
Department of Construction Sciences

Solid Mechanics

ISRN LUTFD2/TFHF�10/5154-SE(1-54)

ELASTO-PLASTICITY IN FEM

INTEPERETED AS A DAE SYSTEM

Master Thesis by

Eric Borgqvist

SUPERVISOR
DOCENT MATHIAS WALLIN, DIV. OF SOLID MECHANICS

EXAMINER
PROF. MATTI RISTINMAA, DIV. OF SOLID MECHANICS

Copyright c© 2010 by Div. of Solid Mechanics and Eric Borgqvist

Printed by Media-Tryck, Lund ,Sweden

For information, address:

Division of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden.

Homepage: http://www.solid.lth.se

I

Preface

The following Master Thesis has been the last part of my examination for a
Master of Science degree in Engineering Mathematics. The thesis was carried
out in Lunds Tekniska Högskola at the division of Solid Mechanics during the
time period April-October 2010.

First of all I would like to direct my sincere thanks to my supervisor Docent
Mathias Wallin, who introduced me to this very interesting topic and for all
the time he managed to spend with me working on this thesis. It would not
have been possible to �nish this thesis without all the questions and discussions
I had with Matthias. I would also like to thank my examinator Prof. Matti
Ristinmaa and all the people at the division of Solid Mechanics for these very
enjoyable six months.

Finally, I would like to thank my friends, family and my beloved Fang Shuai,
for their constant support and encouragement.

Beijing, November 2010

Eric Borgqvist

II

Abstract

The aim of this thesis has been to present an e�cient algorithm to solve the
balance- and evolution equations governing elasto-plasticity. The internal vari-
ables are given by evolution equations on the local (element) level while the
displacements are given on a so called global level. The global and local levels
are commonly solved independently of each other, but in this thesis they are
solved in a di�erent manner. After discretization in space has been made with
the �nite element method a system of Di�erential Algebraic Equations (DAE) is
established which includes both the displacements and the internal variables. A
discretization in time is made with a Diagonally Implicit Runge Kutta (DIRK)
method and the DAE system is then solved iteratively with the Multi Level
Newton Raphson Algorithm. A suitable time step for the entire system can be
achieved at a very low cost with an embedded DIRK method and thus make
the method more e�ective. Two models are looked upon, one in small strains
and one for large strains. Both models incorporate an internal variable which
describes the damage of the material. The damage evolution is known to be
sensitive to the integration algorithm and is therefore of interest when investi-
gating the proposed method. The results are very satisfactory and shows that
an e�cient integration is indeed obtained with the proposed method.

III

Contents

1 Introduction 1

1.1 Introduction . 1

2 Models 3

2.1 Plasticity . 3
2.2 General structure of material models 5
2.3 The visco-plastic model, small strains 6
2.4 Large strains model . 8

2.4.1 Kinematics theory . 8
2.4.2 Model . 10

2.5 Balance equations . 12

3 Numerics 13

3.1 Finite Element formulation . 13
3.2 Newton Raphson Method . 16

3.2.1 Multi Level Newton Raphson 16
3.3 Runge Kutta . 18

3.3.1 DIRK-method . 21
3.3.2 Error Control . 23
3.3.3 Embedded DIRK method 24

4 Procedure 25

4.1 Solution procedure . 25
4.2 Integration algorithm small strains 29
4.3 Integration algorithm large strains 33

4.3.1 Isochoric integration . 33
4.3.2 Integration of evolution equations 34

5 Results 37

5.1 Results, small strains . 37
5.1.1 Geometry, Rectangular disc with hole 37
5.1.2 Results, viscoplastic model 38
5.1.3 Discussion . 42

5.2 Results, Finite deformation . 44
5.2.1 Geometry, Necking of bar 44
5.2.2 Results . 45
5.2.3 Discussion . 48

IV

A Useful de�nitions and theorems 49

A.1 Numerical di�erentiation . 49
A.2 Order of consistency . 49
A.3 Implicit function theorem . 50

B Algorithmic tangent sti�ness matrices 51

B.1 Algorithmic tangent sti�ness . 51
B.1.1 Di�erentiation of σ̂ij . 51
B.1.2 Di�erentiation of α . 55

B.2 Algorithmic tangent sti�ness matrix derivation, �nite strains . . 56
B.2.1 Part 1 . 56
B.2.2 Part 2 . 57
B.2.3 Part 3 . 57

V

Chapter 1

Introduction

1.1 Introduction

The aim of this thesis is to present an e�cient and easy to implement algo-
rithm to solve the balance and evolution equations governing elasto-plasticity.
Material models are becoming increasingly complex and accurate integration
algorithms are needed, which can serve as a motivation for this thesis. The
discretization of the balance equations leads to a system of non-linear alge-
braic equations, from which it is possible to obtain the nodal displacements
on a 'global level'. The evolution equations are included on the element level,
which is commonly solved by some integration algorithm (like Implicit Euler)
independently of the global level. In this thesis however, a di�erent interpreta-
tion of the governing equations will be made. The same interpretation that is
made in [3] will be followed, where both the discretization of the balance equa-
tions together with the constitutive model de�ned locally, is seen as a system
of di�erential algebraic equation (DAE). Powerful numerical techniques used in
numerical analysis can be employed with this interpretation.

The technique that is going to be used is a Diagonally Implicit Runge-Kutta
(-DIRK) method together with the Multi-Level Newton Raphson Algorithm.
Both the displacements and the internal variables will be approximated in the
time domain with the DIRK-method. This will make it possible to obtain a
local error estimation for the entire system. A suitable time step can then be
determined by some prede�ned tolerances with the help of the error estimation.
The proposed Runge-Kutta method has an accuracy of order 2 and is both A-
and S-stable (cf. [3]). The method can thus handle complex material models
in a very e�cient manner. The structure of the proposed algorithm is very
similar to the structure of an Implicit Euler (IE) algorithm. It will turn out
that very little has to be changed when using this algorithm if an existing FE-
code capable of handling elasto-plasticity (where the IE-method has been used)
already exists. All the major changes can then be done in a �main� program
and most of the subroutines can be left intact

The algorithm will be tested and evaluated on two material models, one for small

1

deformations and one for large (�nite) deformations. Both of these models will
have an internal variable which describes the damage evolution of the solid. The
damage evolution is known to be sensitive to the integration procedure due to
its exponential development cf. [18]. It is therefore of interest to compare how
this method handles these sensitive material models.

In this text, it is assumed that the reader is familiar and has some background
with the �nite element method. Tensors will be widely used, where both index
and direct notation will be employed. Both tensors and matrices will be written
with bold text and it has to be understood from the context when which is
meant. The index notation is however mostly used in the small deformation
model while the direct notation is used on the large deformation model. The
identity tensor in index notation will be denoted by δij and the identity tensor
in direct notation will be denoted by I.

2

Chapter 2

Models

2.1 Plasticity

In the present section, a brief summary of plasticity will be presented. A more
comprehensive review about plasticity can be found in for example [13] and [10].
A material is de�ned to be elastic when the current stress, σ, can be uniquely
determined by the current strains ε on the material. For example, Hookes law
in an uniaxial state of stress is given by:

σ = Eε (2.1)

where E is the modulus of elasticity. The stress of the solid during both loading
and unloading is determined by (2.1). However, in elasto-plasticity theory this
relation is only valid until the e�ective stress σy (for example von Mises e�ective
stress) has reached a certain threshold value σy0, where σy0 is known as the
initial yield stress. The solid is said to have undergone permanent deformation
after the initial yield stress has been reached. Consider �gure 2.1.

-

6

�
�
�
�

�
�
�
�
�
��

-�
εp

-�
εe

σy0

σy

ε

σ

rA

rB

Figure 2.1: Elasto-plastic loading and unloading

Permanent deformation is characterized by the plastic strains which is developed
after σy > σy0. Assume that there is a linear relation between the stresses and

3

strains before yielding has occurred. After the yield stress has been reached,
the stresses no longer varies linearly, but unloading is still done linearly after
σy > σy0 as seen in �gure (2.1). Unloading until σy = 0, will leave some strains
in the body, these strains are denoted by εp as shown in �gure (2.1). The total
strains at point A in the �gure then consists of

ε = εe + εp (2.2)

If loading should be done from point B, then this load would again be applied
linearly until point A is reached and then the plasticity of the body will continue
to develop. The stresses are said to be path dependent in plasticity since there
exists in�nite possibilities to reach the point A.

A yield function f is introduced in order to describe the plastic deformation
process. The yield function describes a convex surface in the stress space and as
long as the e�ective stresses σy are inside the surface, then elastic deformation
is said to take place. Consider �gure 2.2.

@
@
@
@R

�
�

�
�	

6

σ1 σ2

σ3

A
A

Initial yield

Current yield f = 0f < 0

f > 0

Figure 2.2: Yield surface in the deviatoric plane

Figure (2.2) is plotted in the so called deviatoric plane. The axis in the �gure
are directed along the principal directions of the stress tensor σij , and the yield
surface is drawn in a plane perpendicular to the hydrostatic axis n = 1√

3
(1, 1, 1)

where n has the normed principal directions as bases (cf. [13]).

Linear elastic deformation takes place when inside the surface, f < 0. If however
f = 0 the initial yield stress has been reached and then plasticity occurs. The
yield surface changes during plastic deformation and this is described by a set
of internal variables q1, q2, ...qm. The yield surface is a function of these internal
variables, i.e. f = f(σij , q1, q2, ..., qm). The internal variables are usually given
in terms of some di�erential equations, called evolution equations. These evolu-
tion equations can usually be derived from the laws of thermodynamics but the
focus of this thesis is however the solution scheme to these evolution laws and
the reader is therefore suggested to read some of the references in order to get
a better insight into these equations. The evolution laws in this theses will be
taken as postulates and then the point of departure will be taken from there.

4

2.2 General structure of material models

For a rate independent elasto-plastic solid the internal variables and stresses are
forced to be on the yield surface f = 0 while in viscoplasticity it is allowed to
have an f > 0. In the former case f = 0 can be seen as a constraint equation to
our system. The following structure for the developed material models (de�ned
locally on the solid) is assumed in the elasto-plastic case:

[
σij = gij(εpq, q1, q2, ..., qm)
q̇k = 0

}
if f(σij , q1, q2, ..., qm) ≤ 0 (2.3)

 σij = gij(εpq, q1, q2, ..., qm)

q̇k = λ̇Lk(σij , q1, q2, ..., qm)
f(σij , q1, q2, ..., qm) = 0

 if f(σij , q1, q2, ..., qm) > 0

(2.4)

where λ is the so called plastic multiplier. The plastic multiplier λ is given
from KKT conditions for rate independent plasticity in a minimization problem
cf.[17]. In this thesis however, we simply see it as variable that is postulated
in our evolution equations. The equations q̇k = λ̇Rk(σij , q1, q2, ..., qm) are the
evolution equations and gij(εpq, q1, q2, ..., qm) is the elastic law which calculates
the stress. However the small strain model considered in this thesis is a visco-
plastic model, where the yield function is allowed to be greater than zero f > 0.
The structure of the visco-plastic model is assumed to be

[
σij = gij(εpq, q1, q2, ..., qm)
q̇k = 0

}
if f(σij , q1, q2, ..., qm) ≤ 0 (2.5)

[
σij = gij(εpq, q1, q2, ..., qm)

q̇k = 1
η

[
f
σy0

]r
Lk(σij , q1, q2, ..., qm)

}
if f(σij , q1, q2, ..., qm) > 0 (2.6)

The exponent r is a real positive number and η is a viscosity parameter. Com-
pared with the elasto-plastic model, the plastic multiplier has been replaced

with 1
η

[
f
σ0

]r
and the constraint constraint f(σij , q1, q2, ..., qm) = 0 from (2.4)

has been dropped. It can however be shown that the elasto-plastic model can
be obtained from the viscoplastic model by letting η → 0 (cf. [7] and [16]).

5

2.3 The visco-plastic model, small strains

The special material model that will be implemented in the small deformation
case is a mixed von Mises hardening model with Armstrong/Frederick Kinematic
terms coupled with damage in visco-plasticity. The model is the same as can
be found in [3] and [7] but an extra damage variable has been added to the set
of internal variables. The following internal variables, qk, will be adopted:

{qk} = {εpij , Xij , ε
p
eff , α}

εpij is the plastic strain, Xij is the back stress from the kinematic hardening, εpeff
is the e�ective plastic strain and α is the damage variable. The yield function
for this material model is given by:

f(σij , Xij , ε
p
eff , α) =

1

2
(
sij

1− α
−Xdev

ij)(
sij

1− α
−Xdev

ij)−

(
σy(εpeff)

)2

3

sij and Xdev
ij are the deviatoric part of the stress σij and back stress Xij re-

spectively which are given by

sij = σij −
1

3
σkkδij , Xdev

ij = Xij −
1

3
Xkkδij (2.7)

σy(εpeff) is a function which describes the hardening (the expansion of the yield
surface) and has the following form:

σy = σyo +K(εpeff) (2.8)

where K(εpeff) is a hardening function depending on the plastic e�ective strain.
The evolution equations for the internal variables will now be presented. The
Armstrong/Frederick model is used for the kinematic variables Xij

Ẋij = cε̇pij − bXij (2.9)

The plastic strains are assumed to develop according to:

ε̇pij =
1

η

[
f

σ2
0

]r
Nij (2.10)

where the direction of the plastic �ow is given by

Nij =
(
sij

1−α −X
dev
ij)

||(spq1−α −Xdev
pq)||

(2.11)

Where the euclidean norm has been used in the de�nition of Nij . Note that the
plastic strains has the property εpii = 0, which means that this internal variable

6

does not a�ect the volume of the solid. With this evolution equation for the
plastic strains, the following de�nition for the e�ective plastic strain rate (ε̇peff)
is obtained

ε̇peff =

√
2

3
ε̇pij ε̇

p
ij =

√
2

3

1

η

[
f

σ2
0

]r
(2.12)

Further on, the evolution of the damage variable α is assumed to evolve accord-
ing to

α̇ = −1

η

(
f

σ2
0

)r
Y

Sd(1− α)m
(2.13)

where Sd and m are two constitutive parameters, where Sd is known as the
damage modulus. Y is a measure of the energy release given by (cf. [18])

Y = −1

2
εeijD

hooke
ijkl εekl (2.14)

where Dhooke
ijkl is the fourth order tensor given by hooke's law (cf. [13]) Hooke's

law will be used to describe the relation between the stresses and the elastic
strains within the yield surface (f ≤ 0)

σij = (1− α)Dhooke
ijkl εekl = (1− α)Kbεkkδij + (1− α)2G(eij − e(p)

ij) (2.15)

Kb = E
3(1−2ν) is the bulk modulus and G = E

3(1−2ν) is the shear modulus. The

deviatoric part of the strains (eij and e
p
ij) above is de�ned in a similar manner

as (2.7).

A system of ordinary di�erential equations for the internal variables can now
be formed. The system with the same form as (2.6) is summarized below for
convenience

σij = (1− α)Kbεkkδij + (1− α)2G(eij − epij) (2.16)

ε̇pij =
1

η

[
f

σ2
0

]r
Nij (2.17)

Ẋij =
1

η

[
f

σ2
0

]r (
cNij − b

√
2

3
Xij

)
(2.18)

ε̇peff =
1

η

[
f

σ2
0

]r√
2

3
(2.19)

α̇ = −1

η

(
f

σ2
0

)r
Y

S(1− α)m
(2.20)

7

2.4 Large strains model

2.4.1 Kinematics theory

In this section some necessary terminology will be introduced in order to work
with large deformation processes in the �nite element method. For a further
review, the reader is referred to [10] or [15].

The reason for why a non-linearity arise in large deformation models is because
equilibrium is considered both in a reference con�guration N0 ∈ R3 at the time
instance t0 and the current con�guration N ∈ R at time instance t. The non-
linear map relating the two con�gurations are given by x = χ(x0, t) : N0×T →
N , where x0 denotes the position of some particle in the reference con�guration
and x the position of the same particle in the current con�guration in the
time interval T . The mapping of an in�nitesimal vector dx0 in the reference
con�guration to the current con�guration is de�ned by the partial derivatives
to the function x(x0) as

dx = ∇0(x)dx0 = F dx0 (2.21)

where F is the deformation gradient and ∇0 is di�erential operator acting on
x. In a Cartesian frame, the operator can be expressed as:

∇0(x) =

[
∂

∂x0
j

(xi)

]
(2.22)

and the components of the deformation gradient are then given by

[F]ij =

 ∂x1/∂x
0
1 ∂x1/∂x

0
2 ∂x1/∂x

0
3

∂x2/∂x
0
1 ∂x2/∂x

0
2 ∂x2/∂x

0
3

∂x3/∂x
0
1 ∂x3/∂x

0
2 ∂x3/∂x

0
3

 (2.23)

The position of the particle in the current con�guration can be split into two
parts with the help of the current displacements u.

x = x0 + u (2.24)

This means that the deformation gradient in a similar manner can be split into

F = I +Du (2.25)

Where the components of the tensor Du is given by

[Du]ij =

 ∂u1/∂x
0
1 ∂u1/∂x

0
2 ∂u1/∂x

0
3

∂u2/∂x
0
1 ∂u2/∂x

0
2 ∂u2/∂x

0
3

∂u3/∂x
0
1 ∂u3/∂x

0
2 ∂u3/∂x

0
3

 (2.26)

8

In the material model developed, it will be assumed that the deformation gra-
dient F can be split into an elastic and plastic part according to

F = F eF p (2.27)

where the plastic deformation gradient F p is assumed to be isochor, i.e. it will
not a�ect the volume in the map from x0 to x. This statement is equivalent to
that the determinant of the plastic gradient is equal to one, detF p = 1. This
can be compared with the in�nitesimal theory where the strains are divided
into εij = εeij + εpij and the plastic strains has the property εpkk = 0. The plas-
tic deformation gradient F p will be taken as an internal variable in the model
presented in next section. An illustration of the map from the original con�g-
uration N0 to the current con�guration N with the intermediate con�guration
Np is displayed in �gure (2.3). The �gure is directly taken from [19].

Figure 2.3: Illustration of the mapping of particle x0 to the intermediate and
current con�guration. Figure is taken from [19]

The strain measure that is going to be used is given by

E =
1

2
(C − I) (2.28)

where the Cauchy-Green tensor C is given by F TF . The stresses in the current
con�guration N0 is denoted by T . The balance equation that will be presented
later will however be integrated in the reference con�guration. A stress measure-
ment in this con�guration N0 is called the second Piola-Kircho� stress tensor
S de�ned by:

S = JF−1TF−T (2.29)

where J = detF . Further on, it is assumed that the di�erentiated second Piola-
Kirchho� stress dS can be written as a function of the di�erentiated Cauchy-
Green strains dE according to

dS = (1− α)D : dE − dαS (2.30)

9

where D is known as the tangent sti�ness tensor. With these introductory
remarks on �nite deformation theory, we are now ready to present the material
model of interest.

2.4.2 Model

Useful kinematic relations between the deformation gradient and other impor-
tant tensors used in the large strains model is summarized in table (2.1). Note
that all the quantities in the box that has a 'hat' upon them are isochor, i.e the
determinant is equal to one.

F̂ = J−1/3F J = detF

F̂
e

= (Je)−1/3F e Je = detF e

F̂
k

= (Jk)−1/3F k Jk = detF k

C = F TF Ĉ = J−2/3C

Ce = F eTF e Ĉ
e

= (Je)−2/3Ce

Ck = F kTF k Ĉ
k

= (Jk)−2/3Ck

Table 2.1: Useful quantities in deformation model

The model that will be developed is an elasto-plastic incompressible material
model based upon [19], but with an extra damage variable incorporated. The
yield function in the model will be a function of the Mandel stress Σ which is
given by the expression

Σ = (1− α)Kb ln Je1 + (1− α)G ln Ĉ
e,dev

(2.31)

where Kb and G are the bulk and shear modulus respectively. The damage vari-

able is denoted by α. The logarithmic elastic Cauchy-Green tensor ln Ĉ
(e,dev)

can be calculated through eigenvector decomposition (cf. [11]). The second Pi-
ola Kircho� stress tensor S that was introduced before, is related to the Mandel
stress through

Se = (Ce)−1Σ
S = (F p)−1Se(F p)−T

(2.32)

where Se is a second-Piola Kircho� stress mapped from the intermediate con-
�guration Np. The plastic deformation gradient F p will be taken as an internal
variable as stated previously. Another internal variable used in the yield con-
dition f = 0 will be the kinematic deformation gradient F k, which is based
upon introducing another con�guration Nk from which particles in the refer-
ence con�guration can be mapped onto (cf. [19]). The back stress tensor X
subsequently used in the yield condition is given by

X = ξ lnCk,dev (2.33)

10

where ξ is a constitutive parameter. The damage variable is governed by the
same evolution equation as in the small strains case, but with another measure
of the energy release rate Y , i.e.

Y = −1

2
Kb(ln J

e)2 − G

4
(lnCe,dev : lnCe,dev) (2.34)

The yield condition in the large deformation model can now be de�ned as

f(Σ(F e),X(F k), α) =

√
3

2
(

Σdev

1− α
−X) : (

Σdev

1− α
−X)− σy0 (2.35)

The material model written in the same format as in (2.4) for the internal
variables are postulated to be:

Σ = (1− α)Kb ln Je1 + (1− α)G ln Ĉ
e,dev

Ḟ
p

= = λ̇NpF p

Ḟ
k

= λ̇F kNk

α̇ = −λ̇ Y
Sd(1−α)m

(2.36)

The tensors Np and Nk are given by the expression

Np = 3
2σy0(1−α)

(
Σdev

1−α −X
)

Nk = 3
2σy0

(
Σdev

1−α −X
)
− Γ 3

2X
(2.37)

where Γ is a constitutive parameter. The reader is again referred to [19] and
[20] for a more comprehensive review on the material model.

11

2.5 Balance equations

The balance equations that are going to be solved is now presented. This is
however only done in the large strains case, since the balance laws in small
strains can be obtained as a special case of the equations presented here. The
reader is refered to [12] or [13] for a derivation of the balance equations in small
strains.

The balance equations in large strains are expressed in the reference con�gura-
tion with the help of the principle of virtual power. The derivation of this can
be found in [15]. The expression is given by

∫
V 0

E(w) : SdV 0 −Πext = 0 (2.38)

The integration is made over the volume of the solid in the reference con�gura-
tion V 0. The second Piola-Kircho� stress S was de�ned in (2.29). The virtual

strain E(w) is given by the expression

E(w) =
1

2
(∇0w + (∇0w)T + (∇0w)T∇0u+ (∇0u)T∇0w) (2.39)

where w is a weight function which can be chosen arbitrarily. By exchanging w
with u then an additional expression which is equal to the Cauchy-Green strains
E de�ned in (2.28) can be found. The external virtual work Πext is given by
the expression

Πext =

∫
S0

wT t0dS0 −
∫
V 0

wT bdV 0 (2.40)

where t0 are the external traction forces acting on the body in the reference
con�guration and b are the body forces. The surface S0 consists of two parts
S0 ∈ Sf ∪ Su . On Su the displacements of the body are assumed to be known
(essential boundary conditions) while on Sf the external traction forces act-
ing on the solid is assumed to be known (natural boundary conditions). The
aim is to solve (2.38) together with the internal variables in order to compute
deformation of the solid.

12

Chapter 3

Numerics

3.1 Finite Element formulation

The �nite element formulation of the balance equations (2.38) and the system
of internal variables will now be presented. This will only be presented for the
large deformation case. Matrices (i.e. not tensors) will be used in this section.
The reader is assumed to be familiar with the �nite element terms described in
this section and we refer the reader to [12] for a review on the FEM-formulation.
The solid of interest is discretized into nelm elements and the displacements u
are described with nu degrees of freedom. The displacements u(t) at time t of
the solid is expressed with the help of ne global shape functions Nk according
to

u(x, t) =

nu∑
k=1

Nk(x)ak(t) = N(x)a(t) (3.1)

a(t) describes the nodal displacements and is a function of time only, while
the shape functions Nk are functions of the position x only. The global shape
functions Nk has further been ordered in a matrix N above.

The balance equations that was established in chapter 2.5 are now discretized
since the underlying variables in the formulations depends on the displacement
u. In the small strains case, the discretized strains are given by direct di�eren-
tiation of the current displacement with respect to the positions x. In the large
strains case however, the deformation gradient F is needed, which can be com-
puted for one element with the help of (3.1) and (2.22). The weight functions
in (2.38) are chosen according to Galerkin, wm = Nc where c is an arbitrary
vector. Here wm denotes a ne × 1 vector and in order to put this vector in
the expression of the virtual strains an introduction of some new di�erential
operators can be useful. How exactly this is made can be found in [15], but here
we simply state that after some algebraic manipulations has been made, then
the virtual strains Ê and in a similar manner the Cauchy green strains E can
be written as

13

Ê = Bc
E = Ba

(3.2)

where the matrix B is a function of the displacements u. The second Piola-
Kricho� stress is ordered into a matrix S and by putting in the �nite element
approximation into (2.38) and noting that c can be chosen arbitrarily, then the
following expression is obtained

RG =

∫
V 0

BTS(u(t), q(t))dV 0 − fext = 0 (3.3)

with

fext =

∫
S0

NT tdS0 −
∫
V 0

NT bdV 0 (3.4)

The �rst integral above is further de�ned as
∫
V
BTSdV a = f int. The volume

and surface integral above is calculated using gauss integration (c.f [12]), where
triangular elements with 1 gauss point have been used in the small strain case
and rectangular isoparametic elements with 4 gauss points in the large strains
case. However a mixed �nite element formulation will be implemented in the
large strain case, but it will not be covered in this thesis, since the addition
of the mixed formulation does not matter in integration scheme developed. A
short and not rigorous explanation of the mixed formulation is that it relaxes
the relation J = detF such that J is spread out through the element (instead
of calculating it at the gauss points) and in a sense weakens the conditions on
J . The mixed formulation is given in [19] and a deeper review of it can be found
in [1]. Axisymmetric elements will be used in the large strains case, which also
can be read more about in [1].

The stresses and internal variables given in the general format (2.4) and (2.6),
have now been discretized as well, since these underlying equations also depends
on the displacements. Order now the di�erentiated and discretized internal vari-
ables q̇k(σij(u), q1, q2, . . . , qm) in a a vector q̇ and the functions λ̇Lk(σij(u), q1, q2, . . . , qm)
into an matrix L(u(t), q(t)). Further on, if an elasto-plastic model is consid-
ered where the additional condition f = 0 exits, then this condition is also
ordered into the matrix L(u(t), q(t)). A residual for the evolution laws and the
constraint equation f = 0 can then be formed

RL = Aq̇(t)−L(u(t), q(t)) = 0 (3.5)

The matrix A is introduced to make sure that no q̇ is included in the constraint
equation f = 0, i.e the corresponding row in A which gives the constraint equa-
tion f = 0 is �lled with zeros and the rest of the matrix is a corresponding iden-
tity matrix. If this system is inserted into an additional matrix F (t,y(t), ẏ(t)),
then a di�erential algebraic equation system of �rst order can be formed ac-
cording to

14

F (t,y(t), ẏ(t)) =

{
RG

RL

}
=

{ ∫
V
BTS(u(t), q(t))dV − fext

Aq̇(t)−L(u(t), q(t))

}
= 0 (3.6)

where the unknowns y(t) are given by

y(t) =

(
u(t)
q(t)

)
(3.7)

with the initial conditions

y(t0) =

(
u(t0)
q(t0)

)
=

(
u0

q0

)
= y0 (3.8)

The system (3.6) is now interpreted as a DAE system with index 1. This will be
solved by �rst approximating y(t) and ẏ(t) with the Diagonally Implicit Runge-
Kutta (-DIRK) method and then the system F = 0 will be solved iteratively
with the Multi Level Newton Raphson Algorithm (MLNRA).

NOTE: The common way to proceed is to treat the global equations RG and
the local residual equations RL independently of each other. The displacements
are then solved from the global level and the internal variables are computed
at the local level with the newly computed displacement from RG = 0. In the
interpretation (3.6), the displacements together with the internal variables will
be approximated with the DIRK-method, which makes it possible to get an
error estimation for the entire system.

15

3.2 Newton Raphson Method

The general Newton Raphson method will now be explained. Consider a general
function given in the format F (x) = 0 from Rm → Rm. A Taylor expansion
is made around xk and all the higher order derivatives(higher than 1) are left
out from the approximation

F (x) ≈ F (xk) +
dF (x)

dx
|x=xk(x− xk) = 0 (3.9)

dF
dx is called the Jacobian matrix. Solving the above equation for x gives

x = xk −
(
dF

dx
|x=xk

)−1

F (xk) (3.10)

An iteration scheme can now be constructed by putting x = xk+1, where k
denotes the iteration step. The start guesses have to be given at k = 0 and then
the next xk+1 is calculated until the norm of the di�erence between xk+1 and
xk is less than a prede�ned tolerance value, i.e ||xk+1−xk|| < TOL, where ||.||
denotes some norm.

3.2.1 Multi Level Newton Raphson

The DAE-system that was established in (3.6) is split into two parts, one global
system of residual equations and one local system of residual equations:

RG(u(t), q(t)) = 0
RL(u(t), q(t)) = 0

(3.11)

The system (3.11) has already been discretized in space. The system will be
approximated in time with a Diagonally Implicit Runge Kutta method and then
solved iteratively with the so called Multi Level Newton Raphson Algorithm.
A description of the time discretization is made in the next chapter and in this
chapter we concentrate on the MLNRA. We assume that the discretization in
time for both the displacements and the internal variables have already been
made in the following text in this section.

First we have to apply the implicit function theorem, which is stated in the
appendix. The use of this theorem will tell us that the internal variables can
be written as a function of the displacements u i.e. q = q(u) if we are close
to the solution RL(u(t), q(t)) = 0 and RL is su�ciently smooth (c.f [3]). The
system is solved at the 'global' level in order to get the increment of the nodal
displacements ak+1 − ak = ∆a, which is then used to get the displacements
u according to (3.1). The Newton Raphson iteration scheme (3.10) applied to
RG together with the implicit function theorem gives

KT∆a = −RG(uk, q(uk)) (3.12)

16

where the tangent sti�ness matrix KT is de�ned as, i.e

KT =
dRG

du
|uk +

dRG

dq

dq

du
|uk (3.13)

By performing the di�erentiation on RG one arrives with the following expres-
sion on the sti�ness matrix

KT =

∫
V 0

BTDBdV 0 +

∫
v0

dBT

du
SdV 0 (3.14)

whereD is the consistent tangent sti�ness matrix which is obtained by di�eren-
tiating the stresses. The derivation of the consistent sti�ness matrix (both for
the large- and small strain models) are made in the appendix. The increment
displacements are then determined through

∆a = K−1
T RG(uk, q(uk))

ak+1 = ak + ∆a
(3.15)

In order to �nd the the displacements at k+ 1 we need q(uk) which is obtained
by solving the local system of residual equations:

RL(uk, q(uk)) = Aq̇ −L(uk, q(uk)) = 0 (3.16)

Where q̇ has been approximated in time with some time stepping method in
order to �nd q(uk). The implemented time stepping method is the DIRK
approximation, which is described next.

17

3.3 Runge Kutta

Let us �rst begin by introducing the Runge-Kutta method for a general problem.
Most of the theory in this section can be found in [9] and [3]. The Runge-Kutta
method is based on an integration scheme called the quadrature rule. The exact
solution of the ordinary di�erential equation (ODE)

y′ = f(t), y(t0) = y0 (3.17)

whose right hand side is independent of y, is given by

y = y0 +

∫ t

t0

f(τ)dτ

There exists a very rich theory and powerful methods to compute integrals
numerically. It is thus natural to utilize this theory in the numerical solution to
ODEs. Consider the integral:

I =

∫ t

t0

f(τ)dτ (3.18)

The integral is approximated by a quadrature through evaluating the function
value at some selected point τi and multiplying them by a weight wi:

I ≈
s∑
i=1

f(τi)wi (3.19)

Consider the di�erential equation:

y′ = f(t,y), y(t0) = y0, y ∈ Rm, t ∈ [t0, T] (3.20)

The time interval is split into N + 1 subintervals t0 < t1... < tn < tn+1 <
... < tN−1 < tN , which are called time steps. The step sizes are given by:
∆tn = tn+1 − tn. We assume that the solution yn is given at the time step
tn and then we are interested of the solution at tn+1. An exact integration of
equation (3.20) and a change of integration variable gives

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t,y(t))dt =

y(tn) + ∆tn

∫ 1

0

f(tn + τ∆t,y(tn + τ∆t))dτ (3.21)

Now a quadrature rule is applied to (3.21), which results in

y(tn+1) ≈ yn+1 = yn + ∆tn

s∑
i=1

bif(tn + ci∆t,y(tn + ci∆t)) (3.22)

18

where the weight factors bi and the coe�cients ci that determines where and
when the functions are evaluated have been introduced. The time points tni =
tn+ci∆tn are denoted to be at load step n and stage i, where the total number of
stages are s. From the expression above we see that there still exists unknowns
at the stages, i.e the stage values y(tn + ci∆tn). But this can in the same way
as with (3.22) be approximated with a quadrature rule

y(tn + ci∆tn) ≈ Y ni = y(tn) + ∆tn

s∑
j=1

aijf(tn + cj∆tn,Y ni) (3.23)

With the new weighting factors aij but at the same time points tni = tn+ ci∆t.
For convenience, the terms inside the sum in (3.23) are de�ned as

Ẏ ni = f(tn + cj∆tn,Y ni) (3.24)

and is referred to as the to be the stage derivatives. Now there are two sets
of unknowns Y ni and Ẏ ni, but they are however coupled through (3.23) and
thus it is possible to choose either Y ni or Ẏ ni as our primary set of unknowns.
The Runge-Kutta method can further be divided into two groups, explicit and
implicit Runga-Kutta methods, which are given by:

Y ni = yn + ∆tn

s∑
j=1

aijẎ nj , Implicit Method (3.25)

Y ni = yn + ∆tn

i−1∑
j=1

aijẎ nj , Explicit Method (3.26)

19

-

6

rY n1

rY n2
rY n3

-�

∆tntn tn+1

yn

yn+1

tn1 tn2 tn3 t

y

Figure 3.1: A three stage method

where at least one aij 6= 0 for j ≥ i in the implicit RK case. Consider �gure 3.1.
The interval [tn, tn+1] has been split into the stages (Y n1,Y n2,Y n3) at the time
points (tn1, tn2, tn3) in the curve.

In case of an explicit method with j < i, the stage values Y ni can be calculated
from the values of the previous stages Y nj . The stage derivatives can thus be
determined explicitly. For example, the stage values in the classical RK method
are determined according to

Y n1 = yn

Y n2 = yn +
∆tn

2
Y n1

Y n3 = yn + ∆tn(−Y n1 + 2Y n2)

And then the value at yn+1 in the classical RK method is given by

yn+1 = yn + ∆tn

(
1

6
Ẏ n1 +

2

3
Ẏ n2 +

1

6
Ẏ n3

)
(3.27)

If an implicit method is being considered, then a system of non-linear equations
has be to solved in order to determine the stage derivatives Ẏ ni. A general
method to do this is as follows. Choose Ẏ ni as the primary set of unknowns
and then de�ne a residual as (see (3.24))

rY (Ẏ n1, Ẏ n2, ..., Ẏ ns) =


Ẏ n1 − f(tn + c1∆tn,yn + ∆tn

∑s
j=1 a1jẎ nj)

Ẏ n2 − f(tn + c2∆tn,yn + ∆tn
∑s
j=1 a2jẎ nj)

...

Ẏ ns − f(tn + cs∆tn,yn + ∆tn
∑s
j=1 asjẎ nj)


(3.28)

20

Then solve the system rY = 0 in order to get the stage derivatives (with for
example the Newton Raphson method described in the previous chapter). Once
the stage derivatives have been calculated, then the new step can be computed
to be (according to (3.22)).

yn+1 = yn + ∆tn

s∑
i=1

biẎ ni (3.29)

We will however consider a special family of implicit Runge-Kutta methods that
simplify the stage calculations signi�cantly.

3.3.1 DIRK-method

The coe�cients aij , ci and bi are usually ordered into a so called Butcher tableau
as shown in the table below.

c a

bT

A Runge Kutta method can either be explicit or implicit as stated previously.
The butcher tableau of the two di�erent kinds are shown below.

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

(a) Butcher tableau for Implicit RK
method

0 0 0 . . . 0
c2 a21 0 . . . 0
...

...
. . .

...
cs as1 as2 . . . 0

b1 b2 . . . bs
(b) Butcher tableau for Explicit
RK method

The coe�cients in the butcher tableau determines the e�ciency, stability and
accuracy of the methods. An explicit Runge-Kutta method has its upper right
part of the amatrix �lled with zeros, including the diagonal. While in general an
implicit method has the whole matrix �lled with non-zero values. The classical
RK method that was considered previously has the butcher tableau according
to table 3.1.

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

Table 3.1: Classical RK method

A special family of sti�y accurate RK methods called Diagonally Implicit Runge
Kutta methods are now of special interest in a �nite element context. A DIRK
method is very similar to the Implicit Euler scheme, which implies that old
source code where the Implicit Euler scheme has been used can be easily modi-
�ed to incorporate the DIRK method instead. A DIRK method has a butcher
tableau according to table 3.2.

21

c1 a11 0 . . . 0
c2 a21 a22 . . . 0
...

...
. . .

...
cs b1 b2 . . . bs

b1 b2 . . . bs

Table 3.2: Diagonally Implicit Runge-Kutta method

A fully implicit method is of little interest when applied to �nite element prob-
lems since the sparse structure of the sti�ness matrix will be destroyed. Further,
a sti�y accurate method is preferred, which is achieved by letting the last stage
Y ns coincide with the new solution yn+1. This property guarantees that the
algebraic constrains is ful�lled at the last step (cf.[3]). A DIRK method that can
handle sti� problems are the Singly Diagonally Implicit Runge Kutta (SDIRK)
method, which have the properties asi = bi and aij = 0 when i < j. The
calculation of the stages (see (3.25)) can be simpli�ed to

Y ni = yn + ∆tn

i∑
j=1

aijẎ ni = Sni + ∆tnaiiẎ ni (3.30)

where the "starting value" has been de�ned according to:

Sni = yn + ∆tn

i−1∑
j=1

aijẎ ni (3.31)

Note that Sni only depends on the previous calculated stage derivatives i.e
j < i and is therefore known at stage i. The integration (3.30) is essential for
our further analysis. Let us compare the DIRK step (3.30) with an Implicit
Euler step

yn+1 = yn + ∆tnf(tn,yn+1)

Y ni = Sni + ∆tnaiif(tn + ci∆tn,Y ni)
(3.32)

The structure between the two equations are very similar. The di�erence be-
tween them is that yn is replaced with Sni and ∆tn is replaced with aii∆tn
at the stage calculation. In order to solve the system for Y ni at stage tni in a
general way, a similar procedure as shown for the general implicit RK method
in chapter 3.1 can be utilized. Begin with switching to Y ni to be the primary
set of unknowns through

Ẏ ni =
Y ni − Sni

∆tnaii
(3.33)

Note again the resemblance to the IE approximation of the derivative ẏ ≈
y(tn+1)−y(tn)

∆tn
. A residual at stage i can then be formed which only has Y ni as

the primary set of unknowns:

22

rni(Y ni) =
Y ni − Sni

∆tnaii
− f(tn + cj∆tn,Y ni) = 0 (3.34)

This residual equation can then be solved with for example the Newton Raphson
method that was explained previously.

3.3.2 Error Control

A motivation for using a DIRK method is not only to obtain an integration
method with higher accuracy but also that a suitable time step ∆tn can be
determined with virtually no extra cost. Assume that yn+1 is the solution at
tn+1 from a RK-method with order q and that ŷn+1 is the solution from a RK-
method with order p and p = q + 1. See the appendix for the de�nition of the
order of a method. We have:

yn+1 = ȳ(tn+1) + l∆tq+1
n +O(∆tq+2

n) (3.35)

ŷn+1 = ȳ(tn+1) +O(∆tq+2
n) (3.36)

ȳ(tn+1) is the exact solution with initial condition y(tn) = yn and l is a vec-
tor which depends on the underlying di�erential equation but not upon ∆tn.
Subtracting these two solutions with each other we obtain

yn+1 − ŷn+1 ≈ l∆tq+1
n (3.37)

which is the main part of the local integration error. Now we want the error to
ful�ll

||κ|| = ||yn+1 − ŷn+1|| < TOL ,where TOL = εr|yn|+ εa (3.38)

εr is a prede�ned relative tolerance and εa is a prede�ned absolute tolerance.
The norm of the error is de�ned to be

||κ|| = ||l∆tq+1
n || = C∆tq+1

n (3.39)

where C is a constant independent of ∆tn. In order to determine the new step
size we require that the local integration error should be equal to the prede�ned
tolerance

C∆tq+1
new = TOL (3.40)

By solving this equation for C and substituting it into (3.39) one arrives at the
following estimate for the new step size

∆tnew = ∆tn

(
TOL

||κ||

) 1
q+1

(3.41)

23

This is the estimation of the step size that will be made in the implementa-
tion. The calculation of the new step size ∆tnew is most e�ciently done by an
embedded DIRK method.

3.3.3 Embedded DIRK method

By using an embedded DIRK method the new time step, ∆tnew can be calcu-
lated at a very low cost. Suppose again that we have two RK-methods, one
with order p and the other one with order p− 1, which gives the solution yn+1

and ŷn+1 respectively. If the two methods have the same coe�cients in the a
matrix and c vector in the butcher tablau, then the two methods are said to be
embedded. A consequence of an embedded method is that its enough to solve
the system rni(Y ni) once since both methods will provide the same stage values
Y ni, in order to caluclate yn+1. The solution for the RK-methods are given by
(3.29):

ŷn+1 = yn + ∆tn
∑s
i=1 b̂iẎ ni

yn+1 = yn + ∆tn
∑s
i=1 biẎ ni

(3.42)

Thus an error estimation from (3.39) can be made which is

κ = ŷn+1 − yn+1 = ∆tn

s∑
i=1

(bi − b̂i)Ẏ ni (3.43)

For our particular DAE system we have that the solution yn+1 is split into the
displacements un+1 and the internal variables qn+1. An error measure for the
displacements and internal variables are de�ned to be

eu =

√√√√ 1

nu

nu∑
l=1

(
κu

εr|uln|+ εla

)2

ekq = max
k

∣∣∣∣ κkq
εr|qln|+ εla

∣∣∣∣ (3.44)

nu is the number of degrees of freedom and k represents the di�erent internal
variables. The same error measurement that can be found in [3] has been
used. The new step size is then calculated according to (3.41) with these error
measures and some additional safety factors:

∆tnew = ∆tn ·

{
max(fmin, fsafety · e−1/(q+1)

m) if em > 1

min(fmax, fsafety · e−1/(q+1)
m) if em ≤ 1

)
(3.45)

em is the maximum of the error measures em = max (eu, e
k
q). The factor fsafety

prevents to much oscillations in the step sizes, fmin and fmax damp extreme
step size changes. See reference ([6], [5] and [3] for details).

24

Chapter 4

Procedure

4.1 Solution procedure

Now when we have the necessary tools for solving (3.6), the solution procedure
is presented. The system will be solved at the stages Y ni using the Multi Level
Newton Raphson method together with the DIRK method. The stage values at
the time tni = tn + ci∆tn are given by

Y ni =

(
uni
qni

)
(4.1)

Assume that equilibrium at load step n exists and we know the quantities yn =
(un, qn)T and now we want to �nd the solution yn+1. The solution scheme for
a 2-stage SDIRK method will be used to illustrate a displacement driven format
applied to a bar. Consider �gure (4.1).

25

un = uS1

un1

uS2

un2 = un+1

6

?

∆US1

6

?
∆US2

6

?

∆U

Figure 4.1: Illustration of a rectangular bar undergoing deformation from load
step n to n+ 1

Stage i = 1:
Assume that the bar in �gure (4.1) has �xed boundary conditions at the left,
right and bottom side while the bar will be pulled at the top with a constant
speed u̇ = ∆u

∆t . The total displacement during the entire load step of the bar
will then be given by:

∆U = u̇∆tn (4.2)

First the start values S are calculated, which at stage 1 is equal to the solution
at load step n, i.e.

Sn1 =

(
uS
qS

)
=

(
un
qn

)
(4.3)

Then the increment displacements from n to Y n1 at tn1 = tn + c1∆tn is com-
puted to be

∆US1 = c1∆U (4.4)

The stage values Y n1 can then be found with the help of the Multi Level Newton
Raphson algorithm together with the DIRK-approximation

26

F (tn1,Y n1,
Y n1 − Sn1

aii∆tn
) =

(
RG(Y n1) =

∫
V
BTS(Y n1)dV − fext

RL(tni,Y n1) = A
(

qn1−qS
aii∆tn

)
−L(un1, qn1)

)
=

(
0
0

)
(4.5)

is solved. See box (4.2). The stage derivatives are stored next, which is needed
for the new start value at the next stage according to (3.33).

Ẏ n1 =
Y n1 − yn

∆ta11
(4.6)

Stage i = 2:

The start value is computed to be

Sn2 = yn +

i−1∑
j=1

∆tna2jẎ nj = yn + a21∆Ẏ n1 (4.7)

Then the increment displacement has to be calculated. Note that the start value
for the displacement in order to calculate the solution at stage 2 is not given
by displacements at stage 1, i.e. uS2 6= un1. Let us de�ne the displacement
increment from n to stage Y n2 by ∆U2 = c2∆U . Since we consider a sti�y
accurate 2 stage Runge-Kutta method, which has the property yn+1 = Y n2 it
follows that c2 = 1 and thus ∆U2 = ∆U . But this however not the increment
displacement that will be loaded upon the bar, since the displacement are added
from the start value uS2. From the �gure it follows that the displacement ∆U
can be written as

∆U = (uS2 − un) + ∆US2 (4.8)

Putting in (4.7) and using the fact that we have a constant speed of the incre-
ment of displacements, i.e u̇n1 = ∆U

∆tn
and solving for ∆US2 gives the sought

increment displacement to be

∆US2 = c2∆U −
i−1∑
j=1

∆tna2j
∆U

∆tn
= ∆U − a21∆U (4.9)

The system is then solved again with the multi level Newton Raphson algorithm
to get Y n2 and then we put yn+1 = Y n2.

The solution procedure of solving these systems is summarized in table (4.1)
and (4.2). The embedded Elsiepen 2-stage Runge-Kutta method will be used,
which is given in table (4.3). It is possible to add a restart box in the updating
procedure if the error estimation ful�lls em > 1 and thus get a more accurate
result, but at the expense of more global newton iterations. This is done in
the algorithms in [3]. This restart box is however not included in the current
implementation, since no restart is usually done when solving the system with
the Implicit Euler scheme together with a crude time step estimation.

27

Given:

• Initial conditions y0 =

(
a0

q0

)
• Initial time step ∆t0

• DIRK-scheme with s stages, aij , ci, bi where 1 ≤ i ≤ s, 1 ≤ j ≤ s,
While tn+1 < tend

For stage, i=1:s

�

∗ Calculate new time for stage tni = tn + ci∆tn
∗ Calculate new start value Sni = yn+∆tn

∑i−1
j=1 aijẎ ni

∗ Solve system F (tni,Y ni,
Y ni−Sni
aii∆tn

) = 0 (3.6) with ML-
NRA, see table (4.2)
∗ Store stage derivatives Ẏ ni = Y ni−Sni

∆taii
according to

(3.33)

� Estimate error em according to (3.44)

� Estimate new time step according to (3.45)

• Update, yn+1 = Yns, tn+1 = tn + ∆tn

Table 4.1: Update procedure

• Given a0 = aS and q0 = qS

• Determine new load level fextni (tni) or increment displace-
ments ∆USi

Iterate k = 1, 2 . . . until Φk = ||fext − f int|| < TOL

� Calculate sti�ness matrix KT (uk−1, qk−1)
� Solve ∆ak from KT∆ak = fext

� Update nodal displacements ak = ak−1 + ∆ak

� Solve the local system RL(uk, qk) = 0 for qk. See
chapter 4.2 and 4.3.

� Determine the new stress S(uk, qk)
� Determine the new tangential sti�ness matrixDk used
in KT

� compute the new out of balance force RG(uk, qk)

• Accept new quantities, ani = ak, qni = qk

Table 4.2: Multi level Newton Raphson Algorithm

α α
1 1− α α

1− α α
1− α̂ α̂

α = 1− 1
2

√
2

α̂ = 2− 5
4

√
2

Table 4.3: Butcher tableau for Elsiepens method, with s = 2 and q = 1.

28

4.2 Integration algorithm small strains

The non-linear evolution equations for small strains that was derived in chapter
2.3 will now be integrated and solved with the DIRK-method. The integration
step is calculated from the last accepted equilibrium yn to the new stage Y ni.
The integrated variables will be solved by reducing them to two non linear scalar
equations that can be solved independently from each other. The derivation of
these two non-linear equations will closely follow the solution procedure in ([7]),
but no damage variable was incorporated in that article. First we begin by
introducing a new variable ζ to be:

ζ =
acc∆tn
η

(
f

σ2
0

)r
(4.10)

No superscript is shown for the variables at the current stage while the the vari-
ables determined by the start value in(3.31) has a superscript S. The parameter
acc is taken from the butcher tablau at row c and column c where c denotes
the number of the current stage. Putting in the yield condition and rearranging
gives the following constraint equation

ζσ2r
0

η

acc∆tn
−

1

2
(
sij

1− α
−Xdev

ij)(
sij

1− α
−Xdev

ij)−

(
σy(εpeff)

)2

3


r

= 0 (4.11)

Then a so called trial stress step is made (the predictor, compare (2.15)):

s
(t)
ij = (1− αS)2G(eij − e(p,S)

ij) (4.12)

This trial stess will be put into the yield condition and if f(s
(t)
ij , X

S
ij , ε

(p,S)
eff , αS) ≤

0 then the stresses are updated as sij = s
(t)
ij and the internal variables as:

εp = εSp , Xij = XS
ij , ε

p
eff = ε

(p,S)
eff , α = αS . However if the trial stress is outside

the yield surface then the variables must be integrated. To this end the system
of di�erential equations(2.17-2.20) are integrated using the DIRK scheme (3.30).
This leads to the following set of non-linear equations

εpij = ε
(p,S)
ij + ζNij (4.13)

Xij = XS
ij + ζ

(
cNij − b

√
2

3
Xij

)
(4.14)

εpeff = ε
(p,S)
eff + ζ

√
2

3
(4.15)

α = αS − ζ Y

Sd(1− α)m
(4.16)

29

This system could be solved by using the Newton Raphson algorithm explained
previously but let us instead reduce the system of non-linear equations, such
that a better performing algorithm is obtained. The goal is to arrive with two
scalar equations with the unknowns ζ and α. Once ζ and α is determined then
the rest of the variables can be calculated. The deviatoric part of the stresses
given by (2.15) can be rewritten using the plastic strain (4.13)

sij = 2G(1−α)(eij−e(p,S)
ij)−(1−α)ζNij =

1− α
1− αS

s
(t)
ij −2G(1−α)ζNij (4.17)

Rearranging the back stress (4.14) gives:

Xij = µ(XS
ij + ζcNij) (4.18)

with µ = 1

1+b
√

2
3 ζ
. Let us introduce the following variables for the di�erence

tensor between the deviatoric part of the stress and back stress

sij
1− α

−Xdev
ij =

s
(t)
ij

1− αS
− 2GζNij − µ(X

(dev,S)
ij + cζNij) = Ξij − γNij (4.19)

where the introduced variables are de�ned as

Ξij =
s

(t)
ij

1− αS
− µX(S)

ij (4.20)

γ = ζ (2G+ µc) (4.21)

With the help of these introduced variables, it is possible to further rewrite
sij

1−α −X
dev
ij additionally. First we remark that

sij
1−α −X

dev
ij can be written with

the de�nition of the plastic �ow Nij according to:

sij
1− α

−Xdev
ij = || spq

1− α
−Xdev

pq ||
sij

1−α −X
dev
ij

|| spq1−α −Xdev
pq ||

= || spq
1− α

−Xdev
pq ||Nij (4.22)

If (4.19) is rearranged and with (4.22) substituted, then the following expression
can be obtained

||Ξij || = ||(γ + || sij
1− α

−Xij ||)Nij || = γ + || sij
1− α

−Xij || (4.23)

Solving the above equation for || sij1−α − Xij || and then substituting it into the
constraint equation (4.11) gives then the following expression which only has ζ
as an unknown.

30

||
s

(t)
ij

1− αS
− µ(ζ)XS

ij || − γ(ζ)−
√

2σ2
0(

ζη

acc∆tn
)1/r +

2

3
(σy(ζ))

2
= 0 (4.24)

From this scalar equation it is then possible to compute ζ with for example the
Newton Raphson method. Using the fact that Nij =

Ξij
||Ξpq|| gives that the all

the internal variables except for α can be computed according to

εpij = ε
(p,S)
ij + ζNij

Xij = µ(ζ)(XS
ij + ζcNij)

εpeff = ε
(p,S)
eff + ζ

√
2
3

(4.25)

Rearranging the integrated evolution equation for α and using that

Y =
1

2
εeijσij =

1

2
(εij − εpij)D

hooke
ijkl (εkl − εpkl) (4.26)

we end up with the following scalar equation for the damage

(α− αS)(1− α)m − ζ

2Sd
(εij − εpij)D

hooke
ijkl (εkl − εpkl) = 0 (4.27)

All the internal variables are now known and the stresses can thus be updated.
The whole integration procedure is summarized in the following box.

31

• Calculate the trial stress, σ
(t)
ij according to 4.12.

if f(σ
(t)
ij , X

S
ij , ε

(p,S)
eff , αS) ≤ 0 then

� Update according to

σij = σ
(t)
ij , Xij = XS

ij , ε
p
eff = ε

(p,S)
eff , α = αS

else
� Calculate ζ from 4.24:

||
s

(t)
ij

1− αS
− µ(ζ)X

(S)
ij || − γ(ζ)−

√
2σ2

0(
ζη

acc∆tn
)1/r +

2

3
(σy(ζ))

2
= 0

where Ξij is given from (4.20) and γ from (4.21)
� Update the following internal variables with the help of the now
calculated ζ according to

Nij =
Ξij
||Ξpq||

εpeff = εSeff +

√
2

3
ζ

Xij = µ(XS
ij + ζcNij

σij = σ
(t)
ij − 2GζNij

� Compute the damage variable α from (4.27)

(α− αS)(1− α)m − ζ

Sd
(εij − εpij)D

hooke
ijkl (εkl − εpkl) = 0

� Update the stress given by (4.17), sij = 1−α
1−αS s

(t)
ij − 2G(1− α)Nij

Table 4.4: Integration procedure for small deformation model

32

4.3 Integration algorithm large strains

4.3.1 Isochoric integration

The set of evolution equations that was established in section 2.4 will now
be integrated. The load step is denoted with n and the current stage with
i. The start values are again denoted with an superscript S and the updated
internal variables at the current unknown stage are left undenoted. The plastic
deformation gradient is commonly integrated with an exponential integration
algorithm(see [4]), in order to maintain the plastic deformation gradient isochor.
However the ingratiation that we want to use is the DIRK-method, which if
used directly will not guarantee the property detF p = 1. This is because the
integration is handled in an additive fashion. If applied directly to (2.36) we
will get:

F p = F (p,S) + ∆tnaiiλN
pF p (4.28)

Solving for F p gives

F p = (1−∆tnaiiλN
p)−1F (p,S) (4.29)

Even if assume that we have made sure that detF (p,S) is isochor then the
determinant of F p delivered in (4.29) will in general not satisfy detF p = 1 at
the stages. Here we suggest a solution, which adds an extra constraint equation
to our evolution laws which guarantees detF p = 1. Let us de�ne the volumetric
split of the plastic deformation gradient to be

F p = (Jp)1/3F̂
p

(4.30)

where Jp = detF p. Di�erentiating (4.30) gives

Ḟ p =
1

3
(Jp)−2/3J̇pF̂

p
+ (Jp)1/3 ˙̂F

p

= lpF p (4.31)

The velocity gradient l that was introduced above is de�ned from the evolution
law (2.36) as:

l = λ̇Np (4.32)

Using the time derivative of determinant (c.f [2]) which is given by

detA′ = detA tr(A−1A′) (4.33)

where A is a nonsingular matrix, the following relationship can be obtained:

˙̂F
p

= dev(lp)F̂
p

(4.34)

33

Use of this equation together with (4.30) in (4.31) gives an alternative form of
the evolution equation for the plastic gradient given in (2.36).

Ḟ p =
1

3

J̇p

Jp
F p + dev(lp)F p (4.35)

The term Jp is supposedly to be equal to one due to the incompressibility of
the material and thus J̇p = 0. This however not the case if the DIRK method is
applied directly as shown previously. An extra penalty variable κp is introduced

κp =
1

3

J̇p

Jp
(4.36)

in order to maintain the incompressibility of the plastic deformation gradient.

By substituting the term 1
3
J̇p

Jp with κ
p in (4.35) our modi�ed evolution equations

takes the form

Ḟ
p

=

(
κpI + dev(lp)

)
F p (4.37)

Jp(κp) = 1 (4.38)

The extra constraint equation Jp(κp) = 1 will force the determinant to be
constant and thus J̇p = 0 which is what we want in (4.35).

Using the same arguments for the kinematic deformation gradient gives the
evolution equation:

Ḟ
k

= F k
(
κkI + λ̇dev(Nk)

)
(4.39)

Jk(κk) = 1 (4.40)

In [8] a so called closed projection technique is utilized where an extra Lagrange
multiplier is added in order to minimize to minimize the distance to the pro-
jected space {∨F p|detF p = 1}. The method proposed here is very similar to
the closed projection technique given in [8].

4.3.2 Integration of evolution equations

With this modi�cation of the evolution equation, we are now ready to integrate
them with the DIRK-method. First, in the same manner as in the small de-
formation case, a so called trial step is made to check whether there is plastic
deformation or not. The elastic trial deformation gradient is de�ned to be

F e,tr = FF p−1,S (4.41)

34

Where F is known since we know the total displacements u. In the same
manner as in the small strains case we test If f(F e,tr,F k,S , α(S)) < 0 then there
is not plastic deformation and the internal variables are updated according to
F (p) = F p,S ,F (k) = F k,S , α = α(S). If however f(F e,tr,F k,(S), αS) > 0 there
will be plastic deformation, which we now devote our interest to. A DIRK-
integration of (4.37) and (4.39) gives

F p = F (p,S) +

(
κpI + aii∆tnλdev(Np)

)
F p (4.42)

F k = F (k,S) + F k
(
κkI + aii∆tnλdev(Nk)

)
(4.43)

Equations (4.42) and (4.43) can be solved, i.e.

F p =

(
(1−∆taiiκ

p)I −∆λdev(Np)

)−1

F p,S = ApF (p,S) (4.44)

F k = F (k,S)

(
(1−∆taiiκ

k)I −∆λdev(Nk)

)−1

= F (k,S)Ak (4.45)

where ∆λ = ∆tnaiiλ is de�ned. The damage evolution equation is integrated
in the same manner as in the small deformation case to get:

αni = αS −∆λ
Y

Sd(1− α)m
(4.46)

In order to establish the variables, {F p,F k, α,∆λ} the yield condition f = 0
needs be ful�lled and then a system of residual equations can be determined.

RF p = F p −ApF (p,S) = 0

RF k = F k − F (k,S)Ak = 0

Rf = f(F p,F k,∆λ, α, κp, κk,C) = 0

Rκp = det
(
ApF (p,S)

)
− 1 = 0

Rκk = det
(
F (k,S)Ak

)
− 1 = 0

Rα = α− αS + ∆λ Y
Sd(1−α)m = 0

(4.47)

This equation system is solved with the Newton Raphson method. The system
consists of 22 unknowns and 22 equations, namely F p,F k,∆λ, κp, κk, α. Col-
lecting the internal variables F (p),F k, α the increment in the plastic multiplier
∆λ and the penalty variables κp, κk in a vector Q enable us to write the Newton
iteration algorithm as

Qk+1 = Qk −
[
∂RL

∂Q

]−1

RL (4.48)

35

The Jacobian matrix J = ∂RL

∂Q can be obtained by straight forward di�eren-
tiation of the system RL, which requires a considerable amount of algebraic
manipulation. However in this work the Jacobian has been established through
numerical di�erentiation of the the residual equation, which is explained in the
appendix. After that the residual system has been solved, then the Mandel
stress Σ and second Piola Kircho� stress can be determined according to (2.31)
and (2.32) and we can solve the DAE system with the procedure explained in
chapter 4.1.

36

Chapter 5

Results

5.1 Results, small strains

5.1.1 Geometry, Rectangular disc with hole

In the following section the performance of the proposed method is evaluated
in small deformations in combination with plain strain. The geometry that has
been considered is a rectangular disc with a hole in the middle. Only one fourth
of the disc is being considered because the symmetric nature of the geometry in
the problem, see �gure 5.1

Figure 5.1: Geometry

The radius of the hole is 500
12 mm, the width is 125 mm and the height is 250

mm. The geometry has been split into 864 triangular elements with a total of
938 degrees of freedom. The disc is pulled at the top in a displacement driven
format. There are essential boundary conditions for the degrees of freedom in
the y direction at the bottom of the structure and in the x-direction at the right

37

boundary of the structure. These degrees of freedom are put equal to zero at
these places. The modulus of elasticity is E = 2 · 105 MPa and the poisson
ratio is ν = 0.3. The thickness of the structure is put to be 2 mm. The damage
evolution will be investigated on the element marked in �gure (5.1). A reference
solution has been made by applying a very small time step to the algorithm in
such a way that the if the time step is re�ned further, then no notable di�erence
can be seen in the internal variables q and the displacements u. All the results
with the RK method has been run with fmax = 1.3, fmin = 0.1, fsafety = 0.9.

5.1.2 Results, viscoplastic model

The hardening function in this model was chosen to

σy = σy0 +K∞(1− e−
hε
p
eff
K∞) (5.1)

Where h and K∞ are two constitutive parameters. All the constitutive parame-
ters used can be found in table (5.1). The geometry was pulled with a constant
speed u̇ = 1 until the top of the structure had been displaced a total of 0.02 m.

K∞ h b c r σy0 η m S
(Pa) (Pa) (-) (Pa) (-) (Pa) (s) (-) (Pa)

200 · 106 2 · 1010 525 41080 · 106 2 600 · 106 108 2 4 · 106

Table 5.1: Constants used in this section for internal variables

The deformation and the e�ective stress is shown in �gure (5.2) for illustration
purposes.

38

(a) Deformation

(b) Stress distribution

Figure 5.2: Deformation and stress distribution of solid

The time stepping for the Implicit Euler method has been made with the heuris-
tic rule:

∆tnew =

{
wdec∆tn if nnewt ≥ nhigh
winc∆tn if nnewt < nlow

)
(5.2)

The time stepping method chosen according to some rule as function of the num-
ber of global newton iterations is quite common in the �nite element context.
The parameters winc, wdec, nhigh, nlow in (5.2) is chosen by the user and nnewt
denotes the number of global newton iterations that was made until convergence.
The global newton loop has has been set to converge when ||f int − fext|| <
10−6 where the euclidean norm has been used. The damage variable has been
plotted against the amount of displacement at the top of the structure in �g-
ure (5.3), for the element marked with red color in (5.1). The time stepping

39

parameters in �gure (5.3) for the Implicit Euler method was chosen accord-
ing to winc = 1.2, wdec = 0.2, nhigh = 4, nlow = 3 with an initial time step of
∆t0 = 2 ·10−4 s. The tolerances for the Runge-Kutta method in �gure (5.3) was
chosen to εr = 0, εau = 10−3, εaεp = 10−4, εa

εpeff
= 10−5, εaX = 5 · 103, εaα = 10−3.

The total number of newton iterations was 89 in the RK-method and 104 in the
Implicit Euler method.

Figure 5.3: Damage Evolution. Curve marked with squares: Implicit Euler,
Curve marked with circles: Runge-Kutta, Solid curve: Reference solution

Figure 5.4: Damage Evolution zoomed in around displacement 0.016 m

40

Figure 5.5: Damage Evolution zoomed in around 0.019 m

Figure 5.6: Time step history for the curve shown in (5.3)

41

Point nhigh nlow winc wdec
1 4 3 1.3 0.5
2 4 4 1.2 0.1
3 4 3 1.2 0.2
4 3 3 1.5 0.5
5 3 3 1.2 0.2

Table 5.2: IE adaptive parameters. The points are denoted with a squares in
(5.7) when looking at the �gure from left to right.

A work precision diagram of the method is shown (5.7). The relative error
of the damage has been measured on the element marked in (5.1) and was
measured after the solid had been displaced 0.02 m. The relative error is de�ned

as
|αref−α|
αref

. The parameters in the time stepping procedure for the IE-method

that was used to obtain �gure (5.7) is shown in table (5.2). For the Runge-Kutta
method the parameters were put to εr = 0, εau = 10−3, εaεp = 10−4, εa

εpeff
= 10−5,

εaX = 5·103 and the absolute tolerance for the damage was varied with εaα = 10−k

with k = {2, 3, 4, 5, 6}. But the time step was forced to be above 0.2
300 s at all

times in the diagram.

Figure 5.7: Work precision diagram of the methods.Curve marked with squares:
Implicit Euler, Curve marked with circles: Runge-Kutta

5.1.3 Discussion

Figure (5.3), which shows the damage evolution is of great interest. The �g-
ure illustrates the performance of the Runge-Kutta method compared with the
Implicit Euler method clearly. The time steps in (5.6) are quite large in the
RK-method compared with the IE-method and still the RK method almost co-

42

incide with the reference solution at the given scales. In �gure (5.3), the total
number of newton iterations for the RK-method was about the same in the IE-
method (89 compared with 104) in order to make a suitable comparison between
the methods. The Runge-Kutta method seems to be clearly superior over the
IE-method.

However one must keep in mind that the time stepping method in the RK-
method is made with an predictor/corrector scheme and the method can thus
adjust the time step in a much better way than the time stepping in the IE-
method. In this sense the comparison is not entirely fair since the IE time
stepping method is based upon the number of global newton iterations and thus
decreases the time step �rst after it notices that it has deviated from the true
solution. But the time stepping method for the IE-method was chosen in this
way because this how it is commonly done. One must also remember that the
DAE system has to be solved twice in each time step for the two-stage RK
method.

The work precision diagram in �gure (5.7) shows how the accuracy varies with
the total number of newton iterations for the two di�erent time adaptive meth-
ods. It shows that even tough less global newton iteration is made for the
RK-method, the RK-method has a much smaller relative error of the damage
compared with the Implicit Euler method. It is also notable that it is di�cult to
control the number of global newton iterations with the IE-method since there
are not so many parameters to change in the proposed time-stepping method.
In the RK-method it is much easier to control the accuracy since we are given a
lot more tolerances which can be used directly to control the integration error.

43

5.2 Results, Finite deformation

5.2.1 Geometry, Necking of bar

The geometry used in the �nite deformation case is shown in �gure (5.8).

Figure 5.8: Geometry

The solid has been discretized into 200 axisymmetric elements with a mixed
�nite element formulation. The bar has a radius of 5 mm and a height of 25
mm . Essential boundary conditions exist on the bottom, left and right side
of the structure where the corresponding degrees of freedom has been put to
zero. The solid is again pulled on the top boundary with a constant speed of
u̇ = 1 mm s−1 until the top has been displaced a total of 2 mm. The material
parameters used in this particular problem is given in table (5.3)

σy0 G Kb ξ Γ Sd m
(M Pa) (M Pa) (M Pa) (M Pa) (M Pa−1) (M Pa) (-)

400 80.2 ·103 164 · 103 6000 525 10 2

Table 5.3: Material parameters

We are now interested in �nding out how the necking of the bar in (5.8) a�ects
the damage evolution on both the RK- and the IE-methods. An imperfection
has been introduced to the bar by displacing the lowest node to the left of the
bar by 0.025 mm. This imperfection will lead into the bifurcation path which
makes the necking e�ects appear. A reference solution has again been made in
a similar manner as in the small deformation case.

44

5.2.2 Results

The deformation of the solid is shown in �gure (5.9), where the necking e�ects
can be observed.

Figure 5.9: Deformation of solid. The deformation of the solid has been magni-
�ed two times in order to illustrate the necking more clear.

The global response of the structure with and without the imperfection of the
node is illustrated in �gure (5.10), which shows that necking is not happening
to the structure unless the imperfection of the node is present.

The time stepping for the Implicit Euler method in the large deformation case
is also based upon the number of global newton iterations. The heuristic rule
has been chosen according to

∆tnew = ∆tnfinc

(
fiter
nnewt

)v
(5.3)

The damage evolution has been plotted in (5.11) and zoomed in a bit in �gure
(5.12). The total number of newton iterations for the IE-method was 489 and
470 for the RK-method. The relative error of the damage at the end point
was 0.0469 and for the Implicit Euler method it was 0.1119. The damage was
measured at the same gauss point for the RK-method and the IE-method at the
element marked in �gure (5.8). The relative tolerance was put to 0.1 and the
absolute tolerances were put to 0 for the RK-method. The time stepping factors
for the RK-method were fmin = 0.2, fmax = 1.3, fsafety = 0.9 and the time
stepping factors in the Implicit Euler method were fiter = 3, v = 1, finc = 1.02.
The time step was forced to be greater than 1 · 10−3 s.

45

Figure 5.10: The global response of the solid. The displacement is plotted
against the internal force developed on the top of the structure. The dashed
line shows the global response without the imperfection of the bottom right
node while the solid curve is the response with the imperfection of the bottom
right node

Figure 5.11: Damage evolution. Curve marked with squares: Implicit Euler,
Curve marked with circles: Runge-Kutta, Solid curve: Reference solution

46

(a) Zoomed in around 1.62 mm

(b) Zoomed in around 1.72

(c) Zoomed in around 1.81 mm

Figure 5.12: Damage evolution

47

Figure 5.13: Time step history

5.2.3 Discussion

We can again conclude from �gure (5.11) and (5.12) that the RK method is
more e�cient. One can see that the IE-method deviates more from the true
solution than the RK method. The RK-method actually coincides with the
reference curve before the necking e�ects occur as can be seen in (5.12(a)) and
starts to deviate �rst after the bifurcation point is passed. A reason for why
the RK-method fails to coincide with the reference solution at all times could
be that the the predictor/corrector scheme fails. A singular point needs to be
passed and the predictor step might fail to �nd the correct bifurcation path in
order to proceed. It is however possible that by adding a restart box as was
done in [3] might help to overcome this problem. But still the RK-method can
take much larger time steps (about three times larger) than the IE-method and
maintain a better accuracy. It can be seen in �gure (5.12(a)) that the time
stepping method proposed for the IE-method is not so good since it detects too
late that it has deviated from the true solution. A predictor/corrector scheme,
which the RK-method has, is preferred in order to maintain a high accuracy.

48

Appendix A

Useful de�nitions and

theorems

A.1 Numerical di�erentiation

Given a map F (X) = Y : Rm 7→ Rn the numerical di�erentiation of F (X) is
obtained by disturbing each component one at a time in X with the amount h.
Let ek denote the base vector for the variables in X where k is the index in the
vector X which is being disturbed, then the k:th row of the di�erentiated map
is given by:

F ′(X)k =
F (X + hkek)− F (X)

hk
(A.1)

The disturbance h can be chosen in many ways, but in this thesis we have chosen
it according to:

hk = max(|Xk|,
√
ε) (A.2)

where ε denotes the machine accuracy and |.| the absolute value.

A.2 Order of consistency

The following de�nition is taken [9]. Given an ODE of the form

y′ = f(t,y), t ≥ t0, y(t0) = y0 (A.3)

Assume that the yn+1 is obtained by some time stepping method Y i.e

yn+1 = Y(f ,∆tn,y0,y1, . . . ,yn) (A.4)

49

The method is said to be of order p if given the correct solution at tn+1 i.e
y(tn+1) then the error full�lls

κ = y(tn+1)− Y (f ,∆tn,y(t0),y(t1), . . . ,y(tn)) = O(∆tp+1
n) (A.5)

for every analytic f . An alternate de�nition is that a method is of order p if
it recovers exactly every polynomial solution of degree p or less. The de�nition
above tells us the local behavior of the method, i.e from tn to tn+1 incurres an
error of the order ∆tp+1

n .

A.3 Implicit function theorem

The following theorem has been taken from [14] and has been freely translated.
Let F (x, y) be a C1-function and (a, b) a point on the level curve F (x, y) = C.
If

F ′y(a, b) 6= 0 (A.6)

then there exists an open set U around (a, b) such that the restriction of the
level curve to U implicitly de�nes a C1 function y = f(x).

50

Appendix B

Algorithmic tangent sti�ness

matrices

B.1 Algorithmic tangent sti�ness

The true algorithmic tangent sti�ness,Dijkl is required in order to get a quadratic
convergence in the Newton-Raphson algorithm. The current stage att load step
n is denoted by x in the following derivation and the component from the a
matrix in the butcher tablau belonging to the current stage is denoted by axx.
The algorithmic tangent sti�ness can be derived trough di�erentiating the dis-
cretized form of the stress-strain relation given by (2.15).

Dijkl = (1− α)D̂ijkl − ∂α
∂εkl

σ̂ij

D̂ijkl =
∂σ̂ij
∂εkl

σ̂ij = Kbεppδij + 2G(e− e(p,S))− 2GζNij

(B.1)

First we will concentrate on the di�erentiation of σ̂ij .

B.1.1 Di�erentiation of σ̂ij

The �rst two terms are easily di�erentiated in the third row of (B.1):

∂

∂εkl
(Kbεppδij) = Kbδijδkl (B.2)

∂

∂εkl

(
2G(ekl − e(p,S)

kl)
)

= 2G

(
Iijkl −

1

3
δijδkl

)
(B.3)

Where Iijkl is de�ned as

51

Iijkl =
1

2
(δikδjl + δilδjk) (B.4)

It is however not entirely obvious what the di�erentiation of the last term in
(B.1), 2GζNij is equal to. The term has to be di�erentiated using the product
rule since both ζ andNij depends on the current strains εkl. Let us �rst calculate
∂ζ
∂εkl

.

Term 1

From (4.24) we have the following:

Φζ(ζ(εkl), εkl) = ||Ξpq|| − γ −

√
2σ2

0

(
ζη

axx∆t

)1/r

+
2

3
(σy(K))

2
= 0 (B.5)

Applying the chain rule gives:

dΦζ
dεkl

=
∂Φζ
∂ζ

dζ

dεkl
+
∂Φζ
∂εkl

= 0⇒ dζ

dεkl
= −

(
∂Φζ
∂ζ

)−1
∂Φζ
∂εkl

(B.6)

Lets begin calculating
∂Φζ
∂ζ with the help of (B.5). Di�erentiating the �rst term

gives

∂||Ξij ||
∂ζ

=
1

2

1

||Ξpq||
2Ξij

∂Ξij
∂ζ

= Nij
∂Ξij
∂ζ

(B.7)

The de�nition of Ξij from equation (4.20) gives

∂Ξij
∂ζ

= −∂µ
∂ζ
XS
ij = µ2

√
2

3
bXS

ij (B.8)

And thus we arrive at

∂||Ξij ||
∂ζ

= µ2

√
2

3
bXS

ijNij (B.9)

The second term ∂γ
∂ζ is di�erentiated with the help of the de�nition (4.21) to get

∂γ

∂ζ
= 2G+ µc+ ζ

∂µ

∂ζ
c = 2G+ µc(1− ζ

√
2

3
bµ) (B.10)

And �nally di�erentiating the third and last term gives

52

∂

∂ζ

√2σ2
0

(
ζη

axx∆t

)1/r

+
2

3
(σy(K))

2

 =

1

||Ξ(i)
ij || − γ

(
σ2

0η

raxx∆t

(
ζη

axx∆t

)1/r−1

+
2

3
σy(K)

∂σy
∂ζ

)

Combining these three terms according to B.5 then gives:

∂Φζ
∂ζ

= µ2

√
2

3
bXS

ijNij −

(
2G+ µc(1− ζ

√
2

3
bµ)

)

− 1

||Ξij || − γ

(
σ2

0η

raxx∆t

(
ζη

axx∆t

)1/r−1

+
2

3
σy(K)

∂σy
∂ζ

)

Then we also have to calculate
∂Φζ
∂εkl

in order to �nd dζ
dεkl

.

∂Φζ
∂εkl

=
∂||Ξpq||
∂εkl

=
(stij −Xdev

ij)

||Ξpq||
∂(stij −Xdev

ij)

∂εkl
=

Nij2G(
∂εij
∂εkl

+
1

3

∂εqq
∂εkl

δij) = Nij2GIijkl = 2GNkl

De�ning β = −∂Φζ
∂ζ we �nnaly arrive at

dζ

dεkl
=

2G

β
Nkl (B.11)

And thus we only have �nd the derivative to Nij =
Ξij
||Ξpq|| .

Term 2

The derivative of the normal can be rewritten to

dNij
dεkl

=
1

||Ξuv||
d(Ξij)

dεkl
−Nij

1

||Ξuv||
Npq

dΞpq
dεkl

(B.12)

Let us therefore calculate the derivative of Ξij = s
(t)
ij − µ (ζ)XS

ij

d(Ξpq)

dεkl
=
dstij
dεkl

− dµ(ζ)

dεkl
XS
ij (B.13)

The derivatives in the expression above can be calculated to be:

53

dsij
dεkl

= Iijkl −
1

3
δijδkl,

dµ(ζ)

dεkl
= −µ2

√
2

3
b
2G

β
Nkl (B.14)

Substituting the above expressions into (B.13) and then into (B.12) gives us

�nally an expression for
dNij
dεkl

dNij
dεkl

=
2G

||Ξpq||
(Iijkl − δijδkl) +

2Gbµ2

β||Ξuv||

√
2

3
XS
ijNkl

− 2G

||Ξpq||

(
1 +

1

β
µ2

√
2

3
XS
pqNpqb

)
NijNkl

And now we are ready to assemble the terms.

Assembling the terms

We now have everything we need in order to evaluate (D̂ijkl).

D̂ijkl =
∂

∂εkl

(
Kbεkkδij + 2G(e− e(p,S))

)
− ∂

∂εkl
(2GζNij) =

Kbδijδkl + 2G

(
I − 1

3
δijδkl

)
− 2G

(
dζ

dεkl
Nij + ζ

dNij
dεkl

)

And now inserting the calculated terms and after some simpli�cation one arrives
at

D̂ijkl = 2G

(
Kb

2G
δijδkl + γ1

(
Iijkl −

1

3
δijδkl

)
+ γ2NijNkl + ΓijNkl

)
(B.15)

Where

γ1 = 1− ζ 2G

||Ξpq||
, γ2 =

2Gζ

||Ξuv||

(
1 +

1

β
µ2

√
2

3
XS
pqN

S
pqb

)
− 2G

β
(B.16)

Γij = −ζ2Gbµ2

β||Ξpq||

√
2

3
XS
ij (B.17)

54

B.1.2 Di�erentiation of α

From (4.27) we de�ne

Φα = α− αS + ζ
Y

Sd(1− α)m
= 0 (B.18)

Di�erentiation of (B.18) gives

dα

dεkl

(
1 +

mζY

Sd(1− α)m+1

)
+

dζ

dεkl

Y

Sd(1− α)m
+
dY

dεkl

ζ

Sd(1− α)m
= 0 (B.19)

Rearranging (B.19) one ends up with

dα
dεkl

= −ρ
(
dζ
dεkl

Y + ζ dYdεkl

)
ρ = 1−α

Sd(1−α)m+1+mζY

(B.20)

The term dζ
dεkl

has already been established in (B.11) and all we have left to

compute is dY
dεkl

. From the de�nition of Y (2.14)we have

Y = −1

2
εeijD

hooke
ijkl εekl = Y = −1

2
σ̂ij(D

hooke
ijkl)−1σ̂kl (B.21)

Di�erentiating (B.21) gives

dY

dεkl
= −σ̂ij(Dhooke

ijpq)−1 σ̂pq
εkl

(B.22)

and now we are �nally ready to establish the true algorithmic tangent sti�ness
Dijkl.

Dijkl = (1− α)D̂ijkl + σ̂ijρ
(
dζ
dεkl

Y + ζ dYdεkl

)
(B.23)

where D̂ijkl is given from (B.15),ρ from (B.20) dζ
dεkl

from (B.11) and dY
dεkl

from (B.22).

55

B.2 Algorithmic tangent sti�ness matrix deriva-

tion, �nite strains

The algorithmic tangent sti�ness matrix is obtained through:

D = 2
dS

dC
(B.24)

Where

S = (1− α)F p−1SeF p−T = (1− α)F p−1
ik SeklF

p−1
jl (B.25)

Di�erentiation of this expression gives:

dSij
dCop

= (1− α)

(
F p−1
ik F p−1

jl

dSekl
dCeuv

dCeuv
dCop︸ ︷︷ ︸

Part1

+F p−1
ik Sekl

dF p−1
jl

dCop
+
dF p−1

ik

dCop
SeklF

p−1
jl︸ ︷︷ ︸

Part2

)

− dα

dCop
F p−1
ik SeklF

p−1
jl︸ ︷︷ ︸

Part3

(B.26)

The di�erentiation of the mixed part in the �nite element formulation will not
be considered here. The di�erentiation of the internal variables Q with respect
to C can be obtained with the numerical jacobian and the residual system (4.47)
through:

∂Q

∂C
=

[
∂RL

∂Q

]−1
∂RL

∂C
(B.27)

where the numerical jacobian
[
∂RL

∂Q

]
is already known from solving the system

(4.47) with the Newton Raphson method (4.48) and the term ∂RL

∂C has been
determined through numerical di�erntiation (see appendix).

B.2.1 Part 1

We assume that the term
dSekl
dCeuv

is given and here we will focus our interest on

the term
dCeuv
dCop

. The elastic right cauchy green tensor, Ceuv can be rewritten

according to:

Ceuv = F p−1
mu CmnF

p−1
nv (B.28)

Di�erentiation of this expression and use of the result in part 2 gives

56

dFp−1
mu

dCop
CmnF

p−1
nv + F p−1

mu
dCmn
dCop

F p−1
nv + F p−1

mu Cmn
dFp−1
nv

dCop
=

−F p−1
mx

dFpxr
dCop

F p−1
ru CmnF

p−1
nv + F p−1

ou F p−1
pv − F p−1

mu CmnF
p−1
nq

dFpqx
dCop

F p−1
xv =

− dFpxr
dCop

F p−1
ru Cexv + F p−1

ou F p−1
pv − Ceuq

dFpqx
dCop

F p−1
xv =

(B.29)

Part 1 is thus equal to

Part1 = F p−1
ik F p−1

jl

dSekl
dCeuv

F p−1
ou F p−1

pv −F
p−1
ik F p−1

jl

dSekl
dCeuv

(
dF pxr
dCop

F p−1
ru Cexv + Ceuq

dF pqx
dCop

F p−1
xv

)
(B.30)

B.2.2 Part 2

dF p−1
ik F pkj
dCop

=
dF p−1

ik

dCop
F pkj + F p−1

ik

dF pkj
dCop

= 0 (B.31)

Multiplying with F p−1
js gives us the sought expression for the derivitive to F p−1

ij .

dF p−1
ik

dCop
F pkjF

p−1
js = −F p−1

ik

dF pkj
dCop

F p−1
js =

dF p−1
is

dCop
(B.32)

dFpkj
dCop

can be found out through (B.27). Part 2 is thus equal to:

Part2 = −F p−1
ik SeklF

p−1
jq

dFpqr
dCop

F p−1
rl − F p−1

iq
−
F

p−1

ik
SeklF

p−1
rl F p−1

jq

dFpqr
dCop

− F p−1
sk SeklF

p−1
jl F p−1

iq

dFpqs
dCop

=

−SirF p−1
jq

dFpqr
dCop

− SsjF p−1
iq

dFpqs
dCop

(B.33)

And part 2 is done.

B.2.3 Part 3

dα
dCop

is known directly from (B.27).

57

Bibliography

[1] Klaus-Jürgen Bathe. Finite Element Procedures. Prentice Hall, 1996.

[2] Peter W. Christensen and Anders Klarbing. An Introduction to Structural
optimization. Springer, 2009.

[3] P. Ellsiepen and S. Hartmann. Remarks on the interpretation of current
non-linear �nite element analyses as di�erential-algebraic equations. Inter-
national journal for numerical methods in engineering, 2001.

[4] Weber G and Anand L. Finite deformation constitutive equations and
a time integration procedure for isotropic, hyperelastic-viscoplastic solids.
Computer Methods in Applied Mechanics and Engineering, 1990.

[5] E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Di�erential
Equations I. Springer series in computational mathematics, 1993.

[6] E. Hairer and G. Wanner. Solving Ordinary Di�erential equations II.
Springer series in computational mechanincs, 1991.

[7] Stefan Hartman, Georg Lührs, and Peter Haupt. An e�cient stress al-
gorithm with applications in viscoplasticity and plasticity. International
journal for numerical methods in engineerng, vol 40, 991-1013, 1997.

[8] Stefan Hartman, Karsten J. Quint, and Martin Arnold. On plastic incom-
pressibility within time-adaptive �nite elements combined with projection
techniques. Comput. Methods Appl. Mech Engrg., 2008.

[9] Arieh Iserles. A �rst course in the Numerical Analysis of DI�erential Equa-
tions. Cambridge universty press, 2009.

[10] Steen Krenk. Non-linear Modeling and Analysis of Solids and Structures.
Cambridge university press, 2009.

[11] R. A. Radovitzky M. Ortiz and E. A. Repetto. The computation of the
exponential and logarithmic mappings. International journal for numerical
methods in engineering, 2001.

[12] Niels Ottosen and Hans Petersson. Introduction to the �nite element
method. Pearson Prentice Hall, 1992.

[13] Niels Saabye Ottosen and Matti Ristinmaa. The Mechanics of Constituive
Modelleing. Elsevier Ltd, 2005.

58

[14] Arne Persson and Lars-Christer Böiers. Analys i �era variabler. Studentlit-
teratur, 2009.

[15] Matti Ristinmaa and Christer Ljung. An Introduciton to Stability Analysis.
Lund University, 2002.

[16] Kenneth Runesson, Matti Ristinmaa, and Lennart Mahler. A comparison
of viscoplasticity formats and algorithms. Mechanics of cohesive-frictional
materials, 1997.

[17] J.C. Simo and T.J.r. Hughes. Computational Inelasticity. Springer, 2000.

[18] Mathias Wallin and Matti Ristinmaa. Accurate stress updating algorithm
based on constant strain rate assumption. Computer Methods in Applied
Mechanics and Engineering, 2001.

[19] Mathias Wallin and Matti Ristinmaa. Deformation gradient based kine-
matic hardening model. International Journal of Plasticity 21, 2005.

[20] Mathias Wallin, Matti Ristinmaa, and Niels Saabye Ottosen. Kine-
matic hardening in large strain plasticity. European Journal of Mechanics
A/Solids, 2003.

59

