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Abstract

Today the casting structure of stamping tools is dimensioned according to standard

guidelines. The main task of this thesis is to develop an alternative method of

manufacturing stamping tools, which takes the structural response of the tool into

account to produce a lightweight design. This is done by performing a topology

optimization with the objective to improve the structural stiffness and to reduce the

weight of the tool.

The die is the only part of the stamping tool considered in the methodology

generation. The method established can be applied to any other part of the stamping

tool analogously, after the load cases of the part are determined. Two different load

cases are applied to the die tool, one operation case and one transportation case, which

are weighted equally when optimizing. A forming simulation is made using LS Dyna

to obtain the load on the die during operation. The attained loads are, together with the

loads affecting the die during transportation, applied to the die and a topology

optimization is performed, using the software OptiStruct.

A CAD model is set up from the result of the topology optimization. This CAD model

is analysed and compared to the original die, i.e. the die that is in use today. When

comparing the result of the analyses, the maximal displacement, the von Mises

stresses and the weight of the die is considered. The final results show an overall more

homogenous distribution of displacement, a reduction of the maximal displacement

with around 30 % and a weight reduction of about 20 %.
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Chapter 1

Introduction

Volvo Cars Body Components (from now on VCBC), has great experience in tool

design and sheet metal forming. They are situated in Olofström, Sweden, where there

has been sheet stamping industry since 1735. Body components for the first Volvo car

where produced in Olofström in 1927. In 1969 Volvo Car Corporation purchased the

plant in Olofström and today VCBC is Volvo Cars Centre of Excellence for Forming

of Metallic Materials.

1.1 Background

The lead time for development of new car models has been considerably reduced over

the years, thanks to outstanding practical experience, combined with focus on

experimental research and finite element sheet forming simulations. The development

has also lead to use of body component materials of greater and higher strength,

which calls for a greater force to be used in the forming process. More material has

traditionally been applied to the stamping tool for it to sustain this increased load, and

in order to reduce the risk of a large structural response. However, this course of

action cannot carry on indefinitely, since the lifting capacity of traverse cranes,

needed for transporting the tools in the plant, is limited and soon reached. Therefore

an alternative method of manufacturing tools, which takes the structural response of

the tool into account to produce a lightweight design, is called for.

1.2 Problem Description

For hundreds of years sheet metal forming has been done using stamping (for more

details, see section 2.1). The experience gained has helped to improve the design of

the tool over the years. Today, the casting structure of the tool is dimensioned

according to standard guidelines. These guidelines are based on trial-and-error and not
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on a structural optimization, i.e. further improvements with respect to structural

stiffness and reduction of weight of the tool should be attainable.

1.3 Objective

The aim of this project is to generate a method for a manufacturing process of

stamping tools, which takes the structural response of the tool into account, while

reducing its weight. The purpose is to carefully investigate the different steps of the

method which are

1. Generate a mesh on the structure

2. Define the loads and constraints on the tool

3. Set up and perform a topology optimization

4. Re-design the tool according to the result of the topology optimization

1.4 Delimitations

The method is applied to the tool forming of the Volvo S80 truck lid. Only one tool

part, the die, is being optimized in this project. The optimized form of the other tool

parts may be derived analogously.

Only the first press in the press line, where the sheet metal forming takes place, is

considered. The method of this thesis can be applied to other kinds of presses (see

section 2.3), but only after the unique load cases of this particular press has been

established.

The loads established from the last time step of the sheet metal forming simulations

are applied on the die for topology optimization. One may consider using more than

one time step to illustrate the actual dynamic load, however, this will not be done.

The loads applied on the die can be considered as perfect since the moving part of the

tool follows the z-axis. In reality there is no such thing as a perfect load and one may

consider taken this into account.
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Only one kind of topology optimization problem is set up, with the objective to give

the structure a maximum stiffness given a certain available amount of material

volume, i.e. the weight is constrained. There are numerous other possibilities, for

example to minimize the weight of the structure for a given structural response.

However, this kind of topology optimization is not carried out.

Since the aim of this project is to reduce weight and increase the stiffness of the die, a

cost reduction can be achieved, which ultimately may lead to increasing profits.

However, this kind of economical study will not be performed.

1.5 Disposition

This report starts with a theoretical review of sheet metal forming, continuum

mechanics, topology optimization and time integration methods in chapter 2 till 5.

Continuing, the methodology of the project is presented in chapter 6 till 9. And

finally, the results are presented and analysed in the final chapters, chapter 10 till 12.
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Chapter 2

Sheet Metal Forming

The truck lid considered is manufactured in a forming process. The contact pressure

resulting from this stamping process is calculated to get the load on the die, necessary

for the topology optimisation. To get a better understanding of this manufacturing

process, a brief introduction to sheet metal forming will be given. For more

information, the reader may consult Schuler Metal Forming Handbook [2].

2.1 Tool Set up

Sheet metal forming is a manufacturing process with the purpose of forming a sheet

blank through plastic deformation. The tools may vary slightly in their assembly but

normally they consist of a die, a punch and a blankholder. The die and the punch can

also be referred to as lower and upper die, respectively. In the tool, a drawbead might

be present with the objective of restraining the blank and thereby reducing the

required blankholder force, see fig 2.1 below.

Fig 2.1 Tool set up in sheet metal forming



5

A complete tool consists of a pair of mating members, the die and the punch,

including all supporting and actuating parts of the tool. The upper members are

attached to the slide of the press, while the lower member is clamped or bolted to the

bolster of the press.

The blankholder controls the metal flow around the shape to be formed in the draw

operation. The undeformed blank is designed to facilitate forming and to eliminate a

trimming operation subsequent to forming.

A drawbead is a ridge placed around a portion of the die cavity, or all around it, to

control blank forming. A groove in the mating blankholder allows the two mating

parts to close. The drawbead forces the blank to bend and unbend several times while

it is pulled through the bead, which restrains the blank and increase the plastic

deformation of the part.

2.2 Stretch Forming vs. Deep Drawing

In stretch forming the blank is prevented from sliding into the die, either by a

drawbead or by applying a sufficiently high blankholder force, which makes the

blankholder work as a break. As a result, the blank is subjected to tensile stress when

interacting with the punch, which will reduce the sheet metal thickness. The localized

thinning that occurs prior to fracture is called necking, see fig 2.2a.

In contrast, deep drawing is a forming process under combined tensile and

compressing conditions without altering the thickness of the blank. The main purpose

of the blankholder is to prevent wrinkles to form, by applying a force that makes the

blank glide in an appropriate manner, see fig 2.2b.
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Fig 2.2a Stretch forming Fig 2.2b Deep drawing

In practice, a combination of stretch forming and deep drawing is conducted

simultaneously. The blank thickness can remain unchanged, or can be reduced in

some specified parts. The main difficulty in this combined forming process is to

establish an acceptable compromise between wrinkling, caused by a low blankholder

force, and rupture, caused by a large blankholder force.

2.3 The Press Line

The manufacturing process can be seen as a series of operations such as forming,

flanging, piercing and cutting. These operations are assembled together in a press line.

The VCBC plant consists of twenty press lines that all contains coilfeeder,

straightener, shear, robots and usually five presses. The coilfeeder feeds the metal coil

into the straightener, which keeps the coil straight. The shear cuts the coil into sheets,

which the robot puts in, and takes out of the press. See fig 2.3 for more details.

Fig 2.3 The press line
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2.4 Standard Manufacturing Guidelines

The tool is manufactured by casting in a disposable mould. The draw direction still

needs to be considered, in order to ensure that all mould parts are removable.

Nevertheless, there are yet some technical aspects of casting to be taken into account.

The VCBC standard guidelines [1] state that ribs and other reinforcements should not

meet at sharp angles. This is to avoid material concentration, which results in an

inhomogeneous structure and lower strength. Also, the ribs should be designed in a

staggered way to reduce the risk of distortion and cracking during the casting process,

see the fig below.

Fig. 2.4 The rib framework of the original die

Fig 2.4 shows the bed-side of the die considered in this project. It also sets an example

of a standard framework of walls and compartments in a press die. To achieve

sufficient strength, the distance between the compartment walls must be adapted to

the depth of the compartment, i.e. the shallower the compartment, the shorter the

distance should be between the walls of the compartment. This is because narrow and

deep compartments cannot be casted in a satisfactory manner. The thickness of the

walls is also of importance, since too thin sections will lead to stress concentration

and risk of cracking, whereas a too thick section will have an incorrect solidification

sequence.
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Lifting lugs are attached to all parts of the stamping tool to facilitate transport. They

can be designed either integrated with the die or on the outside of the die. When

possible, the lifting equipment should be placed at half the height of the die section,

i.e. near its centre of gravity, to make sure that the tool is balanced in a vertical

position. The lifting lugs should be located above each other in direct alignment in the

upper and lower die.

2.5 Forming Limit Diagram

A Forming Limit Diagram (FLD) is a graphical representation of the in-plane

principal strains in a part. It is used to detect forming defects, such as failure by

tearing or wrinkling. The empirically or theoretically established Forming Limit

Curves (FLC) shows the biaxial strain levels beyond which failure may occur in sheet

metal forming, i.e. the FLC is describing the formability if the blank material. The

strains are given in terms of major and minor strains that are measured from

deformation of circles, which previously have been printed onto the undeformed

sheet. The comparison of measured deformations with the FLD gives an estimation of

the risk of failure during the stamping process.

Fig 2.5 Forming limit diagram
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A combination of major and minor strains will fall in one of three zones, safe,

marginal, or failure. If a measured deformation gives a point representing a major and

minor strain combination that lies below the marginal curve, it is in the safe zone and

breakage during stamping should not be expected. However, if the absolute value of

the minor principal strain is larger then the major principal strain, there will be

wrinkles in the panel, which is sometimes unacceptable due to part quality demands

or risk of extreme die wear. If a point lies within the area between the marginal and

failure curve, it is in the marginal zone; and periodic breakage may occur if the

variation in process parameters is sufficient to create strains high enough to move the

location into the failure zone. Points lying above the band are in the failure zone, and

breakage will be a frequent problem. A die or lubrication change is generally required

to remedy such a problem. The shape of the FLD is quantitatively the same for all

steels. The curve moves up and down the major strain axis as a function of steel sheet

characteristics. The location of the curve is dependent on the thickness, strain-

hardening exponent (n-value) and the ductility of the material. The strain hardening

exponent is derived from the relationship between true stress, �, and true strain, �

n

�
�

K
�
�

��
�

�
��
�

�
=

00

(2.1)

giving a measure of the stretchability of the steel. The strain-hardening exponent may

have values from n = 0, giving an ideal plastic solid, to n = 1, representing an elastic

solid.



Chapter 3

Continuum Mechanics

The forming process described in the previous chapter will later be simulated through

finite element analysis. The deformable sheet has been given anisotropic material

properties when being manufactured through rolling. In the FE-model of the forming

process the Hill plasticity material model will be used to simulate the anisotropic

behaviour of the sheet and will therefore be presented in this chapter. The interested

reader may consult Ottosen and Ristinmaa [3] - [4] for more details.

3.1 Kinematics

When dealing with large deformations it is useful to relate the displacements to a

reference configuration [4]. The reference configuration is the condition of the body

before load has been applied to it. At time 0=t , the position vector of a particle is

described by the coordinates X=(X,Y,Z) in a fixed coordinate system. The position of

the same particle at time t is described by the position vector x =(x,y,z) in the same

coordinate system. See figure 3.1. We note that the relationship between the two

position vectors in space is the displacement vector c.



Fig. 3.1 Reference and deformed configuration

At a fixed time, we can directly write the relationship between the spatial coordinates

x and the material coordinates X through vector addition:

( ) ( )tt ,, XcXXxx +== (3.1)

This description of the motion is termed a Lagrangian description, where ( )t,Xc is the

displacement vector denoted as ( )zyx ccc ,,=c . The distance between two

neighbouring particles in the reference configuration is defined as Xd , and the

distance between two neighbouring particles in the deformed configuration is defined

as xd . The relation between Xd and xd can be written as

XFx dd = (3.2)

where F is the deformation gradient tensor defined as

j

i
ij X

x
F

∂
∂

= (3.3)

The velocity of a material particle can be expressed as



t∂
∂= x

v (3.4)

The velocity difference between two neighbouring particles in the deformed

configuration is described as

xLx
x
v

v ddd =
∂
∂= (3.5)

where L is the spatial velocity gradient in the deformed configuration. Equation 3.5

can, using equation 3.2, be expressed as

XLFxLv ddd == (3.6)

The velocity difference can also be obtained from equation 3.4 and 3.2 by

( ) XFXFv dd
t

d �=
∂
∂= (3.7)

where

t∂
∂= F

F� (3.8)

Equation 3.6 and 3.7 is compared and it is seen that

LFF =� (3.9)

L can be split into one symmetric part D and one antisymmetric part W according to

WDL += (3.10)

where D is the rate of deformation tensor defined as

( )TLLD +=
2

1
(3.11)

and W is the spin tensor defined as



( )TLLW −=
2

1
(3.12)

To define a strain measure, the change of length in a material vector is going from the

reference configuration to the deformed configuration. The length of vector dx is

denoted as ds and the length of vector dX is denoted dS. The lengths can be measured

as

XX dddS T=2 (3.13)

xx ddds T=2 (3.14)

Using equation 3.2, 3.14 can be written as

XFFX ddds TT=2 (3.15)

and it follows that

( ) XIFFX dddSds TT −=− 22 (3.16)

which can be written as

XEX dddSds T222 =− (3.17)

where the strain tensor E is expressed in terms of the deformation gradient tensor F as

( )IFFE −= T

2

1
(3.18)

The above strain tensor is known as the Green-Lagrange’s strain tensor and gives

information about the deformations in a body.



3.2 Rate of Deformation Tensor

The Green-Lagrange’s strain tensor provides a complete description of the

deformation of a body given the material used, independently of rigid body motions.

For more details, see Ottosen and Ristinmaa [4]. In some applications it is not the total

change of deformation that is of importance, but rather the time rate at which these

changes occur. This is the case of plasticity models. In elasto-plasticity the

constitutive equations are formulated in rate form. A tensor which describes the rate at

which the deformation occurs is the rate of deformation tensor D .

3.3 Plasticity

Plasticity has a time independent behaviour, which is non-linear and were the strains

are partly preserved when the material is unloaded. These remaining strains are the

plastic strains. Plasticity occurs when the material is exposed to loads that develop

stresses higher than the yield stress of the material, which means that the yield stress

is the minimum stress required to permanently deform a material. No unique relation

exists between the stress state and the strain state in plasticity. For a given strain state,

the corresponding stress state is obtained by an integration of the incremental

constitutive relations and the result of this integration will depend on the load history.

For more details on continuum mechanics, see Ottosen and Ristinmaa [3]

3.4 Small Strain Plasticity

In general, the yield stress varies with the plastic deformation. Since the yield surface

is a generalization of the yield stress, for a general stress state it is evident that the

yield surface will change with the plastic loading. This change of yield surface is

called the hardening rule.

The yield surface is described by

( ) 0, =αKf � n,...,1=α (3.19)



where αKKK ,..., 21 are hardening parameters, which characterize the manner in

which the current yield surface changes in size, shape and position with plastic

loading. For 0<f the response is elastic and for 0=f plastic deformation may

occur.

Before any plasticity is initiated, we have per definition that 0=αK . When the

hardening parameters are zero, the current yield surface coincides with the initial yield

surface. The hardening parameters αK vary with the plastic load, and to model this,

we assume that there exist some internal variables that characterize the state of elastic-

plastic material. This means that we can assume that

( )βαα κKK = (3.20)

where =βκ internal variables, ( ),...2,1=β . The number of hardening parameters

equals the number of internal variables since the relation between αK and βκ is

unique. The important point is that the internal variables are used to memorize the

plastic loading history, and because of this, they are zero before any plasticity is

initiated.

Fig. 3.2 Isotropic hardening of the von Mises criterion in deviatoric plane

Current yield
surface

Initial yield
surface

1σ

2σ 3σ



In the case where the small assumption applies one can decompose the total strain

tensor into one elastic part and one plastic part given by

pe ��� += (3.21)

The strain variation over time can be expressed as the strain rate

pe ��� ��� += (3.22)

where e�� is the elastic strain rate and p�� is the plastic strain rate.

The elastic strains are determined from Hook’s law, i.e.

( )p��D� −= ~
(3.23)

where D
~

is the elastic stiffness tensor.

The associated flow rule for the plastic strain is obtained

�
�

∂
∂= f�p �� (3.24)

and the yield surface serves as a potential function for the determination of the

incremental plastic strains. This means that the inelastic part of the deformation is

defined by the flow rule. The direction of p�� is given by the gradient
�∂

∂f
. λ� is called

the plastic multiplier and determined from the consistency condition 0=f� . If 0=λ�

no plastic strains will develop in the material. A more general format of law 3.24 is

obtained if f is changed into a general potential function g. This format is referred to

as the non-associated format.



3.5 Simple Plasticity Model for Large Deformations

The problem with the plasticity models for large deformations is that it is not possible

to make a decomposition of the strain as done in equation 3.21. Because of this, the

rate of deformation, described in section 3.2, is used instead and can be written as

pe DDD += (3.25)

For an isotropic material the shape and position of the yield surface remain fixed,

whereas the size of the yield surface changes. This situation is called isotropic

hardening. Here, the isotropic hardening criterion by von Mises will be considered.

Hill plasticity, which will be used in this project, is a generalization of the von Mises

criterion to anisotropic materials.

The yield surface is given by

( ) ( ) ( ) 03, 2/1
2 =−= κσα

yJKf � (3.26)

2J is a generic invariant of the stress deviator tensor s ,

ssTJ
2

1
2 = (3.27)

( )I��s trace
3

1−= (3.28)

where I is the unit matrix. For more information in this area see [3].

A generalization of (3.24) results in

�
D

∂
∂= fp λ� (3.29)

The effective plastic strain rate, p
effD is introduced as



( )
2/1

3

2
�
�
�

�
�
�= pTpp

effD DD (3.30)

Using (3.26) and (3.29) along with (3.30) results in

λ�=p
effD (3.31)

Strain hardening is assumed, which means that the hardening parameter κ is given by

dtD p
eff�=κ (3.32)

Von Mises criterion of isotropic hardening described above, has been generalized by

Hill and this generalization will be presented below.

3.6 Elasticity

In the present work an isotropic hyper elastic model is used to describe the

recoverable deformation. The model is based on a Jaumann-rate formulation

eD:2ˆ =σ . For a complete description we refer to LS Dyna User’s Manual [6].

3.7 Model for Hill Plasticity

As mentioned earlier, the model for Hill plasticity will be used in this project. It is a

generalization of the von Mises criterion to anisotropic materials, which is described

above.

The yield surface for Hill plasticity is given by

( ) ( ) ( )κσσ KKf y
T

y −−= 0

2/12
0, Pss� (3.33)

The constant material parameter is defined by



( )
2/1

0 2

3
	



�
�



�
++

=
HGFyσ (3.34)

s represents the deviatoric stress and the symmetric matrix P is defined as

	



�
�



�
=

Q0

0P
P ~

~
(3.35)

where
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�
�
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�

+−−
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=
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HHFF

GFGF

P
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;
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�
=

N

M

L

200

020

002
~
Q (3.36)

F,G,H,L,M and N are material constants found by empirical testing.



Chapter 4

Structural Optimization

A structure is an assemblage of materials with the purpose to sustain loads. Designing

a structure is an iterative process where the design is modified until it complies with

the requirements set upon it. This iteration process can be formulated as an

optimization problem where the optimal solution is the best of all the designs that

fulfils the requirements.

4.1 General Structural Optimization Problem

A general structural optimization problem aims to determin the optimal value of the

design variables, x, such that they maximize or minimize the objective function, f,

while satisfying the constraints. There are three kinds of constraints; state constraints,

which are given by an equilibrium, behavioral constraints that are upper and/or lower

bounds on the displacements or stresses and, finally, there are geometrical

constraints, specifying bounds on the design variables such as cross-sectional areas.

In a continuous optimization problem the design variables may take any value

nRx ∈ . To conclude, the optimization problem can be formulated as

�
�

�
�

�

∈

==
=≤

n

j

i

nh

mig

f

Rx

x

x

x
x

,...,1jfor0)(

,...,1for0)(

sconstraint

)(minfunctionobjective

(4.1)

The solution of the problem is given by a so-called feasible point x* such that

)()( *xx ff ≥ for all other x.

Structural optimization can be divided into three categories; size optimization, shape

optimization and topology optimization. What kind of optimization that is being



conducted depends on the properties of the design variables. In size optimization the

design variables are some sizing parameters, for example the cross-section area of a

beam. The design variables of shape optimization are parameters that control the

shape of (a part of) the boundary of the design domain. In order to perform a shape

optimization a parameterization of the design domain is needed. In topology

optimization the optimal distribution of material in the design domain is determined.

The structure is free to take any shape within a given design domain, finding the

optimal shape of external and internal boundaries of the structure and the number of

holes in it.

4.2 Topology Optimization

In this project, the stiffness of a stamping die will be optimized by topology

optimization, which therefore will be covered in greater detail. The methodology of

topology optimization is illustrated by solving a problem of maximization of the

stiffness of a linear elastic structure. For more details on topology optimization, and

their application, see Bendsøe and Sigmund [5].

4.2.1 State Problem

We consider an open, bounded and connected domain � with a smooth boundary �,

divided into two parts; �u, where the displacement is prescribed and tΓ , where the

traction vector t is prescribed. The small strain tensor is given by

)(
2

1 Tuu�(u) ∇+∇= (4.2)

in which u is the displacement field on �. In linear elasticity Hooke’s law gives the

stresses

E(x)E

uE��
=
= )(

(4.3)



where � is the stress tensor and E is the constant stiffness tensor. The stiffness is

allowed to vary within the domain. The state problem is now set as an elliptic

boundary value problem, which implies that for given body forces b and given

traction vector t on the boundary part tΓ , the problem is solved for the displacement

field u

t
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Fig.4.1 Domain for the state problem

4.2.2 Design Parameterization

We are interested in determining the optimal distribution of the given material in the

design domain, i.e. we want to determine which points in space that should be

material points and which should be void points. In our design domain � we are

seeking the optimal subset �mat of material points
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where ρ ∈ {0, 1} is the discrete design variable and E0 is the stiffness tensor for the

given isotropic material. Here the last inequality expresses a limit, V, on the amount of

material at our disposal, so that the objective function will be satisfied for a limited,

fixed volume.

The most commonly used approach to solve this problem is to replace the integer �

with continuous variables by allowing intermediate values, which then are penalized

to direct the solution towards discrete 0-1 values. In linear elasticity, ρ can be seen as

the material mass density distribution and is now a function of the position in the

design domain, i.e. �=�(x). The penalization can be made by using a penalized,

proportional stiffness model

�
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One refers to ρ as the density of the material by the fact that the volume of the

structure is evaluated as

�
Ω

≤Ω Vdx)(ρ
(4.7)

The density interpolates the stiffness between the material properties 0 and E0;

E(ρ = 0) = 0 and E(ρ = 1) = E0 (4.8)

4.2.3 Minimum Compliance Design

The objective of topology optimization is to determine a discrete valued design ρ(x),

which maximizes some efficiency measure, given by the objective function, subjected

to one or more constraints. Here we want to solve a problem of topology design for

maximum stiffness for a given structural weight. This problem is equivalent to design

for minimum compliance defined as the work done by the set of given loads given the

displacements at equilibrium, which in turn, is equivalent to minimizing the total

elastic energy at the equilibrium state of structure.



4.2.4 Solution Methods

The method of solving a topology optimization problem starts by dividing the design

domain into N finite elements. The stiffness Ee is discretized as constant in each

element e =1,…, N. The state constraint then reads

dV
V
�=

=

BD(BK

FuK
T )�

)�(
(4.9)

where u is the nodal displacement vector, F is the load vector, K is the stiffness

matrix, which depends on the design, and ρ is the design variable. Also D is the

constitutive matrix and B is a constant matrix, giving the gradient of the shape

function matrix. This relation implicitly defines the state variables, the displacements,

as a function of the design variables, i.e. the material mass density ρ. The compliance

can now be written as:

FKFuF TT 1)()()( −== ρρρc (4.10)

The finite element-discretized formulation of the topology optimization problem now

reads:

�
�
�

�
�
�

�

≤≤

≤Ω

=

�
Ω

,10

d

)(

:sconstraint

)(min:functionobjective

iρ

ρ

ρ

V

c

FuK

�

(4.11)

where V is the total available volume of materials.

The optimization is conducted through a numerical iteration process, which involves a

first order mathematical programming algorithm. The Method of Moving Asymptotes

(MMA) has proven to be well-suited for problems of topology optimization. The

MMA works with a sequence of simpler approximate subproblems. The subproblems



are separable, convex and are constructed based on sensitivity information at the

current iteration point as well as some iteration history. Asymptotes are introduced to

stabilize the solution. They are dependent on the iteration history and are adjusted

from one iteration to the next. In each iteration the compliance of the current design is

computed, as well as the associated sensitivity with respect to design changes. This

continues until only a marginal improvement in compliance is reached in the last

design change.

A result of a 2D topology optimization is shown in the figures below. This simple

problem shows a clip with forces applied to the gap of the clip, as well constraints that

constrain certain nodes from displacement, marked by triangles in figure 4.2. The

objective function is set to minimize the compliance, given that the displacement at

nodes where that load is applied should not exceed a certain value. The topology

optimization routine gives a framework solution, see figure 4.3.

Fig.4.2 Topology optimization – problem set up of a 2D problem



Fig. 4.3 Topology optimization – 1120 shell elements

Fig. 4.4 Topology optimization – 2582 shell elements

4.2.5 Complications

There are two major numerical problems related to the solution of the topology

optimization. These are the appearance of checkboards and the mesh-dependency of

results. The former refers to the formation of regions of alternating solid and void

elements, ordered in a checkboard like fashion. The problem is related to the

discretization of the original continuous problem. Mesh-dependence concerns the

effect that qualitatively different optimal solutions are reached for different mesh-



sizes or discretizations, see figure 4.3 and 4.4. The reason for mesh-dependency is that

the penalized topology optimization problem in general lack a unique solution to

converge to. This is due to the fact that the solution of the problem, given by feasible

point x* such that )()( *xx ff ≥ for all other x, in general only can be met in a

neighbourhood to x*.

One drawback with topology optimization is that it gives only a coarse layout of the

boundaries of the structure. Shape and size optimization may be used for post-

processing the result to determine the optimal final shape of the structure.



Chapter 5

Time Integration Methods

When solving a dynamic problem like the ones presented in chapter 3, time

integration needs to be performed. There are two main types of integration methods,

solved by either explicit or implicit algorithms. In this chapter these two algorithms

will be briefly presented as well as their advantages and disadvantages.

5.1 Explicit Scheme

The FE discretization of the equations of motion is given by

0)( =+ a�aM �� (5.1)

where M is the mass matrix and )(a� the out of balance forces depending on the

nodal displacement a. A finite element formulation, like (5.1) contains a large number

of nonlinear differential equations, which needs to be translated into algebraic

equations in order to be solved iteratively. To do that, the Newmark time integration

scheme may be used, given by

( )[ ]1

2

1 221
2 ++ +−++= nnnnn

t
t aa

�
a�aa ����� ββ (5.2)

( )[ ]11 1 ++ +−+= nnnn t aa�aa ������ γγ (5.3)

where β and γ are certain parameters and t� is the time step. Different integration

strategies are obtained depending on the particular choice of parameters. If
2

1=γ and

0=β , (5.2) and (5.3) can be written as
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Using (5.4) and (5.5) it is straightforward to show that the equation of motion cf. (5.1)

reduces to

( ) ( )nnnn t a��aaMMa 2
11 2 −−= −+ (5.6)

This algorithm is called the explicit algorithm. If the mass matrix is lumped, then (5.6)

provides a set of uncoupled scalar equations. This is a great advantage of the explicit

algorithm but it is not free from complications. To get accurate results from explicit

time integration, the time step t� must be limited. This is a constraint that must be

fulfilled, otherwise the solution will be worthless. The time step is regulated by the

speed of wave propagation within the material and the mesh. This implies that the

time step must be so small that it affects all elements in the mesh. In some cases, in

order to get a satisfactory mesh, there are a number of small elements concentrated to

a certain area. To prevent these elements to set an unnecessary short time step a

procedure called mass scaling might be used. This is done by increasing the density of

these small elements so that the wave propagation becomes slower. It is important to

carefully monitor these elements so that they do not corrupt the solution.

5.2 Implicit Scheme

When solving nonlinear equations with an implicit algorithm, the most widely used

method is to linearise the equation at a given point, x0, and then search for the state

wanted. The solution given is not necessarily the correct solution, and therefore the

procedure is repeated until the correct solution is located. For a simple one variable

problem this approach may be visualised according to figure 5.1.



Fig 5.1 Implicit time integration

When deriving this method a different choice of the parameters β and γ is done. It

will be assumed that β differs from zero. From (5.2) the following equation arises
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where all quantities are assumed to be known at a certain time nt . The equation of

motion at time 1+nt can be written as

( ) 011 =+ ++ nn a�aM �� (5.8)

Inserting (5.7) into (5.8) gives

( ) 01 =+na� (5.9)

where v is a column matrix given by
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Given that all quantities at the state n are known, it is possible to derive an iteration

scheme using a truncated Taylor expansion of (5.10) according to

( ) ( ) ( )iii d avavav +=+1 (5.11)



It will be assumed that ( )1+iav is zero, the differentiation of v may be written as
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were H and R are certain matrices and tD is the tangential constitutive matrix. For

more information see Ottosen and Ristinmaa [3].

The displacement of the next iteration may now be established using (5.6) according

to
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As (5.13) shows, calculating the correction of the displacement involve inverting a

matrix which requires a lot of computer power. The benefit with the implicit method

compared to the explicit method is that the constraint of the time step is not as

controlled as it is using an explicit scheme. Therefore the implicit algorithm suits

problems with long load duration.



Chapter 6

Method Overview

The outline of the project is visualised through a flowchart, see figure below. Each

step in the process is described in detail in the following chapters.

Fig. 6.1 Flowchart of project outline

Geometry from
CAD program

Mesh geometry
using HyperMesh

Define the loadstep using the
pre-processor HyperForm

Use LS Dyna to analyse the
forming problem. Get the
dynamic load on the die

Map load onto the 3D
geometry. Convert it to a

static load

Optimize the design through
topology optimization in

OptiStruct

Re-design the tool in a
CAD-program

Further optimization of the
design in HyperStudy

Not OKOK



Chapter 7

Geometry

The geometry files of the die, punch, blankholder and blank are delivered from

VCBC, see figure 7.1. The original die is being considered but results can be attained

for any other part of the stamping tool by analogous use the method described in this

thesis.

Fig. 7.1 Stamping tool of Volvo S80 trucklid

To prevent unnecessary problems, when in the future creating the mesh, a geometry

clean up of the die is made. Details on the surface that are of minor interests in the

simulation are eliminated in agreement with VCBC. These alterations can be seen in

the figures below.

Punch

Blankholder

Die



Fig. 7.2a Original model Fig. 7.2b Cleanup model

To get a perception of the die tool, different views of the original die are presented in

the figures below.

Fig.7.3a Isometric view of the original die



Fig. 7.3b Top/side view of the original die

Fig 7.3c Bottom/side view of the original die



Chapter 8

Sheet Metal Forming Simulation

The loads acting on the die need to be known in order to be able to perform a

topology optimization. The loads from the manufacturing process are obtained

through a sheet forming simulation. A finite element model is created from the CAD

geometry of the tool, which, although containing some simplification, still gives a

very good approximation of the actual tool.

8.1 Model Description

The FE-model consists of the same parts as the original tool. However, the punch,

blankholder and die are approximated to be rigid, and therefore only the surfaces in

contact with the blank are needed in the FE-model, see figure 8.1.

Fig. 8.1 FE-model of the forming process

In the model, a gravity force is applied to the blank, as well as a friction force

between the interacting parts. In agreement with VCBC, the friction coefficient is set

Blankholder

Punch

Blank

Die



to � = 0.06. To reduce calculation time, the symmetry of the tool is made use of, and

only half of it is considered.

A nonlinear analysis must be performed, since the blank is subjected to large strains.

Also because the load on the blank and contact between interacting parts are changed

in every time step. To solve this dynamic problem, time integration needs to be done.

In sheet metal forming, the impact time is short and the time step will therefore be

very small to ensure accurate solution. The most suitable approach in this case is the

explicit time integration, where many uncoupled equations are solved simultaneously.

There are a number of commercial finite element codes available, of which we have

chosen to use LS-Dyna version 970 [6]. To set up the simulation, the guidelines in

Input Parameters for Metal Forming Simulation using LS-Dyna [7] were used.

8.2 Mesh

The mesh of the tool parts created for the simulation of forming process is a rigid

shell mesh, which is an approximation of the original tool that is in fact deformable.

This mesh has one purpose, to describe the surface of the die as accurate as possible.

Therefore there are no quality restrictions on the elements, such as minimum angle or

length. Instead there are strong restrictions on the tool mesh deviation from the CAD

surfaces, e.g. chordal deviation and angle between elements. On the other hand, the

mesh of the blank is, naturally, a deformable mesh with quality restrictions. Figures of

these two different meshes can be seen below.

Fig.8.2a Rigid mesh of the die Fig.8.2b Mesh of the blank



8.3 Material Data and Material Model

As mentioned, all tool parts are modelled as rigid shell elements. The die is

constrained in both displacement and rotation in all directions in the global

coordinates, while the punch and blankholder are allowed to be translated in the z

direction, see figure 8.1. The material data used for the tool is the parameters of steel

Density � = 7800 kg/m3

Young’s modulus E = 210 GPa

Poisson’s ratio � = 0.30

The Young’s modulus and the Poisson’s ratio are not needed in the explicit equations,

because of the assumption of rigid tool. The values should however be realistic, since

they are used in the contact definition and unrealistic values may cause numerical

problems.

The blank is modelled as transversely anisotropic elastic-plastic material. This

plasticity model is a generalization of the von Mises criterion to anisotropic materials,

made by Hill. Plane stress is assumed and the input parameters needed are

Density � = 7800 kg/m3

Young’s modulus E = 210 GPa

Poisson’s ratio � = 0.30

Anisotropic hardening parameter R = 1.78

Yield stress �y =165 GPa

The yield function for Hill plasticity, assuming transverse anisotropy, is then given by
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where �11 and �22 are the two nonzero normal stresses, �12 is the in-plane shear stress

and R is the anisotropic hardening parameter.



8.4 General Problem Set up

The objective of the forming simulation is to give an as accurate approximation of the

real process as possible. To do this one wants to use as little computer power as

possible, by reducing the total run time of the simulation. There are two factors that

effect the run time of an explicit simulation, total time to terminate the process

simulated and the time increment.

The elements used in the blank sheet are in LS Dyna called Belytschko-Lin-Tsay shell

elements. These elements are based on a combined co-rotational and velocity-strain

formulation. The efficiency of the elements is obtained from mathematical

simplifications that result from these two kinematical assumptions. The co-rotational

portion of the formulation avoids the complexities of nonlinear mechanics by

embedding a coordinate system in the elements.

8.4.1 Time Step

In LS-Dyna the maximum length of time step is set by the speed of wave propagation

of sound in the smallest element.
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If the time step is too large, the smallest elements are unaffected by the wave. Not to

let these elements set an unwanted short time step, mass scaling is used. However this

method introduces artificial dynamic effects, which may corrupt the solution and

therefore needs to be monitored closely.



When performing a forming simulation in LS-Dyna, the time step may be establish

from the recommendation below, were cycles per millimetre are the number of

explicit time steps taken per millimetre of tool motion.

millimetreperCyclesvelocitytoolMax.

1
sizestepTime

∗
= (8.3)

Note that this is a guidance for setting the parameter in forming simulation and that

the physical condition in (8.2) still needs to be met.

8.4.2 Tool Velocity

The tool velocity in the simulation may be increased from the physical one, to a

certain extent, still giving a satisfying approximation of the forming process. This will

speed up the process and reduce the run time of the simulation. However, it cannot be

speeded up infinitely since this introduces kinematics effects, such as inertial effects,

which will change the physical appearance of the simulated process.

Also, the total run time of the simulation augments, when the tool velocity is

increased and the number of cycles per millimetre is kept constant, since this will

reduce the time step, see equation (8.1) above. A well-adjusted balance of maximum

tool velocity and the number of cycles per millimetre will give the shortest run time of

the simulation.

8.4.3 Time Step Used in Forming Simulation of Volvo S80 Truck lid

The recommendation used in this thesis state that a value of between 100 and 1000

cycles per millimetre is recommended to give a reasonable time step. In accordance

with VCBC, the parameter is set to 500. The recommended maximum tool velocity is

2000 mm/s, and to start and end the simulation with zero velocity. A simple

trapezoidal velocity profile is used, see figure 8.3.
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Fig. 8.3 Trapezoidal punch and blankholder velocity

For stability reasons a scale factor of 0.9 is used with the time step size parameter,

giving a time step of 0.9 �s and the total time of the simulation is 0.4 s.

Minimum element length lmin = 0.005 m

Speed of sound in steel c = 5170 m/s

Maximum tool speed vtool = 2000 mm/s

Cycles per millimetre s = 500 mm-1
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Our time step is smaller than the maximum time step defined to avoid mass scaling,

that is, in our case, no mass scaling occurs.



8.4.4 Contacts

In metal forming simulations the contact between interfacing surfaces can be

modelled by using a penalty method. This penalisation reduces any residual between

to two surfaces that are to be in contact, by multiply it by some penalty factor, which

thereby works like a spring in-between the two surfaces. A “forming-one-way” type

of contact is recommended. This interface computes tooling curvature information in

every time step, used to determine if an adaptation refinement is needed (see next

section). In order to avoid undesired oscillation in the contact, a constant damping

perpendicular to the contacting surfaces is applied.

8.4.5 Adaptivity

Adaptivity is applied to the blank mesh to obtain the greatest accuracy for the given

set of computational resources. In the initial mesh, the elements with the largest error

indicator are subdivided into smaller elements. In our case, an increased error

indicator is defined by either a large angle between two elements or by the blank

getting closer to a tool part that demands smaller elements. The free nodes in the new

elements are constrained to move as the average value of the neighbouring original

nodes displacements. Adaptivity does not provide control on the error of the solution,

but it makes it possible to obtain a solution of comparable accuracy with fewer

elements, than with a fixed mesh. The adaptive process can consist of several

refinement levels, see figure 8.4. Each refinement might cause mass scaling, since it

may generate a new smallest element.

Fig. 8.4a Initial element size Fig.8.4b Mesh after three refinement levels



8.4.6 Drawbeads

In the actual metal forming process there are drawbeads around the cavity of the die,

to help control the forming of the blank. These are simulated as analytic drawbeads,

defined by a set of node points that create a line on the die surface, see figure 8.5.

Along the drawbead line both lifting and friction force are applied, which serves as an

approximation of the actual drawbead.

Fig. 8.5 Die with analytic drawbeads (red line)

8.5 Forming Simulation of Volvo S80 Truck lid

The problem set up starts with an implicit gravity analysis of the sheet. In implicit

analysis, equilibrium of the FE-equations is established in each time step. The sheet is

very thin in the direction of the gravity in comparison with the two other directions,

and density of the material is high. This causes large deflection from the original

horizontal position, see figure 8.6.



Fig. 8.6 Deformation due to gravity load

The simulation of the actual forming process is performed as a so-called multi-

forming simulation, which starts by the blankholder closing and fixating the blank to

the die. Halfway through the blankholder motion, the punch motion starts, see figure

8.7a and 8.7b. Analytical drawbeads are applied to the die, to help give the blank the

required final shape.

Fig. 8.7a Set up of forming simulation – start position



Fig. 8.7b Set up of forming simulation – blankholder closed

The set up of the forming simulation proved to be more complicated and time-

consuming than expected, due to coarse set forming parameters in LS-Dyna. We also

had some trouble retaining satisfactory result from the forming simulation. Non-

optimal CAD-geometry lead to unrealistic contact pressure, at a maximal value of 240

MPa, between the die and the blank under the influence of the blankholder force.

Once this was corrected, better but still not satisfying blankholder pressure was

attained due to incorrect tool offset in this area. As a result, the contact pressure

caused by the blankholder needed to be manually altered go give a realistic

approximation of the forming process and the normal contact pressure were uniformly

set to 3 MPa.

The result of our forming simulation can be seen in figure 8.8, where the adaptivity of

the mesh is clearly seen. The outer material of the final shape is waste material,

needed in the forming process to fixate the blank. This material will later be removed.



Fig.8.8 Final shape of deformed blank

As demonstrated in the right part of figure 8.8, we get some torn elements in the knee

of the blank. This can also be seen in the FLD (see chapter 2) of the forming process,

in figure 8.9. The input parameters for the FLD is the blank thickness, t = 0.77 mm,

and the strain-hardening exponent, n = 0.229.

An attempt was made to improve simulation, using a different tool offset and some

other LS-Dyna input parameters, see Appendix A. However, this did not give

significant better result. Naturally, this is not a good enough approximation and

further efforts needs to be made in the future.



Fig. 8.9 FLD diagram of the final shape of deformed blank,
n = 0.229 and t = 0.77



Chapter 9

Topology Optimization

The loads on the die from the forming process were attained in the previous chapter. In order

to make a topology optimization, the constraints on the die needs to be defined as well. Once

a proper problem set up is established, a quasi-static topology optimization is performed, to

determine the optimal material distribution within the design domain. In order to solve the

topology optimization problem, the finite element software HyperMesh is utilized to prepare

the problem set up, and the linear solver OptiStruct is used to obtain the optimal material

distribution.

9.1 Model Description

The geometry of the die tool structure is modelled by the use of 3D solid elements. Since one

of the objectives in this project is to find the optimal material distribution in the die tool,

without changing the current design of the Volvo S80 truck lid, the material in contact with

the blank in the forming process are set as a non-design space. That is, the characteristic of

this material is not to be changed during the topology optimization. For VCBC to be able to

use the same press in manufacturing, the outer shape of the die is also set as non-design space.

To enable the topology optimization to find the optimal distribution of material, the entire

volume underneath the non-design space is set as available design space, see fig 9.1. The non-

design space is the red area in the figure, which is to be maintained during the topology

optimization. The green space, on the other hand, is the defined design space, which will be

optimized.



Fig. 9.1 FE-model used for topology optimization

9.2 Mesh

The mesh used for topology optimization is a solid element mesh. The solid element types

considered for this project were hexahedron and tetrahedron elements. For the interested

reader, these elements are in OptiStruct called CHEXA and CTETRA, respectively.

Hexahedron elements are elements with six sides and eight nodes. Tetrahedron elements are

elements with four sides and four nodes. Figures of these two different types of elements can

be seen below.

Fig. 9.2a Hexahedron element Fig. 9.2b Tetrahedron element

Before we started the assigned project, we practiced the problem set up on a small model. We

tried both hexahedron and tetrahedron mesh on this test model. We found that the results from



the topology optimization were similar, but also that the processing time was approximately

2.5 hours with the tetrahedron mesh and 8 hours with the hexahedron mesh. A hexahedron

mesh is also a time consuming mesh to set up in comparison with a tetrahedron mesh. Given

that the results were similar and the processing time were noticeable shorter when using

tetrahedron mesh, we decided to use this type of element for our topology optimization. The

mesh generated for the die tool to be optimized can be seen in fig 9.1.

9.3 Material Data and Material Model

After the mesh is defined, material properties must be assigned to the elements. In our case,

the material law used defines the properties for a linear, temperature-independent, isotropic

material. The material data is given by the same parameters as has been used earlier for the

die, see section 8.3. Note that since the material is homogenous, the magnitude of the input

parameters is of no importance, as long as the ratio between them is constant.

9.4 General Problem Set up

In the set up of a topology optimization problem, the total package volume needs to be

divided into a design and a non-design space, according to the restrictions of the problem.

Also, at least one load case, with associated boundary conditions, need to be defined.

The earlier defined design space is set to be the domain to be optimized, thereby defining the

design variables as the elements of this domain. The optimization is conducted for the given

objective function, for example to minimize the compliance, of the problem. Constraints

needs to be applied as well, or the otherwise obtained solution would be the full design space,

which naturally provides the stiffest solution.

A concern in topology optimization is that the design concept developed is often not

manufacturable. To satisfy the casting conditions, minimum and maximum member size of

the ribs created can be controlled, as well as the draw direction of the part. Another feature is

pattern grouping that allows a part of the domain to be designed in a certain pattern, for

example that two halves of the domain should be symmetrical.



9.5 Topology optimization of Volvo Die

The elements of the design space earlier defined are set as the design variables of the die tool.

We have been given two load cases from VCBC, for which the die should be optimized. The

first load case is attained from the forming simulation, where contact pressure and drawbead

forces on the die are found. The loads are mapped from the LS-Dyna model to the FE-model

of the topology optimization, by use of a modified Delaunay algorithm. The Delaunay

algorithm maps node data from one coordinate system to the element at the same position in

the other coordinate system. The element is then triangulated and the data from adjacent

triangles are interpolated into a final mapped value. The mapping is made from the rigid shell

mesh of the die tool, used in the forming simulation, to a deformable shell mesh, which

represents the surface of the solid mesh established for topology optimization. After that,

another mapping is performed, from the shell elements to the solid elements.

The second load case is the lifting of the die in the lifting lugs, an operation needed for

transportation and cleaning. For safety reasons, the transportation of the tool will be

considered as a slow movement and a safety factor of 1.1=ϕ will be multiplied with the

weight of the tool in accordance with Kran- och Hisskommissionen [8]. Both load cases are

quasi-static, i.e. they are actually dynamic, time dependent loads that are approximated to be

static load, needed in the topology optimization.

The boundary conditions applied to the forming load case is created by clamping the fixation

hole on the bolster side of the die, in all displacement directions. The die is also prevented

from moving in the vertical direction by locking the bed side from z displacement, see fig 9.3.



Fig. 9.3 FE-model of the forming load case for topology optimization

In the lifting load case, the nodes in the lifting lugs are constrained in all degrees of freedom

except for the x-axis rotation, see fig 9.4

Fig. 9.4 FE-model of the lifting load case for topology optimization

In our set up of the topology optimization problem, the two load cases are weighted equally.

The forming load case occurs to a much larger extent than the lifting case, however, as a

safety precaution they are still given the same relevance. The objective function is set to find

the minimum compliance, that is the maximum stiffness, of the package domain. The

constraint is set to use only 15 % of the volume of the design space, by defining a volume

fraction of 0.15. The result of this topology optimization can be seen in the next chapter.



One of the objectives of this thesis is to reduce the weight of the die, and to meet this demand

we had to elaborate with different volume fractions. A volume fraction of 0.50 gave a coarse

structure where ribs where hard to define, while a fraction of 0.30 gave clearer, but still not

satisfactory results. Finally, a volume fracture of 0.15 was found to give a legible structure,

see chapter 10 for details.

We also found that better results were achieved when the entire die was used in the topology

optimization, instead of using only half of it, together with a symmetry plane. The symmetry

plane caused a material distribution pattern that seemed to give element near this surface a

higher priority.

Attempts were made to illustrate the non-rigid response of the press, by placing a layer of

elastic material under the die. However, this bed seemed to distort the defined draw direction,

giving a topology optimization result that was hard to interpret.

Also, we tried to determine the mesh dependency of the topology optimization problem by

reduce the element size. This resulted in a very time consuming calculation, that gave a

nonsense structure.



Chapter 10

Topology Optimization Results and Re-design of the Die

The results from the topology optimization can be viewed in fig 10.1 and 10.2. These are the

results satisfying the objective function and the constraints, to minimize the compliance and

to use a volume fraction of 0.15. It should be used as an indication of the new design of the

die for this given load. The outer red frame in the figures is earlier set as non-design space and

therefore they will remain fix through the topology optimization. The red areas in the design

space indicate that the structure reaches the bolster of the die.

Fig 10.1 Results from the topology optimization of the die

Outer red
frame will
remain fix
after the
topology
optimization



Fig 10.2 Results from the topology optimization of the die

10.1 Interpretation of the Result

Fig 10.3 shows our interpretation of the rib structure from the topology optimization. In the

centre of the die is the spine, from which several ribs emerge. The ribs on each side of the

spine are joined together by a transverse rib. On the left hand side, two symmetric V’s are

created, as well as two closing walls, which attach the top non-design surface to the bolster

one. In the figure, broken lines illustrate that the ribs do not reach the bolster of the press.

Fig 10.3 Our interpretation of the topology optimization results of the die

Closing wall

Symmetric V’s Spine

Transverse ribs

Ribs



10.2 Re-design of the Die

A CAD-model is created from the pattern seen in the result of the topology optimization. The

CAD-program used in this project is Solid Works 2006 [9]. The non-design surfaces are

maintained, and are exported from HyperMesh into Solid Works. The new rib structure,

shown in fig 10.3, is created. Fig 10.4 and 10.5 shows the CAD-model of the new, optimized

die.

Fig 10.4 CAD-model of the new and optimized die

Fig 10.5 CAD-model of the new and optimized die



When evaluating the result, it is important to keep in mind that this is the result of an exact

given load, and that variations in the applied load might give a different result. To get an

indication of how stable our solution is, a load from a different forming simulation is applied

on the die, and a topology optimization is performed. The results can be viewed in appendix

A, fig A.2. This solution is slightly different but the overall structure is similar. Therefore we

believe that our solution is sufficiently stable.

A great advantage with topology optimization is the fact that you will get the optimal design,

irrespectively of the number of load cases applied. These load cases can be of great

complexity and hard for the human mind to grasp. To get a better understanding of how the

loads effect the result of the topology optimization in this project, we performed a topology

optimization for each separate load case. Therefore, separations of the loads have been made

and the normal pressure, shear forces, gravity forces and the drawbead forces have been

applied, one at a time. These topology optimization results can be found in appendix B, fig

B.1 till B.8, where it can be seen how the different load cases effect the overall solution. It is

interesting to note that the spine pattern is the result of the normal pressure, and the closing

walls are generated from the lifting case when transporting the tool.



Chapter 11

Displacement and Stress Analysis of Optimized Die

To analyse the results of the optimized die we look at the displacements and von Mises

stresses in the die. As mentioned earlier, the die is subjected to a forming and a lifting load.

The displacements and stresses are remarkably higher in the case of forming compared to the

lifting case, and therefore we will focus on the results from the forming simulation in future

discussion. These results will be compared with the displacements and von Mises stresses in

the original die.

The CAD-model is used to set up a FE-model of tetrahedral elements. These elements are

changed from first order into second order elements. Since second order tetrahedral elements

have 10 nodes while first order tetrahedral elements have only 4 nodes, the surfaces will be

better described. This will improve the accuracy of the result. Results and analyses of the

displacements can be viewed in fig 11.1 till 11.4 and the stresses in fig 11.6 until 11.9. Table

11.1 shows the numerical values of the displacements, stresses and weight in the original and

optimized die. The weight of the optimized die is 19% lighter than the original and the

maximal displacement is 15% less the size of the original.

Volvo Original
Die

Topology
Optimized Die

Difference

Maximal displacement (mm) 0.322 0.275 -15%
Maximal von Mises Stress (MPa) 106.1 140.3 +32%
Weight (kg) 9605 7826 -19%

Table 11.1 Comparison between original and optimized die



Fig 11.1 Displacement analysis of optimized die

Fig 11.2 Displacement analysis of optimized die



Fig 11.3 Displacement analysis of the Volvo die

Fig 11.4 Displacement analysis of the Volvo die

11.1 Displacement Analysis

For the displacements to be comparable we need to consider their directions. Fig 11.5a and

11.5b marks the negative direction and magnitude of the displacements. Since they are

approximately normal to the surface, both in the original die as well as the optimized die, they

are comparable.



If we focus on the overall displacements, instead of the maximal displacements, we note that

the right side of the die in fig 11.1 has lower stiffness than the same side of the VCBC die in

fig 11.3. This is the result of there being less material and supporting ribs on this side. The

reason for this is that in the topology optimization the limited material used is better needed

on the other side, for this given load. Consideration should naturally be made that the design

is sustainable for variation in applied load.

Fig 11.5a Magnitude and negative direction

of displacements in original die

Fig 11. 5b Magnitude and negative direction of

displacements in optimized die

11.2 Von Mises Stress Analysis

The result of the analyse of the von Mises stresses shows that the maximal stress in

the optimized die is 140 MPa, and located on the surface of the die, as shown in fig

11.6. In a close up picture of the exposed area, it can be seen that these high stresses

acts locally on one element. Since the surrounding elements are not nearly as exposed

to high stresses, a discretisation error might have occurred, see fig 11.10 for details.

This discretisation error may be caused by a defect in the mesh, as well as a numerical

problem caused by the mapping procedure. Except for this local error, the overall

stress distribution in the optimized die is comparable to the VCBC die.



Fig 11.6 Von Mises Stress analysis of optimized die

Fig 11.7 Von Mises Sress analysis of optimized die



Fig 11.8 Von Mises Stress analysis of the Volvo die

Fig 11.9 Von Mises Stress analysis of the Volvo die



Fig. 11.10 Element exposed to maximal stresses



Chapter 12

Morphing and Final Analysis of Optimized Die

Shape changes can easily be created on complex FE-model geometries using

morphing technology. The topology of the mesh is maintained when morphing, but

the location of the elements will change. This means that the elements can be dragged

and translated as one like, but the number of elements and nodes in the mesh will

always be the same.

Topology optimization gives only a coarse layout of the boundaries of the structure.

The next step is to perform a shape and size optimization. Due to the limited time of

this project only a morphing study has been performed, which is a part of a shape and

size optimization. We decide on the basis of the results from the stress and

displacement analysis which parts of the structure that needs to be further optimized.

Areas with large displacements and high stresses, as well as areas with small

displacements and low stresses are of interest for morphing, since increased stiffness

and further weight reduction can be made here. Figure 12.1 states these areas, where

the red ellipses marks the areas where weight reduction might be achieved, and

yellow ellipses marks the areas where increased material might be needed to further

improve the stiffness.



Fig. 12.1 Optimized die with morphing areas marked

We have narrowed down the width of the ribs in the spine as well as the area

underneath the red ellipse to the right. We have also extruded the area with maximal

displacements and enlarged the radians of the rib in the yellow marked area. Figure

12.2 shows all changes made by morphing.

Fig 12.2 Optimized die where morphing has been performed

Yet another analysis is set up, and the maximal displacement and von Mises stresses

on the morphed die are obtained. These results can be seen in figure 12.3 till 12.6.



Table 12.1 shows the numerical results in the original, optimized and morphed die.

The weight of the morphed die is still 19% lighter than the original and the maximal

displacement is 33% less the amount of the original. These results show that the

morphing study made a great impact of the maximal displacements.

Volvo Original
Die

Topology
Optimized Die

Difference
Morph

Improved Die
Difference

Maximal displacement (mm) 0.322 0.275 -15% 0.215 -33%
Maximal Von Mises Stress (MPa) 106.1 140.3 +32% 140.3 32%
Weight (kg) 9605 7826 -19% 7812 -19%

Table 12.1 Comparison between original, optimized and morphed die

Fig 12.3 Displacement analysis of morphed die

Fig 12.4 Displacement analysis of morphed die



Fig 12.5 Stress analysis of morphed die

Fig 12.6 Stress analysis of morphed die

12.1 Gravity Analysis of Final Design

The topology optimized and morphed die is the final design presented in this project.

A requirement VCBC has expressed is that the new design should be able to carry its

own weight in one lifting lug. This is for repairing and cleaning of the tool. Therefore,

analysis of the final die, when exposed to this load case, has been performed. The set

up of this problem is a simple constraint in the lifting lug, which locks the tool from

moving in all degrees of freedom. Gravity acts on the die in the direction from the

lifting lug through the centre of gravity. Figure 12.7 and 12.8 shows the problem set

up and the result of the analysis. As the result shows, the maximal von Mises stresses



occur in the hole of the lifting lug and has a magnitude of 89MPa. Since this value is

beneath the yield stress of the material this is considered as reasonable.

Fig. 12.7 Problem set up for gravity analysis



Fig. 12.8. Stress analysis of gravity case



Chapter 13

Conclusions and Discussion

This study show that a die tool of reduced weight and maximum displacement can be

obtained through topology optimization, given the loads established in the forming

simulation. The set up of the forming simulation proved to be more complicated and

time-consuming than expected. There were some trouble retaining satisfactory result

from the forming simulation, mainly due to non-optimal CAD-geometry and coarse

set forming parameters in LS-Dyna. The contact pressure generated from the

blankholder force needed some alteration in order to serve as a realistic approximation

of the loads for the forming process.

Also, the contact pressure at the knee of the die tool is too high, caused by too great

drawbead forces or too high friction force in this area, which result in rupture of the

blank. Some attempts were made to reduce this effect, but in accordance with VCBC

the forming simulation obtained was set to be a good enough approximation.

Great effort was made to achieve clearly marked result from the topology

optimization. We elaborated with different values of the volume fraction, finding that

the best results were obtained for a volume fraction of 0.15. We also found that better

results were achieved when the entire die was used in the topology optimization,

instead of using half of it and a symmetry plane. The symmetry plane caused a

material distribution pattern that seemed to give element near this surface a higher

priority.

Attempts were made to illustrate the non rigid response of the press, by placing a

layer of elastic material beneath the die. However, this bed seemed to distort the

defined draw direction, giving a topology optimization result that was hard to

interpret.



Finally, satisfying result was obtained for a volume fraction of 0.15, when conducting

a topology optimization of the whole die tool. The final structure obtained shows

clearly defined ribs that were used to create a new FE-model, by first using a CAD

program to redesign the tool. The new model was then meshed and the same loads

that were applied in the topology optimization were yet again used to find the

structural response for the newly design tool. Naturally, the same procedure was

conducted with the original die and analyses were made in both cases. In comparison

of the results we found that our topology optimized die had a reduced mass of 19 %

and that the maximum displacement was reduced 15% compared to the original die.

From the structural analysis, it was clearly seen which areas that were most heavily

loaded as well as the ones that were relatively unaffected. This information was used

to do a manual size optimization by morphing the mention areas in such a fashion that

improvements were made on the structural response. Without adding more mass, a

further reduction of the maximal displacement was made of 33%.

To verify that the die still can be used in the same way as it is today, a complementary

gravity load analysis was done. This to assure that the die still supports to be lifted in

one lifting lug. The maximal stress obtained, when lifting the die in the least

supported lug, was 89 MPa. Since the yield stress is 210 MPa, the morph improved

die fulfils the constraints set upon it.

13.1 Future Work

An even better new design may be obtained if giving some key aspect more attention.

These include:

• A limitation is that in the forming simulation the tool parts are set to be rigid,

which is an approximation to facilitate the calculations. If considering the

actual structural response of the die, a more accurate result may be obtained

from the forming simulation.

• When considering the final topology optimized die, VCBC realised that this

die might not sustain the loads on it when placed in the press. More efforts can



be made to fully describe and understand the loading cases on the die, as well

as their relative relevance.

• A full shape and size optimization should be made in order to get the best

result from the topology optimization. The topology optimization gives only a

coarse layout of the optimal material distribution. When adding shape and size

optimization to the procedure, the best attainable result should be found.



Bibliography

[1] Volvo Car Corporation Body Components, Standard BCD 8203,004, Castings –

Design instructions, 2004

[2] Schuler Metal Forming Handbook, Springer-Verlag Berlin Heidelberg New

York,1998

[3] N S Ottosen, M Ristinmaa. The Mechanics of Constitutive Modelling, volume 1.

Division of Solid Mechanics, University of Lund, 1999.

[4] M Ristinmaa, N S Ottosen. Large Strain Plasticity and Thermodynamics.

Division of Solid Mechanics, University of Lund, 2002.

[5] Bendsøe M P, Sigmund O. Topology Optimization: Theory, Methods and

Applications. Springer-Verlag Heidelberg New York, Berlin, 2003

[6] Hallquist, J.O. LS-Dyna Keyword User’s Manual, Version 970. Livermore

Software Technoloy Corporation, 2003

[7] Maker, Bradley N., Zhu, Xinhai. Input Parameters for Metal Forming

Simulation using LS-Dyna. Livermore Software Technoloy Corporation, 2000

[8] Kran och hisskommissionen. Normer för Stålkonstruktioner till Kranar,

Normblad IKH 4.30.01, utgåva 3. SIS Tryckeri, Stockholm, 1981

[9] Solid Works 2006 Online User’s Guide – SP0



Appendix A

Results of the Second Forming Simulation

Results of the second forming simulation, using different LS-Dyna input parameters,

see section 7.5 for more details.

Fig A.1 FLD of the second Forming Simulation



Fig A.2 Results from the topology optimization of the die with

the load from the second forming simulation



Appendix B

Results of the Topology Optimizations

Results from the topology optimization of the separated loads; normal pressure, shear

forces, gravity forces and the drawbead forces, see section 9.2 for more details.

Fig B.1 Result of the topology optimization with a homogeneous normal pressure applied

Fig B.2 Result of the topology optimization with a homogeneous normal pressure applied



FigB.3 Result of the topology optimization with a homogeneous shear pressure applied

Fig B.4 Result of the topology optimization with a homogeneous shear pressure applied



Fig B.5 Result of the topology optimization with gravity load applied

Fig B.6 Result of the topology optimization with gravity load applied



Fig B.7 Result of the topology optimization with drawbead load applied

Fig B.8 Result of the topology optimization with drawbead load applied




