone Plate 

Soft Tissue 

2 mm 

0.5 mm 

 
Figure 6.1: The simplified model. 

 
One three-dimensional and one two-dimensional finite element model were implemented 
in Matlab based on the geometry illustrated in Figure 6.1. The three-dimensional model 
was used when the hypotheses proposed by Carter et al [7] and Claes et al [9] were 
tested. To test the fuzzy logic model proposed by Hofer et al [10] the three-dimensional 
model was redefined into a two-dimensional, see Figure 6.2. The two-dimensional model 
contains two parts; soft tissue and bone plate. The marrow with surrounding bone is 
replaced with boundary conditions in the two-dimensional finite element model.  
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1 mm 

Bone Plate 

Soft Tissue 

 
 

0.5 mm 

0.5 mm 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2: The two-dimensional axi-symmetrical geometry. 
 

6.1 The three-dimensional finite element model 
 
Because of the in-growth openings (see Figure 4.2a) there was only one plane of 
symmetry. To reduce computational cost the only plane of symmetry was used, i.e. the 
finite element model had a shape of a half cylinder instead of a cylinder. The finite 
element model consisted of 192 eight-node isoparametric solid elements. Each element 
contained eight gauss points i.e. two integration points were used when the finite element 
equations were evaluated. All four types of tissue (see Figure 6.1) were assumed to be 
linear elastic and isotropic materials. The material properties for the initial state are 
presented in Table 6.1 below. 
 
 

Tissue Soft Tissue Bone Plate Bone Marrow 
Young’s modulus (MPa) 6a 3000c 5000c 2b

Poisson’s ratio 0.47a 0.3c 0.3c 0.25b

                 a[7] 
                 b[11] 
                 c[Experimental results from the biomechanical laboratory at Lund University Hospital] 

 
Table 6.1: Material properties for the four different tissues. 

 
The finite element mesh of the model is shown in Figure 6.3. The nodes corresponding to 
the in-growth opening are marked with circles. 
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Figure 6.3: Three-dimensional finite element mesh; element nodes marked with circles 

corresponds to the in-growth opening. 

6.1.1 Loading and boundary conditions 
 
At the top surface of the half cylinder a constant pressure of 2 MPa was applied. Friction 
forces acts on the outer convex surface of the cylinder due to the pressure. The loading 
situation is illustrated in Figure 6.4. 
 
 
 

2 mm 

2 MPa 

1.8 mm 

f 2.5 mm 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4: The loading situation for the three-dimensional finite element model. 
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The friction forces were not known from the experiment described in Chapter 4. The 
following approximate method was used to estimate the friction forces and to avoid the 
contact problem. The reaction forces acting on the nodes belonging to the outer convex 
surface (besides from the nodes belonging to the in-growth opening) were calculated 
when the pressure was applied on the top. From the reaction forces the normal forces 
were estimated. If the reaction force was a tensile force the corresponding normal force 
was set to zero. Subsequently the friction forces f were calculated as 
 

( )1.6   Nf µ=
 
where µ  is the friction coefficient between the walls of the chamber and the tissue, and 
N  is the normal force acting on the tissue. The friction coefficients are presented in Table 
6.2 below. 
 
 

Tissue Bone Soft Tissue
Friction coefficient (µ) 0.5a 0.15b

               a[12] 
                                            b[13] 

 
Table 6.2: Friction coefficients for bone and soft tissue. 

 
The elements that belonged to the in-growth opening (see Figure 6.3) were not loaded. In 
the experiment the load of 2 MPa was applied by hand. This means that we have a human 
source of error. There is also an uncertainty for the values of the friction coefficients 
between the titanium wall and the soft tissue respectively the bone. Moreover, the 
material properties for soft tissue and bone are shifting widely in the literature within the 
biomechanical field. All these mentioned sources of errors may in some sense justify my 
decision to use an approximate method for estimating the friction forces due to the 
pressure. 
 
The walls and the bottom of the chamber are assumed to be rigid. With the coordinate 
system shown in Figure 6.3 the boundary conditions for the displacements were as 
follows. The displacement degrees of freedom in the x-direction (dof-x) and y-direction 
(dof-y) of the nodes belonging to the outer convex surface of the cylinder were set to zero 
except for the nodes that belonged to the in-growth opening. Because of symmetry dof-y 
of the nodes on the surface coinciding with the symmetry plane were set to zero. Further, 
dof-z of the nodes situated at the bottom of the cylinder, were also zero. 
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6.2 The two-dimensional finite element model 
 
A two-dimensional finite element model was implemented in Matlab based on the 
geometry defined in Figure 6.2. The finite element model consisted of 100 four-node 
isoparametric solid elements with axi-symmetry. The soft tissue and the bone plate were 
assumed to be linear elastic and isotropic materials. The initial material properties are 
presented in Table 6.3. 
 
 

Tissue Soft Tissue Bone Plate 
Young’s modulus (MPa) 6a 4000b

Poisson’s rate 0.47a 0.3b

                                     a[7] 
                       b[10] 

 
Table 6.3: Material properties for the initial state. 

 
 
The finite element mesh of the two-dimensional axi-symmetrical model is shown in 
Figure 6.5. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 6.5: The two-dimensional finite element mesh. 
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6.2.1 Loading and boundary conditions 
 
A pressure of 2 MPa is applied on the top of the model. Due to the pressure friction 
forces acts on the contact surface between the walls of the chamber and the tissue, see 
Figure 6.6. The friction forces f, were calculated with the method introduced in Chapter 
6.1.1. In the fuzzy logic model the tissue formation is simulated during time. This means 
that it is possible that the material properties of the elements on the side surface where the 
friction forces are acting changes during time. To simplify the calculations the material 
properties on the side surface where the friction forces are acting were assumed to be 
unchanged, i.e. the friction coefficient for soft tissue and bone are used and the friction 
coefficient for cartilage is not introduced. The loading situation and the boundary 
conditions for the two-dimensional model are presented in Figure 6.6. 
 
 
 

2 MPa 

1 mm 

0.9 mm 

 

z 

x 

 
 
 
 
 

1 mm 

 
 
 
 

f  
 
 
 
 
 

 
 

 
Figure 6.6: The loading situation and the boundary conditions  

for the two-dimensional axi-symmetrical model. 
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Chapter 7 

Results  
 
In this chapter the results from the finite element analyses, with the methods and models 
described in chapter 5 and 6, are presented.  

7.1 Carters hypothesis 
 
A finite element analysis was performed with the three-dimensional model presented in 
Chapter 6.1. The slope and position of the straight line in Figure 5.1a, which divides the 
region of bone from the region of cartilage, was first identified. According to the 
experiment, cartilage was found in the chamber beneath the piston, after 7 weeks of 
loading. The region, where cartilage was found in the experiment, corresponds to the top 
of the finite element model. The octahedral shear stress and dilatational stress were 
calculated for the gauss points in each of the elements within the intervals 

 and , i.e. the elements belonging to the bone plate 
respectively the soft tissue on the top of the model, see Figure 6.1. The octahedral shear 
stresses were then plotted versus the dilatational stresses, see Figure 7.1 below. 

mm1.8z1.5 ≤≤ mm2.5z2.2 ≤≤

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

         Gauss points situated within the interval: 1.5 ≤ z ≤ 1.8 mm. 
 
         Gauss points situated within the interval: 2.2 ≤ z ≤ 2.5 mm. 

 
Figure 7.1: Octahedral and dilatational stresses 

within the intervals; mm1.8z1.5 ≤≤ and mm2.5z2.2 ≤≤ . 
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The squares in Figure 7.1 correspond to gauss points initially belonging to the bone plate. 
The triangles correspond to the gauss points on the top. It appeared that the values of the 
gauss points on the top were gathered together in one region, and the values of the gauss 
points corresponding to the bone plate, in another. Subsequently, the slope and position 
of a straight line which separate the both regions from each other was approximately 
estimated, see Figure 7.1. The slope of the line was determined to -0.8 and the value of 
the dilatational stress where the line intersects with the D-axis was determined to -0.5 
MPa. The reference value of the osteogenic index was then calculated to be -0.4 MPa 
using Equation 5.2, where , 8.0=k MPa5.0−=D  and 0=S .  
 
The reference value serves as a threshold value for determining whether bone or cartilage 
will form. If the osteogenic index fulfills the condition MPa4.0−<I , cartilage is 
predicted , whereas if  bone will form.  MPa4.0−>I
 
The osteogenic index I was then calculated for the elements within the interval 

. Plots of the osteogenic index are presented in Figure 7.2 and 7.3. The 
area marked with dots ( ) corresponds to the marrow with surrounding 
bone. Since marrow is not represented in Carters hypothesis, the osteogenic index I has 
not been calculated in this area. 

mm2.5z1.5 ≤≤
mm5.10 <≤ z

 
 

 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

[Pa] 

Bone 

Reference value  
≈ - 0.4 MPa 

Cartilage 

Figure 7.2: Plot of the osteogenic index in the symmetry plane,  
i.e. the y-coordinates are zero. 

 
 

 
 

 30



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[Pa] 

Bone 

Reference value  
≈ - 0.4 MPa 

Cartilage 

Figure 7.3: Plot of the osteogenic index in the yz-plane. 
 
A region of cartilage is predicted on the top the model i.e. mm2.5z2.2 ≤≤ , followed by 
a region of bone; . In the middle of the identified region of bone 
( ) there are some gauss points which are predicted to be cartilage. Above 
these gauss points there is a layer of bone. This phenomenon is not clear from the plots of 
the osteogenic index. A more comprehensive illustration of this phenomenon is achieved 
with a plot in the SD-plane, see Figure 7.4 below. 

mm2.2z1.5 <≤
mm8.1≈z

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

         Gauss points situated within the interval: 1.5 ≤ z < 2.2 mm. 
           
          Gauss points situated within the interval: 2.2 ≤ z ≤ 2.5 mm. 
 
  X    Gauss points situated at: z ≈ 1.8 mm.

Figure 7.4: Values of the octahedral and dilatational stress for the gauss points within the 
interval; mm2.5z1.5 ≤≤ . 
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The x-marks in Figure 7.4 represent the gauss points which were detected in the middle 
of the identified bone region but were predicted to be cartilage i.e. the gauss points 
situated at . The squares represent the gauss points of the identified bone 
region ( ), whereas the triangles represent the gauss points of the 
identified cartilage region on the top (

mm8.1≈z
mm2.2z1.5 <≤

mm2.5z2.2 ≤≤ ). 

7.2 Claes hypothesis  
 
A finite element analysis was performed with the three-dimensional model described in 
Chapter 6.1. The strain in the loading direction (see Figure 6.4) and dilatational stresses 
(hydrostatic pressure) were calculated for the gauss points in each element within the 
interval and plotted versus each other. The results can be seen in 
Figures 7.5-7.7. In the regions denoted by A and B, bone respectively cartilage is 
predicted. Connective tissue/fibrocartilage is indicated in the region termed C. This is in 
agreement with the graphical interpretation of Claes hypothesis presented in Chapter 5.  

mm2.5z1.5 ≤≤

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 

         Gauss points situated within the interval: 1.5 ≤ z ≤ 1.8 mm. 
 
         Gauss points situated at: z ≈ 1.5 mm. 
 
  X    Gauss points situated at: z ≈ 1.8 mm. 

C 

B 

A 

 
 

 
Figure 7.5: Strain and hydrostatic pressure of the gauss points initially belonging to the 

bone plate; mm1.8z1.5 ≤≤ . 
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         Gauss points situated at: z ≈ 1.8 mm. 
 
  X    Gauss points situated at: z ≈ 2.2 mm. 

B 

A 

Figure 7.6: Strain and hydrostatic pressure of the gauss points initially belonging to soft 
tissue (connective tissue); mm2.2z1.8 ≤< . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

         Gauss points situated within the interval: 2.2 < z  ≤  2.5 mm. 
 
  X    Gauss points situated at: z ≈ 2.2 mm. 

A 

B 

 
Figure 7.7: Strain and hydrostatic pressure of the gauss points initially belonging to soft 

tissue (connective tissue); mm2.52.2 ≤< z . 
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The majority of the gauss points that initially belonged to the bone plate are predicted to 
be cartilage or connective tissue/fibrocartilage, see Figure 7.5. Only two of the gauss 
points are predicted to be bone. Above this identified region of cartilage, a layer of bone 
is indicated at . On the top of the model, i.e. mm2.2≈z mm2.5z2.2 ≤≤ , an additional 
region of cartilage is predicted.  

7.3 Fuzzy logic model by Hofer 
 
To simulate the course of events during the 7 weeks, when the tissue inside the bone 
chamber was loaded, a model proposed by Hofer et al [10] was used. The calculations 
were executed with the procedure described in Chapter 5.3 and the finite element model 
described in Chapter 6.2. The results from the simulation after 3 and 7 weeks of loading 
are presented in Figure 7.8. At the initial state there is only soft tissue (connective tissue) 
and bone, i.e. the degree of membership for cartilage is equal to zero for each element, 
see Figure 7.8a.  
 
After 3 weeks of loading, a small amount of soft tissue has been transformed into 
cartilage in the middle of the region, which initial consisted of connective tissue, see 
Figure 7.8b. Furthermore, connective tissue is found in elements situated at the centre of 
the region, which initially represented the bone plate. Some of the elements has almost 
completely transformed from bone to connective tissue i.e. the degree of membership for 
connective tissue is nearly 1, whereas some of the elements only consists of a very small 
amount of connective tissue. 
 
After 7 weeks there is an indication of cartilage in the middle, on the top of the model. 
However none of the elements, which contain cartilage, have a degree of membership for 
cartilage which is equally to 1. The region of connective tissue that was detected after 3 
weeks is further extended and there are some elements which now completely have been 
transformed into connective tissue.  
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 Figure 7.8: The degree of membership µ for cartilage, 

bone and connective tissue: 
 

a) At the initial state   
b) After 3 weeks of loading 
c) After 7 weeks of loading 
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In Figure 7.9 the change of degree of membership for cartilage and connective tissue 
(soft tissue) for element number 21, during 7 weeks of loading with a pressure of 2 MPa, 
can be seen. This element is situated in the middle on the top of the model. As a 
consequence of the applied load, the degree of membership for cartilage is increasing 
with time, whereas the degree of membership for connective tissue is decreasing. The 
degree of membership for bone of the element is equal to zero at the initial state and does 
not change during the time of loading. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time in weeks 

µ 

Connective tissue 

Cartilage 

Figure 7.9: The change of degree of membership for cartilage and connective tissue for 
element number 21 during 7 weeks of loading with a pressure of 2 MPa. 

 
 
 
 
 
 
 
 
 
 
 
 

 36



Chapter 8 

Discussion and future work 
 
The result from the finite element analysis with Carters hypothesis is similar to the result 
from the experiment, in which cartilage was found on the top after loading followed by a 
region of bone. The result from the analysis with Claes hypothesis does not correlate so 
well with the experiment. After loading, cartilage is indicated on the top of the model and 
followed by a region of bone. This is in analogy with the results from the experiment. 
However there is a layer of cartilage predicted beneath the region of bone, which not has 
been observed in the experiment.  
 
According to the analysis with Hofers model, cartilage will form in the middle, on the top 
of the model after 7 weeks of loading. However the predicted area of cartilage is very 
small in comparison with the results from the finite element analyses when Carter and 
Claes hypothesis were used. Further, a part of the bone plate has been transformed into 
connective tissue. This means that the elements belonging to this part of the bone plate 
has undergone a process of atrophy or destruction, see Figure 5.4. A low mechanical 
stimulus leads to atrophy of bone and a high mechanical stimulus results in destruction of 
bone. After studying some of the elements belonging to the region it turned out that there 
are some elements that undergo the process of atrophy and others that experience the 
process of destruction. Consequently the region experiences both high and low 
mechanical stimuli.  
 
The material properties of the tissues are shifting widely in the literature within the 
biomechanical field. This means that the results from the finite element analyses must be 
handled with care. In a future experiment with the bone chamber different values of 
applied load at the top are suggested, to get a better verification of the results from the 
finite element analyses. Further, the bone chamber should be harvested at several 
different points of time, which is needed to get more detailed information of the course of 
events during the time of loading. Finite element analyses have been performed with the 
model proposed by Hofer with different values of the pressure. According to these 
analyses a value below 2 MPa is recommended in future experiments. 
  
It shall be emphasized that the fuzzy rules are based on the study made by Hofer et al 
[10]. It is very likely that these set of rules are not ideal for the study Tägil et al [2] made. 
One specific improvement that could be made in Hofers model is therefore a new set of 
fuzzy rules. Further, in future models it is suggested that the effect of the fluid flow 
acting within the tissue is considered, i.e. poor elastic models are recommended. 
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Appendix A 
Some medical expressions often used in the thesis 
 
 
Apposition: Growth in the thickness of a cell wall by the deposit of successive layers of              
material. 
 
Callus: Tissue which forms round a broken bone as it starts to mend, leading to 
consolidation. 
 
Embryonic: In an early stage of development. 
 
Diaphyseal: Referring to diaphysis. 
Diaphysis: Shaft or long central part of a long bone. 
 
Endosteal: Rreferring to the endosteum. 
Endosteum: Membrane lining the bone marrow cavity inside a long bone. 
 
Fibrin: Protein produced by fibrinogen, which helps make blood coagulates.  
 
Haematoma: Mass of blood under the skin caused by a blow or by the effects of an         
operation. 
Histology: Study of anatomy of tissue cells and minute cellular structure, done using a 
microscope after the cells have been stained. 
 
In vivo: Experiment which takes place on the living body. 
  
Larynx: Organ in the throat which produce sounds. 
 
Medullary: Similar to marrow. 
Metatarsal: One of the five long bones in the foot between the toes and the tarsus. 
 
Osteotomy: Surgical operation to cut a bone, especially to relieve pain in a joint. 
 
Perichondrium: Fibrous connective tissue which covers cartilage. 
Periosteal: Referring to the periosteum. 
Perisosteum: Dense layer of connective tissue around a bone. 
Paltelet: Little blood cell which encourages the coagulation of blood. 
 
Tarsus: The seven small bones of the ankle. 
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Appendix B 
Criterion by Drucker-Prager 
 
In the plasticity theory there are different forms of hypotheses which tell us whether 
plastic deformations (i.e. yielding of the material) or failure occurs. For materials like 
concrete, soils and rocks, a criterion proposed by Drucker and Prager [8] can be used. 
The criterion is given by 
 

   03 12 =−+ βαIJ 1.B
 
 
where α  and β  are material parameters and  and  are stress invariants. In Figure 
B.1 the Drucker-Prager criterion is presented in the meridian plane.  

2J 1I

 
 

23J

1I
β

α
β

 
 
 
 
 
 
 

Figure B.1: The Drucker-Prager criterion illustrated in the meridian plane. 
 
A physical interpretation of the Drucker-Prager criterion is that failure or yielding occurs 
when the octahedral shear stress exceeds a certain value that depends on the octahedral 
normal stress.  
 
The osteogenic index I that was introduced in Carters hypothesis [7] is given by Equation 
5.2. If the octahedral shear and dilatational stress are expressed in terms of stress 
invariants Equation 5.2 read as 
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which also can be written on the form 
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A comparison between Equation B.1 and B.3 shows that there is an analogy between the 
initial yield criteria proposed by Drucker and Prager [8] and the hypotheses of tissue 
differentiation proposed by Carter et al [7].  
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Appendix C 
 
In this appendix the Matlab codes used in the thesis are presented. The geometry files of 
both of the finite element models have been excluded since they are too spares to print. 
For the same reason, the Matlab files calculating the boundary conditions and the total 
loading situation of the three-dimensional model have been excluded. 
 

Matlab Code  
Hypotheses by Carter and Claes 
 
% -------------Main program Carter/Claes part1 -----------------------------------------------------------------% 
 
load C:\kmatris K D 
% --- f1 corresponds to the load vector acting at the top of the model ---- 
load C:\fload1 f1 
load C:\bc bc 
 
% --- Calculation of the displacements a and reaction forces Q --- 
[a,Q]=solveq(K,f1,bc); 
 
The reaction forces Q  the friction forces acting at the outer surface  calculation of f2 --- 
save C:\Qforce Q 
 
% -------------End -----------------------------------------------------------------------------------------------------% 
 
 
% -------------Main program Carter/Claes part2 -----------------------------------------------------------------% 
 
load C:\Geom 
load C:\kmatris K D 
load C:\bc bc 
 
% ---  f2 = the total force vector = f1 + friction forces --- 
load C:\fload_2 f2 
 
a=solveq(K,f2,bc); 
Ed=extract(Edof,a); 
 
% --- One row for each gauss point --- 
Es=zeros(8*nel,6); 
Et=zeros(8*nel,6); 
Etz=[]; 
ep=[2]; 
Dcount=1; 
r=1; 
 
for i=1:nel 

[es,et]=soli8s_mod(Ex(i,:),Ey(i,:),Ez(i,:),ep,D(Dcount:(Dcount+5),:)',Ed(i,:)); 
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     Es(r:r+7,:)=es; 
      Et(r:r+7,:)=et; 
      Etz(i,:)=et(1:8,3)'; 
     r=r+8; 
     Dcount=Dcount+6; 
end 
load C:\tissue_1 
 
[Soct,Doct]=carter_1(Es,nel); 
 
save C:\octstress_1 Soct Doct 
save C:\strain_z Etz 
 
% -------------End ----------------------------------------------------------------------------------------------------% 
 
 
%--------------Calculation of the initial tissue vector ------------------------------------------------------------% 
 
% tissue=[elnum k k k k k k k k my] one value of k for each gauss point  8 k-values 
% k=1,2,3,4 
% 1=Soft tissue (connective tissue) 
% 2=Bone 
% 3=Bone plate 
% 4=Marrow 
% -------------------------------------------------------------------------------------------------------------------------- 
 
tissue=[ ]; 
load C:\Geom    
mybone=0.3;   
mysoft=0.15;   
 
for i=1:(24+4*24) 
    switch i 
        case{1,1+24,1+2*24,1+3*24,1+4*24,9,9+24,9+2*24,9+3*24,9+4*24,21,21+24,21+2*24,21+3*24, 

   21+4*24,22,22+24,22+2*24,22+3*24,22+4*24,23,23+24,23+2*24,23+3*24,23+4*24, 
   24,24+24,24+2*24,24+3*24,24+4*24,16,16+24,16+2*24,16+3*24,16+4*24, 
   8,8+24,8+2*24,8+3*24,8+4*24} 

         
 % --- local gauss point 1,4,5,8 = Bone --- 

         tissue(i,2)=2; 
         tissue(i,5)=2; 
         tissue(i,6)=2; 
         tissue(i,9)=2; 
         

% --- local gauss point 2,3,6,7 = Marrow--- 
         tissue(i,3:4)=4; 
         tissue(i,7:8)=4; 
         tissue(i,1)=i; 
         

 % --- friction coeffecient at the outer surface--- 
         tissue(i,10)=mybone; 
        
        otherwise 
             %----marrow 
             tissue(i,2:9)=4; 
             tissue(i,1)=i; 
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             tissue(i,10)=0; % --- Marrow does not exist at the outer surface--- 
    end 
end 
 
 
for i=(1+5*24):(24+5*24) 
      

 % --- Bone plate--- 
      tissue(i,2:9)=3; 
      tissue(i,1)=i; 
       % ---  friction coeffecient at the outer surface --- 
      tissue(i,10)=mybone; 
end 
 
for i=145:168 
   
    for j=2:9 
          

% ---  local gauss point 1,2,3,4 = bone --- 
         if j==2 
              tissue(i,j)=3; 
         elseif j==3 
              tissue(i,j)=3; 
         elseif j==4 
              tissue(i,j)=3; 
         elseif j==5 
              tissue(i,j)=3; 
         else 
          % --- local gauss point 5,6,7,8 = soft tissue (connective tissue) ---- 
              tissue(i,j)=1; 
               end 
   end 
   
   tissue(i,1)=i; 
   % --- friction coeffecient at the outer surface --- 
   tissue(i,10)=mybone; 
 
end 
    
 for i=169:nel 
             
            % --- Soft tissue (connective tisssue) --- 
            tissue(i,2:9)=1; 
            tissue(i,1)=i; 
            % --- friction coeffecient at the outer surface --- 
            tissue(i,10)=mysoft;  
end 
 
save C:\tissue_1 tissue 
 
% -------------End------------------------------------ -----------------------------------------------------------------% 
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%-----Calculation of the constitutive matrix D and the global stiffness matrix K---- -----------------------% 
 
clear all; 
load C:\Geom 
 
% --- number of gauss points=2 --> 8 gauss points in each element --- 
ep=[2]; K=zeros(ndof);  Ke=zeros(24); 
D=[ ];   De=[ ];  Dgp=[ ]; 
load C:\tissue_1 tissue 
 
%---------------------------------------------------------------------------------------------------------------- 
% tissue=[elnum k k k k k k k k my], one value of k for each gauss point --> 8 k-values 
% k=1,2,3,4 
% 1=soft tissue(connective tissue) 
% 2=bone 
% 3=boneplate 
% 4=marrow 
%----------------------------------------------------------------------------------------------------------------- 
Dcount=1; 
 
for elnum=1:nel 
    r=1; 
    for i=2:9 
        k=tissue(elnum,i); 
        switch k 
            case{1} 
               % --- Constitutive matrix soft tissue (connective tissue) --- 
                E=6e6;  v=0.47;  Dgp=hooke(4,E,v); 
            case{2} 
                % --- Constitutive matrix bone --- 
                E=5000e6;   v=0.3;  Dgp=hooke(4,E,v); 
            case{3} 
                % --- Constitutive matrix bone plate --- 
                E=3000e6;   v=0.3;  Dgp=hooke(4,E,v); 
            case{4} 
                % --- Constitutive matrix marrow --- 
                E=2e6;  v=0.25; Dgp=hooke(4,E,v); 
       end 
 
     De(:,r:r+5)=Dgp;   Dgp=[ ]; 
     r=r+6; 
     % --- De=[Dgp1 Dgp2 Dgp3 Dgp4 Dgp5 Dgp6 Dgp7 Dgp8]---  
     %      where Dgpn=constitutiv matrix of gauss point number n --- 
end 
      D(Dcount:(Dcount+5),:)=De; 
      Dcount=Dcount+6; 
      Ke=soli8e_mod(Ex(elnum,:),Ey(elnum,:),Ez(elnum,:),ep,De'); 
      K=assem(Edof(elnum,:),K,Ke); 
      Ke=zeros(24);  
      De=[ ]; 
end 
 
save C:\kmatris K D 
 
%-----------------End---------------------------------------------------------------------------------------------------% 
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%-------------------Calculation of the load vector f1 on the top--------------------------------------------------% 
 
clear all; 
load C:\Geom 
f1=zeros(ndof,1); 
fe=zeros(24,1); 
 
for i=1:nel 
       switch i 
          % --- elements on the top --- 
         case {2+7*24,3+7*24,4+7*24,5+7*24,6+7*24,7+7*24,10+7*24,11+7*24,12+7*24,13+7*24, 

14+7*24,15+7*24,17+7*24,18+7*24,19+7*24,20+7*24} 
             fe=boundary1(Ex(i,:),Ey(i,:)); 
              
         otherwise 
             fe=zeros(24,1);  
         end 
         
            % --- f1 corresponds to the load applied at the top --- 
            f1=assem_fe(Edof(i,:),f1,fe); 
            fe=zeros(24,1);  
end 
save C:\fload1 f1 
 
 
%--------------End-------------------------------------------------------------------------------------------------------% 
 
 
%--------------Calculation of the boundary integral on the top with gauss integration ----------------------% 
 
function [fe1]=boundary1(ex,ey) 
 
sigmazz=-2e6; %----[Pa]----- 
 
% --- position of the gauss points --- 
eta1=1/(sqrt(3));  
eta2=-1/(sqrt(3)); 
ksi1=eta1; 
ksi2=eta2; 
 
eta=eta1; 
ksi=ksi1; 
a1=0.25*[(-1+eta)*ex(1,5)+(1-eta)*ex(1,6)+(1+eta)*ex(1,7)+(-1-eta)*ex(1,8) 
         (-1+eta)*ey(1,5)+(1-eta)*ey(1,6)+(1+eta)*ey(1,7)+(-1-eta)*ey(1,8) 
         0]; 
b1=0.25*[(-1+ksi)*ex(1,5)+(-1-ksi)*ex(1,6)+(1+ksi)*ex(1,7)+(1-ksi)*ex(1,8) 
         (-1+ksi)*ey(1,5)+(-1-ksi)*ey(1,6)+(1+ksi)*ey(1,7)+(1-ksi)*ey(1,8) 
         0]; 
 
% ---Nmod=[N5 N6 N7 N8]T when dzeta=0 and zeta=1  N1=N2=N3=N4=0  --- 
 
Nmod=[0.25*(1-ksi)*(1-eta); 0.25*(1+ksi)*(1-eta); 0.25*(1+ksi)*(1+eta);0.25*(1-ksi)*(1+eta)]; 
I1=norm(cross(a1,b1))*sigmazz*Nmod; 
 
eta=eta1; 
ksi=ksi2; 
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a1=0.25*[(-1+eta)*ex(1,5)+(1-eta)*ex(1,6)+(1+eta)*ex(1,7)+(-1-eta)*ex(1,8) 
         (-1+eta)*ey(1,5)+(1-eta)*ey(1,6)+(1+eta)*ey(1,7)+(-1-eta)*ey(1,8) 
         0]; 
b1=0.25*[(-1+ksi)*ex(1,5)+(-1-ksi)*ex(1,6)+(1+ksi)*ex(1,7)+(1-ksi)*ex(1,8) 
         (-1+ksi)*ey(1,5)+(-1-ksi)*ey(1,6)+(1+ksi)*ey(1,7)+(1-ksi)*ey(1,8) 
         0]; 
 
Nmod=[0.25*(1-ksi)*(1-eta); 0.25*(1+ksi)*(1-eta); 0.25*(1+ksi)*(1+eta);0.25*(1-ksi)*(1+eta)]; 
I2=norm(cross(a1,b1))*sigmazz*Nmod; 
eta=eta2; 
ksi=ksi1; 
a1=0.25*[(-1+eta)*ex(1,5)+(1-eta)*ex(1,6)+(1+eta)*ex(1,7)+(-1-eta)*ex(1,8) 
         (-1+eta)*ey(1,5)+(1-eta)*ey(1,6)+(1+eta)*ey(1,7)+(-1-eta)*ey(1,8) 
         0]; 
b1=0.25*[(-1+ksi)*ex(1,5)+(-1-ksi)*ex(1,6)+(1+ksi)*ex(1,7)+(1-ksi)*ex(1,8) 
         (-1+ksi)*ey(1,5)+(-1-ksi)*ey(1,6)+(1+ksi)*ey(1,7)+(1-ksi)*ey(1,8) 
         0]; 
 
Nmod=[0.25*(1-ksi)*(1-eta); 0.25*(1+ksi)*(1-eta); 0.25*(1+ksi)*(1+eta);0.25*(1-ksi)*(1+eta)]; 
I3=norm(cross(a1,b1))*sigmazz*Nmod; 
 
eta=eta2; 
ksi=ksi2; 
a1=0.25*[(-1+eta)*ex(1,5)+(1-eta)*ex(1,6)+(1+eta)*ex(1,7)+(-1-eta)*ex(1,8) 
         (-1+eta)*ey(1,5)+(1-eta)*ey(1,6)+(1+eta)*ey(1,7)+(-1-eta)*ey(1,8) 
         0]; 
b1=0.25*[(-1+ksi)*ex(1,5)+(-1-ksi)*ex(1,6)+(1+ksi)*ex(1,7)+(1-ksi)*ex(1,8) 
         (-1+ksi)*ey(1,5)+(-1-ksi)*ey(1,6)+(1+ksi)*ey(1,7)+(1-ksi)*ey(1,8) 
         0]; 
Nmod=[0.25*(1-ksi)*(1-eta); 0.25*(1+ksi)*(1-eta); 0.25*(1+ksi)*(1+eta);0.25*(1-ksi)*(1+eta)]; 
I4=norm(cross(a1,b1))*sigmazz*Nmod; 
         
I=I1+I2+I3+I4; 
 
fe1=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 I(1) 0 0 I(2) 0 0 I(3) 0 0 I(4)]'; 
 
%--------------End------------------------------------------------------------------------------------------------------% 
 
 
%------------Calculation of the octahedral shear stresses Soct, and the dilatational stresses D -----------% 
 
function [Soct,Doct]=carter_1(Es,nel) 
 
E=eye(3); 
 
% --- One row for each element, one column for each gauss point --- 
D=zeros(nel,8);  
es=zeros(8,6); 
r=1; 
 
for i=1:nel 
   
        es=Es(r:r+7,:); 
        
        for j=1:8 
         s11=es(j,1); s22=es(j,2); s33=es(j,3); s12=es(j,4); s13=es(j,5); s23=es(j,6); 
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         sigmatensor=[s11 s12 s13 
                           s12 s22 s23 
                          s13 s23 s33]; 
         
         L=eigen(sigmatensor,E); 
         L=sort(L); 
         % --- L(1)=sigma3 L(2)=sigma2 L(3)=sigma1, sigma1>sigma2>sigma3 --- 
                
         Soct(i,j)=(1/3)*sqrt((L(3)-L(2))^2+(L(2)-L(1))^2+(L(1)-L(3))^2); 
         Doct(i,j)=(1/3)*(L(3)+L(2)+L(1)); 
         
         end 
      r=r+8; 
     es=zeros(8,6); 
end 
 
%-------------End-------------------------------------------------------------------------------------------------------% 
 
 

Fuzzy logic model by Hofer 
 
 
%-------------Main program Hofer-----------------------------------------------------------------------------------% 
 
clear all; 
 
load C:\Geom_fuzzy 
% --- loading the initial state of the degree of membership for bone, cartilage and connective tissue --- 
load C:\initial_my_fuzzy myb myc myt 
 
% --- nstep = number of time steps --- 
nstep=7*7; 
 
for step=1:nstep 
       % ---myb--> osteogenicfactor c [%/mm] --- 
       [c]=osteogenic_factor(Ex,Ey,nel,myb); 
 

K=zeros(ndof); 
 
for i=1:nel 

% ---mixture rule --- 
      E=4000e6*myb(i)+40e6*myc(i)+6e6*myt(i); 
     v=0.3*myb(i)+0.35*myc(i)+0.47*myt(i); 
      De=hooke(2,E,v); 
      Ke=plani4eaxi(Ex(i,:),Ey(i,:),[3 1 1],De); 
      K=assem(Edof(i,:),K,Ke); 

end 
              % --- Loading the force vector f acting at the top of the model and the boundary vector bc --- 

load C:\load_bc_fuzzy f bc 
 

               % --- Calculation of the displacements a and reaction forces Q --- 
[a,Q]=solveq(K,f,bc); 
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% --- Calculating the total force vector f2= f + friction forces acting at the outer surface --- 
f2=load2(Q,ndof,f,Dof); 
[a,Q]=solveq(K,f2,bc); 
ed=extract(Edof,a); 
u=zeros(nel,1); 

 
for q=1:nel 

     % ---mixture rule --- 
       E=4000e6*myb(q)+40e6*myc(q)+6e6*myt(q); 
       v=0.3*myb(q)+0.35*myc(q)+0.47*myt(q); 
       De=hooke(2,E,v); 
      [es,et]=plani4saxi(Ex(q,:),Ey(q,:),[3 1 1],De,ed(q,:)); 
      % --- u: strain energy density --- 
      u(q,1)=0.5*et*es'; 

end 
 
%  --- Fuzzy_rule=[1 0 0 0 0 0 0 0 0] = fuzzy rule number 1 is fulfilled --- 
%       all the other rules are unfulfilled ---- 
  
 
for i=1:nel 

      Fuzzy_rule=zeros(1,9); 
      [mylow,myphys,myinc,mypath,mypoor,myhigh]=memberfunc_fuzzy(c(i,1),u(i,1)); 
    
      if myt(i,1)~=0 
         
           if myhigh~=0&myphys~=0 
                %  --- R1 intramembranous ossification ---            
    Fuzzy_rule(1,1)=1; 
           end 
           if myhigh~=0&myinc~=0 
                % --- R2 intramembranous ossification ---          
     Fuzzy_rule(1,2)=2; 
           end 
           
 

if mypoor~=0&myinc~=0 
                % --- R5 chondrogenesis ---              
    Fuzzy_rule(1,5)=5; 
         end 
      end 
     
     if myc(i,1)~=0 
           if myhigh~=0&myphys~=0 
              %  --- R3 chondral ossification ---           
    Fuzzy_rule(1,3)=3; 
          end 
         
           if myhigh~=0&myinc~=0 
                %  --- R4 chondral ossification ---              
    Fuzzy_rule(1,4)=4; 
           end 
            
            if mylow~=0 
              % ---  R7 arthropy of cartilage ---          
    Fuzzy_rule(1,7)=7; 
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           end 
          
            if mypath~=0 

% ---  R9 destruction of cartilage ---       
Fuzzy_rule(1,9)=9; 

           end 
      end 
   
      if myb(i,1)~=0 
           if mylow~=0 
                % ---  R6  arthropy of bone ---             
    Fuzzy_rule(1,6)=6; 
            
           end 
           if mypath~=0 
                % ---  R8  destruction of bone ---                
    Fuzzy_rule(1,8)=8; 
           end 
         
      end 
        [mybel,mycel,mytel]=fuzzy_controller(Fuzzy_rule,myt(i,1),myc(i,1),myb(i,1), 

mylow,myphys,myinc,mypath,mypoor,myhigh); 
        myb(i,1)=mybel; 
        myt(i,1)=mytel; 
        myc(i,1)=mycel; 

end 
    save C:\member_1 myb myt myc; 
end 
 
% -------------End------------------------------------- -----------------------------------------------------------------% 
 
 
% -------------Calculation of the initial state of the degree of membership ------------------------------------% 
% myb = the degree of membership for bone 
% myc = the degree of membership for cartilage 
% myt = the degree of membership for soft tissue (connective tissue) 
% ------------------------------------------------------------------------------------------------- 
nel=100; 
myb=zeros(nel,1); 
myc=zeros(nel,1); 
myt=zeros(nel,1); 
 
for elnum=1:50 
    myt(elnum)=1; 
end 
 
for elnum=51:nel 
    myb(elnum)=1; 
end 
 
save C:\initial_my_fuzzy myb myc myt 
 
 
%--------------End------------------------------------------------------------------------------------------------------% 
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% -------------Calculation of the osteogenic factor c -------------------------------------------------------------% 
 
function [c]=osteogenic_factor(Ex,Ey,nel,myb) 
 
myb=myb*100;  % ---- [%] 
Ex=Ex*1000; %---- [mm] 
Ey=Ey*1000;       %---- [mm] 
c=zeros(nel,1); 
 
for i=1:nel 
    switch i 
        case{1,11,21,31,41,51,61,71,81,91} 
             % ---  symmetry --- 
             c(i,1)=0; 
        case{10,20,30,40,50,60,70,80,90,100} 
        case{92,93,94,95,96,97,97,98,99} 
        otherwise 
            xgrad=(myb(i+1,1)-myb(i,1))/0.1;  %-----∆x =0.1mm 
            ygrad=(myb(i,1)-myb(i+10,1))/0.1; %-----∆x =0.1mm 
            cgrad=[xgrad ygrad]; 
            c(i,1)=norm(cgrad); 
    end 
end 
 
c(10,1)=0.5*(c(9,1)+c(19,1));     
c(20,1)=(1/3)*(c(9,1)+c(19,1)+c(29,1)); 
c(30,1)=(1/3)*(c(19,1)+c(29,1)+c(39,1));  
c(40,1)=(1/3)*(c(29,1)+c(39,1)+c(49,1)); 
c(50,1)=(1/3)*(c(39,1)+c(49,1)+c(59,1)); 
c(60,1)=(1/3)*(c(49,1)+c(59,1)+c(69,1));  
c(70,1)=(1/3)*(c(59,1)+c(69,1)+c(79,1));  
c(80,1)=(1/3)*(c(69,1)+c(79,1)+c(89,1));  
c(90,1)=0.5*(c(89,1)+c(79,1)); 
c(92,1)=(1/3)*(c(81,1)+c(82,1)+c(83,1));  
c(93,1)=(1/3)*(c(82,1)+c(83,1)+c(84,1));  
c(94,1)=(1/3)*(c(83,1)+c(84,1)+c(85,1));  
c(95,1)=(1/3)*(c(84,1)+c(85,1)+c(86,1));  
c(96,1)=(1/3)*(c(85,1)+c(86,1)+c(87,1));  
c(97,1)=(1/3)*(c(86,1)+c(87,1)+c(88,1));  
c(98,1)=(1/3)*(c(87,1)+c(88,1)+c(89,1));  
c(99,1)=(1/3)*(c(88,1)+c(89,1)+c(90,1));  
c(100,1)=(1/3)*(c(99,1)+c(89,1)+c(90,1)); 
 
 
% ------------End -------------------------------------------------------------------------------------------------------% 
 
 
%------------ Calculation of the degree of membership for the fuzzy sets---------------------------------------% 
% mechanical stimulus  u   mylow,myphys,myinc,mypath 
% the osteogenic factor c   mypoor,myhigh 
%---------------------------------------------------------------------------------------------------------------- 
 
function [mylow,myphys,myinc,mypath,mypoor,myhigh]=memberfunc_fuzzy(c,u) 
u=u/1000; 
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mylow=0; 
myphys=0; 
myinc=0; 
mypath=0; 
mypoor=0; 
myhigh=0; 
 
% ---The membership functions are defined in Hofers article [10] --- 
 
if 0.1<=u&0.4>u 
    mylow=1; 
end 
if 0.4<=u&0.6>u 
    mylow=-5*u+3; 
end     
if 0.4<=u&0.6>u 
    myphys=5*u-2; 
end 
if 0.6<=u&1.8>u 
    myphys=1; 
end 
if 1.8<=u&2.2>=u 
    myphys=-2.5*u+5.5; 
end 
if 1.8<=u&2.2>u 
    myinc=2.5*u-4.5; 
end 
if 2.2<=u&20>u 
    myinc=1; 
end 
 
if 20<=u&55>u 
    myinc=-0.0286*u+1.5730; 
end 
 
if 20<=u&55>u 
    mypath=0.0286*u-0.5720; 
end 
if 55<=u 
    mypath=1; 
end 
 
if 0<=c&0.7>c 
    mypoor=1; 
end 
if 0.7<=c&8>=c 
    mypoor=-0.137*c+1.0960; 
end 
if 0.7<=c&8>c 
    myhigh=0.137*c-0.0959; 
end 
if 8<=c 
    myhigh=1; 
end 
 
% -------------End ------------------------------------------------------------------------------------------------------% 
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% ------------The fuzzy controller ------------------------------------------------------------------------------------% 
 
function [mybel,mycel,mytel]= 
fuzzy_controller(Fuzzy_rule,myt,myc,myb,mylow,myphys,myinc,mypath,mypoor,myhigh) 
 
dt=1;   % --- [timestep=one day] ---  
 
delta_b=0;  
delta_c=0;   
delta_t=0; 
  
for j=1:9 
     k=Fuzzy_rule(1,j); 
     switch k 
         case{1} 
              % --- R1 intramembranous ossification, rate=1[%/day]--- 
               p=myt*myhigh*myphys;  
               delta_t=delta_t-p*1*dt; 
               delta_b=delta_b+p*1*dt; 
           case{2} 
                % --- R2 intramembranous ossification,  rate=1[%/day]--- 
                 p=myt*myhigh*myinc; 
                 delta_t=delta_t-p*1*dt; 
                 delta_b=delta_b+p*1*dt; 
             case{3} 
                 % ---  R3 chondral ossification,  rate=2[%/day]--- 
                 p=myc*myhigh*myphys;  
                 delta_c=delta_c-p*2*dt; 
                 delta_b=delta_b+p*2*dt; 
             case{4} 
                 %  --- R4 chondral ossification, rate=2[%/day]--- 
                 p=myc*myhigh*myinc;  
                 delta_c=delta_c-p*2*dt; 
                 delta_b=delta_b+p*2*dt; 
             case{5} 
                 %  --- R5 chondrogenesis, rate=5[%/day]--- 
                 p=myt*mypoor*myinc;  
                 delta_t=delta_t-p*5*dt; 
                 delta_c=delta_c+p*5*dt; 
             case{6} 
                 % ---  R6 arthropy of bone, rate=4[%/day]--- 
                 p=myb*mylow;  
                 delta_b=delta_b-p*4*dt; 
                 delta_t=delta_t+p*4*dt; 
             case{7} 
                  % --- R7 arthropy of cartilage, rate=8[%/day]--- 
                  p=myc*mylow;  
                  delta_c=delta_c-p*8*dt; 
                  delta_t=delta_t+p*8*dt; 
              case{8} 
                  % --- R8 destruction of bone, rate=10[%/day]--- 
                  p=myb*mypath;  
                  delta_b=delta_b-p*10*dt; 
                  delta_t=delta_t+p*10*dt; 
              case{9} 
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                  % --- R9 destruction of cartilage, rate=20[%/day]--- 
                  p=myc*mypath;  
                  delta_c=delta_c-p*20*dt; 
                  delta_t=delta_t+p*20*dt; 
              otherwise 
                  % ---  no change --- 
          end 
      end    
 
 mybel=myb+delta_b/100;    mytel=myt+delta_t/100;  mycel=myc+delta_c/100; 
 
% -------------End ------------------------------------------------------------------------------------------------------% 
 
 
% -------------Calculation of the load vector f acting at the top and the boundary vector bc ----------------% 
 
load C:\Geom_fuzzy 
 
f=zeros(ndof,1); 
p=2;     % ---pressure = 2MPa --- 
 
x1=0; x2=0.05; 
f(2)=p*pi*(x1^2-x2^2); 
x1=0.05; x2=0.15; 
f(4)=p*pi*(x1^2-x2^2); 
x1=0.15; x2=0.25; 
f(6)=p*pi*(x1^2-x2^2); 
x1=0.25; x2=0.35; 
f(8)=p*pi*(x1^2-x2^2); 
x1=0.35; x2=0.45; 
f(10)=p*pi*(x1^2-x2^2); 
x1=0.45; x2=0.55; 
f(12)=p*pi*(x1^2-x2^2); 
x1=0.55; x2=0.65; 
f(14)=p*pi*(x1^2-x2^2); 
x1=0.65; x2=0.75; 
f(16)=p*pi*(x1^2-x2^2); 
x1=0.75; x2=0.85; 
f(18)=p*pi*(x1^2-x2^2); 
x1=0.85; x2=0.9; 
f(20)=p*pi*(x1^2-x2^2); 
 
bc=[Dof(1,1) 0; 
    Dof(12,1) 0; 
    Dof(23,1) 0; 
    Dof(34,1) 0; 
    Dof(45,1) 0; 
    Dof(56,1) 0; 
    Dof(67,1) 0; 
    Dof(78,1) 0; 
    Dof(89,1) 0; 
    Dof(100,1) 0; 
    Dof(111,1) 0; 
    Dof(11,1)  0; 
    Dof(22,1) 0; 
    Dof(33,1) 0; 
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    Dof(44,1) 0; 
    Dof(55,1) 0; 
    Dof(66,1) 0; 
    Dof(77,1) 0; 
    Dof(88,1) 0; 
    Dof(99,1) 0; 
    Dof(110,1) 0; 
    Dof(121,1) 0; 
    Dof(121,2) 0; 
    Dof(120,2) 0]; 
bc=sort(bc); 
 
save C:\load_bc_fuzzy f bc 
 
%-------------End-------------------------------------------------------------------------------------------------------% 
 
 
%-------------Calculation of  the total force vector f2 -------------------------------------------------------------% 
 
function [f2]=load2(Q,ndof,f,Dof) 
 
myfric_b=0.3;  %  --- friction coefficient for bone --- 
myfric_t=0.15;  %  --- friction coefficient for soft tissue (connective tissue) --- 
Ftemp=zeros(ndof,1); 
Reacforce=zeros(11,2); 
 
Reacforce(1,1)=Q(Dof(11,1)); 
Reacforce(1,2)=Dof(11,1); 
Reacforce(2,1)=Q(Dof(22,1)); 
Reacforce(2,2)=Dof(22,1); 
Reacforce(3,1)=Q(Dof(33,1)); 
Reacforce(3,2)=Dof(33,1); 
Reacforce(4,1)=Q(Dof(44,1)); 
Reacforce(4,2)=Dof(44,1); 
Reacforce(5,1)=Q(Dof(55,1)); 
Reacforce(5,2)=Dof(55,1); 
 
Reacforce(6,1)=Q(Dof(66,1)); 
Reacforce(6,2)=Dof(66,1); 
Reacforce(7,1)=Q(Dof(77,1)); 
Reacforce(7,2)=Dof(77,1); 
Reacforce(8,1)=Q(Dof(88,1)); 
Reacforce(8,2)=Dof(88,1); 
Reacforce(9,1)=Q(Dof(99,1)); 
Reacforce(9,2)=Dof(99,1); 
Reacforce(10,1)=Q(Dof(110,1)); 
Reacforce(10,2)=Dof(110,1); 
Reacforce(11,1)=Q(Dof(121,1)); 
Reacforce(11,2)=Dof(121,1); 
 
for k=1:11 
    switch k 
        case{1,2,3,4,5} 
            if Reacforce(k,1)<0 
                Ftemp(Reacforce(k,2)+1)=abs(myfric_t*Reacforce(k,1)); 
            end 
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        otherwise 
             if Reacforce(k,1)<0 
                Ftemp(Reacforce(k,2)+1)=abs(myfric_b*Reacforce(k,1)); 
            end 
    end 
                          
end 
% ---  f = force vector acting at the top of the model due to the pressure of 2MPa --- 
f2=f+Ftemp; 
 
 
%--------------End-------------------------------------------------------------------------------------------------------% 
 
 
 
 
 

 59


