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Abstract

Tetra Paks package TFA, Tetra Fino Aseptic, is a cheap and thin package built of
six layers of LDPE, paper board and aluminium, the market is mostly China and
Africa. The material layers are connected with adhesion via the extruded LDPE.
The geometry of the package causes left over material that creates folds in the
package. The bad infrastructure in China and Africa expose the package for
cyclic loading due to shake down which causes crack initiating and propagating
in the folding area. If these cracks propagate through several layers the content
can be exposed to oxidation and bacteria which can make it non-usable.

The purpose for this thesis is to investigate the mechanical properties of the
packaging material, the reaction of the material when exposed to loading and the
crack sensitivity coupled to the maximum strain in the material after loading.
This investigation will be based on both physical experiments and numerical
simulations in the Finite Element Method program ABAQUS. The simulations
purpose is to get a better understanding of the different material parameters
and the physical tests serves to verify the numerical model and to prove its
credibility. The final model in ABAQUS will be used to test the parameters in
an extensive parameter study with the ambition to find an ultimate combination
of the parameters both for the material and the adhesion in the different layers.

The numerical model in ABAQUS is a two dimensional plane stress model be-
cause of the interest in maximum strain levels. The geometry is a 10 mm long
material specimen which is folded and compressed between two plates with a
clearance of 0.5 mm between them. The simulation uses a Dynamic Implicit
solver with a quasi- static solution to enable damping through mass-scaling.
The element type is a 4-node bilinear plane stress element with a linear order
(in ABAQUS named CPS4) and full integration.

The physical test was made to fold the material and to expose it to extreme
impact and to force it to fail. It was made after an unsuccessful bend test with a
bend radius of 2 mm calculated from the theory behind composite beams. The
fold tests geometry was also set to conform to the models geometry.

The verification of the model was successful both in the similarity of the reaction
forces in the folding process and in buckling of the outside LDPE layer both
seen in the simulation and in the microtome.

The ultimate case is to have a maximum reaction force to increase the fold
stiffness in the material and to minimize the strain to reduce the risk for cracks
in the aluminum. The parameter study shows that this seems to appear when
there is extreme adhesion between the inside and the foil and with a stiffer inside
LDPE. This combination seems to be the best solution to reduce cracks and big
bend radius.
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Nomenclature

TFA , Tetra Fino Aseptic
XFEM , Extended Finite Element Method
Adhesion , Describes the molecular bindings between two bodies closed in
contact.
LDPE , Low Density Polyetylene
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Chapter 1

Introduction

1.1 Tetra Pak

Tetra Pak is the world leader in food processing and packaging solutions. They
provide safe and innovative packages for millions of peoples every day. Tetra
Pak was founded by Ruben Rausing in Lund in the 1950’s and his idea of
tetraheredon shaped cartons for milk was borned. Today Tetra Pak is located
in more than 170 countrys world wide.

The work of this thesis has been carried out in the group New Material Design
at Tetra Pak in Lund, Ruben Rausings gata.

1.2 Aim of the thesis

(a) (b)

Figure 1.1: Tetra Fino Aseptic

TFA, Tetra Fino Aseptic, is a package from Tetra Paks platform Carton Econ-
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omy. TFA is a packaging material laminate made out of Korsnas board, poly-
mers and alu-foil. The TFA is usually used i China and Africa, providing cheap
aseptic milk packaging. A large problem in these countrys is the infrastructure,
this with the combination of old trucks results in big vibrations whitch leads
to cyclic impact on the packages with cracks as a result. These cracks often
appears in the same regions because of the geometry of the package, see figure
?? (b), the fold is where the crack initiates. This crack problem serves as the
background for this master’s thesis.

To understand the material and it differents parts the goal is to build a numerical
crack model in ABAQUS. The modell is based on several layers of material which
are assabled with cohesive zones between them. The cohesive zones purpose are
to simulate the adhesion between the layers. To get cohesive zones whitch
coincides with reality several, ordinary and some customized, adhesion tests has
been carried out

The crack initiation and propagation are simulated with the Extended Finite
Element Method and Linear Fracture Mechanics. The ambition is to first build
a simplyfied modell with less material layers and only uniaxial simulation and
to progress gradually when simulation and material behavior are verified.

The thesis will hopefully lead to further understanding of each of the laminates
parts and how they contribute to crack developemnat in the laminate. Except
the difference in material behavior adhesion and cohesion will also be investi-
gated to gain further material understanding.

1.3 Limitations and assumptions

The limitation of a masters thesis is twenty weeks, to meet this deadline assump-
tions and limitations where necessary. Following list highlights and describes
the assumptions and limitations.

• The original problem is a three dimensional, cyclic loading case where the
package is exposed to impact during a long time. This complex loading
case is hard to simulate which made it necessary to limit the simulations
to a two dimensional, static loading case. This assumptions reduces the
calculation time as well.

• Simplified material models. To reduce calculation time and to avoid many
physical tests simplified material models were used, idel elastic or ideal
elastic-plastic.

• The adhesion values in the simulation is based only on physical tests and
calculations, no calibrations of the adhesion were done.

• Limited parameter study. A parameter study can be made very extensive,
the study were limited to a few adhesive layers and material parameters.

New research areas can also be seen in Chapter 4, Results.



Chapter 2

Theory

This Chapter presents the essential theory needed to implement the method
and to complete this master’s thesis. For a deeper theory insight the reader is
recommended to consult the bibliography.

2.1 Index notation

Matrix and tensor algebra results often in complex expressions and equations.
Index notation can be used to reduce the complexity of these expresions. This
section aims to inform and brief the reader in the definitions of index notation.

Index notation lies on a few definitions and conventions. The basis is the index
of vetors and matrices. Vectors are written as

a = ai =




a1
a2
a3



 (2.1)

and matrices are written as

B = Bij =




B11 B12 B13

B21 B22 B23

B31 B32 B33



 (2.2)

As one can see the index take the values i = 1, 2 and 3, this convention will
follow thruout the whole report.

The summation convention reduces expressions and are defined by

biai = b1a1 + b2a2 + b3a3 (2.3)

Thus one can see if a index is repeated twice a sumation over this index appears.
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The unit matrix is called Kronecker’s delta in indexnotation language and are
represented by a delta

δij =

{
1 if i = j
0 if i != j

(2.4)

To save space and effort one can write derivetives in an easy way in the index
notation language as

∂f

∂xi
= f,i (2.5)

2.2 Continuum Mechanics

2.2.1 Large deformations

Figure 2.1: Deformation states [14]

To describe large deformations it is needed to formulate new strain measures.
Figure 2.1 shows an undeformed body in the cartesian coordinate system xk.
Its initial position vector for any material point in the undeformed state can be
describe as

x0
j = xkxk (2.6)

The new material position vector, see figure 2.1, can be described with the
displacements vector uj as

xj = xj(x
0
j ) = x0

j + uj (2.7)

Consider a vector between two material points in the same configuration. In
the undeformed state this vector is given by dx0

j and dxj in the deformed state.
dxj can be describe as

dxi = Fijdx
0
i (2.8)
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where Fij is the deformation gradient tensor

Fij =





∂x1

∂x0
1

∂x1

∂x0
2

∂x1

∂x0
3

∂x2

∂x0
1

∂x2

∂x0
2

∂x2

∂x0
3

∂x3

∂x0
1

∂x3

∂x0
2

∂x3

∂x0
3



 (2.9)

and

det(Fij) > 0 (2.10)

and thus the deformation gradient tensor is invertable.

From equation (2.27) it follows that Fij can be described as

Fij = δij +Dij (2.11)

Where δij is the unit tensor and Dij describes the partial derivatives of uij

Dij =





∂u1

∂x0
1

∂u1

∂x0
2

∂u1

∂x0
3

∂u2

∂x0
1

∂u2

∂x0
2

∂u2

∂x0
3

∂u3

∂x0
1

∂u3

∂x0
2

∂u3

∂x0
3



 (2.12)

The polar decomposition theorem says that Fij can be separated into two com-
ponents

Fij = VikRkj (2.13)

where the symetric tensor Vik represents the deformation and Rkj is an othorg-
onal tensor which describes the rotation.

2.2.2 Strain measure

Since this modelning involves large deformation and ABAQUS use Cauchy
stresses (true stress) it is useful to take the logarithmic strain measure as default.
The logarithmic strain measure is given by

εL = ln(Vik) (2.14)

2.2.3 Stress measures

It can be shown that stressstrain plots which uses logarithmic strain and Cauchy
stresses coincide closely with test results [1]. Cauchy stress is also a measure
that can be used for practical interest (traction carried out per unit current
area), compared to other stress measurements. The Cauchy stress tensor σij ,
or true stress, is defined by
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ti = σijnj (2.15)

where ti is the traction vector and nj is outward normal vector [2].

2.3 Material behavior

The material is a laminate consisting of 6 different layers which in the simula-
tions becomes 5 because the two inside LDPE layers are treated as one. The
layers are compounded with adhesion which occurs when the LDPE are ex-
truded on to the different parts.The figure bellow shows the construction of the
laminate.

Outside LDPE, 13µm

Board. 100µm

Laminate (LDPE), 27µm
Alu Foil, 6µm
Inside LDPE (mPE), 32µm

The attentive reflects over the modest thickness and do understand that this
contribute to some difficulties in methods to actually see the crack and it’s
propagation.

The Board

Paper is a material of a special kind. Unlike steel paper behaves differently in
different directions, this is because of the location of the cellulose fibers when the
paper is produced. This manufacturing process leeds to the papers characteristic
mechanical properties. This properties are based on three directions in the
paper, see figure 2.2.

Figure 2.2: The directions in the board [14]

In these directions mechanical strength differs in a extensive manner with MD
as the strongest direction and ZD as the weakest, ZD is drastically weaker than
MD and CD because of the delamination risk of the paper.
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2.3.1 Orthotropy

"If the constitutive relation takes the same form for every pair of Cartesian co-
ordinate systems that are mirror images (reflections) of each other in a certain
plane, this plane is a plane of elastic symmetry". Definition 4.50 in [2]

Hookes Law says

σij = Dijklεkl (2.16)

A material with no symmtry planes is an anisotropic material. The constitutive
matrix Dijkl for an anisotropic material takes the form

D = Dijkl =





D1111 D1122 D1133 D1112 D1113 D1123

D2211 D2222 D2233 D2212 D2213 D2223

D3311 D3322 D3333 D3312 D3313 D3323

D1211 D1222 D1233 D1212 D1213 D1223

D1311 D1322 D1333 D1312 D1313 D1323

D2311 D2322 D2333 D2312 D2313 D2323




(2.17)

In a orthotropic material there exists two or three symmtery planes and Dijkl

takes the form

D =





D1111 D1122 D1133 0 0 0
D2211 D2222 D2233 0 0 0
D3311 D3322 D3333 0 0 0
0 0 0 D1212 0 0
0 0 0 0 D1313 0
0 0 0 0 0 D2323




(2.18)

Many material shows an orthotropic behavior like paper, wood, rolled steel and
aluminum [2].

2.3.2 Initial yield criterium

An initial yield criterium confirms if the material is affected with plastic defor-
mation or failure. If the material is homogeneous the criteria only depends on
the stress tensor σij [2]

F (σij) = 0 (2.19)

If the material is anisotropic the criteria must depend also on a structural tensor.

σijPijklσkl − 1 = 0 (2.20)
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Pijkl is a structural tensor and for a orthotropy material the tensor takes the
form

P = Pijkl =





F +G −F −G 0 0 0
−F F +H −H 0 0 0
−G −H G+H 0 0 0
0 0 0 2L 0 0
0 0 0 0 2M 0
0 0 0 0 0 2N




(2.21)

F,G,H,L,M and N are material parameters which characterize the orthotropy
of the material just like the parameters in (2.18). These parameters can be
determined by [2]

F =
1

2

[
1

(σ11
yo)

2
+

1

(σ22
yo)

2
− 1

(σ33
yo)

2

]

G =
1

2

[
1

(σ11
yo)

2
+

1

(σ33
yo)

2
− 1

(σ22
yo)

2

]

H =
1

2

[
1

(σ22
yo)

2
+

1

(σ33
yo)

2
− 1

(σ22
yo)

2

]

L =
1

2(σ12
yo)

2

M =
1

2(σ13
yo)

2

N =
1

2(σ23
yo)

2
(2.22)

Usually these parameters are nine but in this case it is only the deviatoric
stresses that influence initial yielding [2].

With (2.21), (2.20) takes the form

F (s11−s22)
2+G(s11−s33)

2+H(s22−s33)2+2Ls212+2Ms213+2Ls213+2Ns223−1 = 0
(2.23)

sij is the deviatoric stress tensor defined as

sij = σij −
1

3
σkkδij (2.24)

(2.23) was proposed by Hill in 1950 and is called Hill’s Orthotropic yield crite-
rion.



2.4 Nonlinear Finite Element Method 13

Figure 2.3: Cohesive separation law [12]

2.3.3 Adhesion and cohesive behavior

In many structures the use of adhesives is common. To describe the adhesive
behavior one can use a separation law.

Tmax is the maximum stress (Damage Initiation in ABAQUS) that the adhesive
can take and δmax (Damage Evolution in ABAQUS) is the maximum separation
of the bulk material before the adhesive breaks and the bulk material are fully
separated.

2.4 Nonlinear Finite Element Method

The Finite Element Method is a numerical method for solving partial differetial
equations, developed by Olgierd Zienkiewicz.In solids mechanics these equations
arise from the equation of motion. The weak form of the equation of motion is

∫

V
ρvT üdV +

∫

V
(∇̃v)TσdV =

∫

S
vT tdS +

∫

V
vT bdV (2.25)

Where v is a arbitary weight function, ρ is the density, ü the acceleration vector,
σ the cauchy stresses, t the traction vector, b the body force and ∇̃T an operator

∇̃T =





∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y



 (2.26)

To reach the final FE-formulation some approximations are needed.

The displacement vector u is approximated with
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u = Na (2.27)

Due to a = a(t) it follows that

ü = Nä (2.28)

Where N is a vector whith the element shape functions, a is the nodal displace-
ments vector and ä is the nodal acceleration vector.

The weight function v is approximated with Galerkins method

v = Nc (2.29)

Because v is arbitary c becomes arbitary as well.

∇̃v = Bc (2.30)

where

B = ∇̃N (2.31)

With (2.28)-(2.31), (2.25) takes the form

cT
(
(

∫

V
ρNTNdV )ä+

∫

V
BTσdV −

∫

S
NT tdS −

∫

V
NT bdV

)
= 0 (2.32)

As a result of c being arbitrary (2.32) reduces to

Mä+

∫

V
BTσdV =

∫

S
NT tdS +

∫

V
NT bdV (2.33)

Where M is the mass matrix

M =

∫

V
ρNTNdV (2.34)

The other parts of (2.33) are defined as

fint =

∫

V
BTσdV (2.35)

fext =

∫

S
NT tdS −

∫

V
NT bdV (2.36)

fint are the internal forces and fext are the external forces. With these defini-
tions the finial dynamic FE-Formulation is reached
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Mä = fext − fint (2.37)

For further information about the Finite Element Method see [1] and [10].

2.4.1 Extended Finite Element Method

The Extended Finite Element Method is an extended version of the ordinary
Finite Element Method. XFEM is extended in a way that allows it to treat
discontinuities and singularities, this qualification is useful to simulate crack
initiation and propagation.

In the Finite Element Method the element boundaries are described by element
shape functions. These functions are often polynomials and can not treat dis-
continuities. Is is in this area of the method where it has bin extended. The
XFEMs element shape functions are extended in a way so that the functions
can hold discontinuities. This extension is based on a partion of unity [3], this
allows local enriched functions to be included in a finite element approximation.

The enriched funtions consists of near-tip asymptotic functions which captures
the sengularities och discontinuities near the crack tip. The displacement vector
u is enriched with partion of unity [3]

u =
N∑

i=1

Ni(x)

[
ui +H(x)ai +

4∑

α=1

Fα(x)b
α
i

]
(2.38)

N is the element shape function, H is the associated discontinous jump function,
a is the nodal enriched degree of freedom vector, F is the associated elastic
asymptotic crack-tip functions for a isotropic elastic material and b is the nodal
enriched degree of freedom vector. F and H is defined as

Fα(x) =

[√
rsin

θ

2
,
√
rcos

θ

2
,
√
rsinθsin

θ

2
,
√
rsinθcos

θ

2

]
(2.39)

H(x) =






1 if(x− x∗)n ≥ 0

−1 otherwise
(2.40)

(r, θ) is a polar coordinate system with its origin located at the crack tip front,
x is a Gauss point, x∗ is a point on the crack closest to x and n is the normal
to the crack at x∗

Asymptotic crack-tip functions is only used when modeling stationary cracks in
ABAQUS/Standard. When modeling moving cracks one just need to consider
the displacement jump across a cracked element i considered.
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2.5 Numerical Solution for Non Linear Dynamics

A common operator for Non Linear Dynamics is the Newmark operator, the
operator Hilber-Hughes-Taylor is a generalized version of the Newmark opera-
tor with controllable numerical damping [12]. This damping is coveted inte the
automatic time stepping scheme, where often high-frequency numerical noise
appear. The Hilber-Hughes-Taylor operator replace (2.33), the equation of mo-
tion, with

Mü|t+∆t+(1+α)(fint|t+∆t−fext|t+∆t)−α(fint|t−fext|t)+Ln|t+∆t = 0 (2.41)

Where t is the actual time step, t+∆t is the next time step and Ln is the sum
of all Langrange multiplier related to n degrees of freedom. The Hilber-Hughes-
Taylor operator is completed with the Newmark formulae for the displacement
and the velocity [12]

u|t+∆t = u|t +∆u̇|t +∆t2((
1

2
− β)ü|t + βü|t+∆t) (2.42)

u̇|t+∆t = u̇|t +∆t((1− γ)ü|t + γü|t+∆t) (2.43)

With values for the constans as

β =
1

4
(1− α)2 (2.44)

γ =
1

2
(1− α) (2.45)

−1

3
≤ α ≤ 0 (2.46)

The oprators strenght is the damping it posses and that the energy dissipation
is always small, not more than 1 % of the systems total energy [12]. For further
information about Numerical Solutions for Non Linear Dynamics see [1].

2.6 Fracture Mechanics

All materials and structures contains cracks. Fracture Mechanics is the theory
of these cracks, their initiation and their propagation. There exist three basic
modes of crack tip loading [7]. These three modes can be seen in figure 2.4.

In Linear Elastic Fracture Mechanics it is assumed that the material can be
described with only Linear Elastic Isotropic Theory [11]. The condition at the
crack tip can then be described by the stress-intensity factors KI , KII and KIII .
These factors are defined as [11]
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Figure 2.4: The three basic modes of fracture [13]

KI = lim
x→+0

σy(x, 0)
√
2πx (2.47)

KII = lim
x→+0

τxy(x, 0)
√
2πx (2.48)

KIII = lim
x→+0

τyz(x, 0)
√
2πx (2.49)

From these equations one can see that σx, τxy and τyz → ∞ when x → +0.

There are several ways of calculating these factors, for more information see [7]
and [11].

Energy flow at the crack tip

A central section in fracture mechanics is the amount of energy transported to
the crack tip, denoted G, and how much energy is needed for the crack tip to
propagate. In linear elastic systems the following relation holds [7]

G =
K2

x

E′ (2.50)

where E′ is the Youngs modulus is defined as

E′ =






E
1−ν2 planestrain

E planestress
(2.51)

In the general case the energy flow can be calculated with the J-integral [11], a
line integral around the crack tip.

J =

∫

Γ

(
A′dy − σijnj

∂ui

∂x
ds

)
(2.52)

Where Γ is the path which is integrated, σij the stress tensor, nj the outer
normal to the integrate path, ui the displacement discontinuity and A′

A′ =

∫
σijdεij (2.53)

is the deformation work per volume unit.
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Fracture Criteria

As a definition for when crack initiation occurs the property fracture thoughness
is introduced [7]. Crack initiation occurs when

G ≥ Gcr (2.54)

Where Gcr stand for the critival fracture energy.



Chapter 3

Method

This Chapter is a description of the methods used to implement this master’s
thesis. Every stage in the work process can be read in this chapter, and the
ambition is that that reader can apply the same methods after the reading. The
first part describes how the physical tests has been made then the method for
building the model, with the physical parameters, in ABAQUS is described.
Each of the steps made in ABAQUS is outlined so that the reader is able to
implement this kind of simulation.

3.1 Physical Tests

To verify the final model in ABAQUS and to investigate material behavior some
physical tests was carried out.

3.1.1 Adhesion

To get real parameters that ABAQUS requires for the cohesive behavior physical
adhesion tests where performed, some made after Tetra Pak standards and some
customized. A common test for adhesion is the peel test, figure 3.1. Tests
performed for this thesis are all peel tests with different peel angels, θ.

In procedure provided by Kinloch [8] one calculate the fracture energy GC and
maximum principal stress σmax for different peel angels. To compare results,
when it was feasible, both θ = 90o and θ = 180o was performed. Because
of the modest thickness of the material some of the adhesion layers could not
be measured. The problem was either that it was too thin or that the paper
delaminated insted of adhesion layer breakage. From Kinloch’s procedure [8] the
most interesting outputs needed for ABAQUS is the critical fracture energy GC

and maximum principal stress that the adhesion layer can suffer σmax. These
parameters for the different layers can be seen i the following table l.
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Figure 3.1: The Peel test [6]

Layer GC J/m2 σmax (MPa)
Inside/Foil θ = 180o 303.5 615.7
Inside/Foil θ = 90o 272.5 583.4
Decour/Paper θ = 180o 222.5 527.2
Lam/Foil θ = 180o 160 447

How the different θ peel tests were performed and how the set up was can be
seen in figure 3.2.

(a) 90o (b) 180o

Figure 3.2: The different Peel tests

3.1.2 Test of adhesion between shear and normal forces

To investigate the relation between adhesion in shear and normal direction ten-
sile tests were carried out in the different directions. The tests was easily made
out of two pieces of TFA material which were compound with a piece of iron
and a hot iron, see figure 3.3a. The test was then performed in a tensile machine
either in the shear direction, figure 3.3b, or in the normal direction, figure 3.3c.

The machine that was used for the test is an Zwick/Roell Z010, see figure 3.4
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for machine and clamps.

(a) Compund of TFA (b) Shear direction (c) Normal direction

Figure 3.3: Set up for Shear vs. Normal Adhesion

When test was performed in the shear direction the TFA material did break
before the adhesion layer was damaged. In the normal direction the board
dilaminated instead of the adhesion layer did break. Whith this insight and
discussion with Prof. Per Ståhle at the Division of Solid Meachanics, Lund Uni-
versity and Johan Tryding, Tetra Pak, a factor of ten (10) was determined. The
adhesion in the shear direction was set to be ten times stronger than in the nor-
mal direction. This relation is used when the cohesive surfaces is implemented
in ABAQUS.

(a) The Clamps (b) The Tensile Machine

Figure 3.4

3.1.3 Bend Test

To investigate how a real crack initiates and propagates a customized test was
proposed. A bend test was the load case closest to the real case but not to
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Figure 3.5: Bend Test 1

complicated to implement i ABAQUS. The bend test geometry is identical to
the ABAQUS model.

To be able to compare the test with the simulations the test was carried out
in a tensile test machine, where the reaction force could be measured. These
different test setups with different slot widths, was easily made in ABAQUS as
well, for comparison.

In figure 5.4 the radius of the die is 2 mm and the distance between the edges
in the whole is 6 mm.

3.2 Fold test

The problem area in the package , fig 1.1b, shows a fold in the material. To
simulate this a fold test was invented, an easy test where two plates was pushed
together. This test was also easy to simulate in ABAQUS. The test setup can
be seen in fig 3.6.

The space between the plates in the initial state was 10 mm and the they were
moved together to a reduced space of 0.5 mm The setup in the tensile machine
made it possible to get data for Load and Deformations plots.
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(a) Unfolded (b) Folded

Figure 3.6: The Fols Test

3.3 Investigation of the bend test and fold test

To investigate the bend test and to locate the crack a microtome was used.
A microtome is a machine which allows one to cut extremly thin slices of a
material. The slices are automatically glued on to a sticky tape and manually
added to a piece of glas. This setup allows one to investigate the sample, the
slice, in a microscope or an electron microscopy. Thickness of the slices used in
this thesis was 50µm. In figure 3.7 one can study a picture from the microscope,
the picture is from a 50µm slice and the enlargement is x10.

Figure 3.7: Microtome picture, 50µm x10

The red ring shows a fracture in the foil and necking of the LDPE.

One can easily understand that very thin slices of a very thin material are brittle
and sensitive. There for should one keep in mind that some of the pictures taken
with the microscope can hold damage in the material that has been carried out
during slicing of the material.

Approach for the conclusions

To make conclusions of the microscope pictures a structured approach is neces-
sary. This approach is described in the list below.

• Thickness for all slices was 50µm

• All slices were treated in the same way and very carefully.

• Ten slices were made for each test specimen, sliced with a space of 250µm
between them.

• The specimens were investigated in the microscope with the ambition to
locate cracks and trends for the specimens.

Locate cracks without Microtome
An easy method to quickly locate cracks in this type of package material is
to use a flashlight. If the flashlight is placed behind the material and one can
observe light passing the material one can be sure of that a crack has propagated
through the aluminum. This method is absolute and do not lack reliance like
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the microtome method do in manner of damage from the method process. One
should take in consideration that white light from a flashlight has bigger wave
length that other sorts of light, this means that there can, in theory, exist a
crack but it is too small for the white light to pass. In this work there was no
time and no need for a other test method than those presented, should one be
interested in investigation of smaller cracks one can use a Electron Microsope
instead of an ordinary one.

This method was used in a early stage so that one could see that a crack really
appears after the material has been folded. After this the fold test was born
and the results shows that it did work.

3.4 ABAQUS Model

ABAQUS is a Finite Element Method program based on deformation, con-
sisting of different modules and solution techniques. To create a model in
ABAQUS one follows three stages. The first stage, preprocessing, is to cre-
ate a geometric model in ABAQUS/CAE, this module is similar to a CAD
program. In the second stage the preprocessing file is sent to the solver, either
the ABAQUS/Standard using an implicit solver or the ABAQUS/Explicit using
an explicit solver. In the third stage the results is published in files ready to be
post processed. For further information about ABAQUS and its qualities see
[12].

3.4.1 Numerical solver

The numerical method used for this case is a dynamic implicit method, a solver
available in ABAQUS/Standard. This method is the only dynamic method
where XFEM is implemented. See Chapter 3 for further details.

A Quasi-Static stress analyst is used to be able to stabilize the solution with
mass-scaling. Mass-scaling is a method that uses the mass inertia by vary the
density so that the solution becomes stable.

3.4.2 Load case

To know how big deformation the laminate can suffer in the test rig one can
recall beam theory [5]. Modifications are needed when the beam consists of
different materials

εx(z) = z
1

R
+ C (3.1)

σx(z) = Es(z)εx(z) = Es(z)ε = Es(z)
z

R
+ Es(z)C (3.2)

Where εx(z) is the strain in x-direction, R the curve radius, z is the distance
from the inside of the bending radius to the locus for the deformation, σx(z)
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the stress in x-direction, E(z)s Young’s modulus in x-direction for material s
and C is a constant.

To determine C (3.2) and the following equation is used

∫ h

0
σdz =

∫ h

0
Es

z

R
+ EsCdz = 0 (3.3)

Where h is the thickness of the laminate which is divided into different sections
named z1...zi

∫ zi

0
Es

z

R
+ EsCdz =

[
E1

sz
2
1

2R
+ E1

szC

]z1

0

. . .
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2
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szC

]zi

zi−1

= E1
s
z21
2R

+
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E1

s
z22
2R

− E1
s
z21
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)
. . .

(
Ei

s
z2i
2R

− Ei
s

z2i−1

2R

)
+ CE1

sz1 + CE2
s (z2 − z1)

+ . . .+ CEi
s(zi − zi−1) = 0(3.4)

Gives

C =
E1

s
z2
1

2R +
(
E1

s
z2
2

2R − E1
s

z2
1

2R

)
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(
Ei

s
z2
i

2R − Ei
s
z2
i−1

2R

)

E1
sz1 + E2

s (z2 − z1) + . . .+ Ei
s(zi − zi−1)

(3.5)

The initial yield stress, σyo, for the materials is known. This is compared with
σx(z) from (3.1) and (3.2) and a radius at which the material yields can be
calculated.

Load Case to initiate movement

To initiate the right movement, in the fold test, of the specimen and to reduce
instability a load pressure were set on the left side in the x−direction. The
pressure was tested and reduced to a minimum to not impact the accuracy of
the model.

3.4.3 The adhesive layer

ABAQUS needs the following parameters for the adhesive layer

Parameter Description Unit
Kss The stiffness of the adhesive layer MPa
Knn The stiffness of the adhesive layer MPa
Ktt The stiffness of the adhesive layer MPa
σyy Maximum normal stress MPa

τxy The maximum shear stress i the xy-plane MPa
τzy The maximum shear stress i the xy-plane MPa
Gc Critical Fracture Energy J/m2
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Figure 3.8: Separation law for the cohesive behavior in ABAQUS [6]

One can se in figure 3.8 how these parameters is described in the separation law.
With data from the physical tests and a method developed by Kinloch [8] these
parameters can be calculated. The method is based on mechanical equilibrium
of the peel test.

Kinloch and his colleagues has programmed an Excel document [8] which calcu-
lates the fracture energy Gc and the maximum normal stress σyy for the adhesive
layer. The document needs the following physical test parameters

• b The width of the sample

• E Young’s Modulus for the peel arm

• P The peel force

• θ The peel angle

If one observes the peel arm like a "infinitely-rigid string" the equilibrium equa-
tion takes the following form

Gc =
Fpeel(1− cosθ)

b
(3.6)

Together with

G =
σδtn
2

(3.7)

where δtn is the separation in the normal direction, gives

σyy =
Gc2

δtn
(3.8)

Gc is the fracture energy for the adhesive layer.

In [8] Kinloch also take consideration of the peel arms mechanical impact on
the total energy that is needed. For further information of the theory behind
[8] see [9]
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3.4.4 Element and Mesh

The elements used in the model was 4-node bilinear plane stress element and
the geometric order for the element is linear (in ABAQUS named CPS4). Plane
stress was used due to the two dimensional case and the linearity was chosen
do to that XFEM in ABAQUS can not handle elements of quadratic geometric
order. No reduced integration is used do to problems with hour glassing, with
reduced integration one can increase the accuracy of the system do to the re-
duced system stiffness [10]. In this case the reduced integration resulted in a
collapse of the board in the TFA material, do to it’s orthotropic behavior, there
for a full integration was chosen. For further information about recommended
elements for different analyses see [12] or [10].

The mesh were refined in the area where the fold appear for reduced computa-
tional time and because the other areas were not to be investigated. The mesh
can be seen in figure 3.9

Figure 3.9: The Mesh

3.4.5 Material model

The LDPE layers are approximated as linear elastic, this is a approved approx-
imation because of it’s lack of stiffness relative the board and the aluminum.

The board is simulated as an anisotrpic (orthotropic) material. This is imple-
mented both in a elastic and a plastic manner in ABAQUS. In the Material
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Editor under Elastic ABAQUS asks for Young’s modulus, Poisson’s ratio and
the bulk modulus in all three directions of the local Cartesian system. In this
simulation the third direction, z, is not affected because the simulation is in 2D.
The following parameters was implemented.

Parameter Description Input
E1 Young’s Modulus i x-direction (MPa) 4283
E2 Young’s Modulus i x-direction (MPa) 42.8
E3 Young’s Modulus i y-direction (MPa) 1
ν1 Poisson’s ratio (Index) 0.01
ν2 Poisson’s ratio (Index) 0.01
ν2 Poisson’s ratio (Index) 0.01
G12 Bulk Modulus (MPa) 428
G13 Bulk Modulus (MPa) 1
G23 Bulk Modulus (MPa) 1

The aluminum is implemented as linear elastic until it yields, then the aluminum
holds a plastic behavior with isotropic hardening. To implement this ABAQUS
needs the yield stress and some points on the stress/strain curve after the yield
stress. The following parameters was implemented in the Material Editor in
ABAQUS.

Y ieldsStress(MPa) PlasticStrain
35 0

36.737 0.00208737
38.0415 0.00269147
39.346 0.00339994
40.6505 0.00422728
41.955 0.00518942
43.2595 0.00630373
44.564 0.00758916
45.8685 0.00906622
47.173 0.0107571
48.4775 0.0126857
49.782 0.0148776
51.0865 0.0173602
52.391 0.0201627
53.6955 0.0233161

55 0.0268531

Both the board and the aluminum parameters is taken from studies and tests
at Tetra Pak, they were taken from Ulf Nyman and Eskil Anderasson.

3.4.6 Parameter Study

The parameter study is based on variation of the adhesion layers and variation of
the stiffness in the LDPE. During the study the reaction force and the maximum
strain in the aluminum was measured. The reaction force is interesting because
this describes the resistance against folding and the maximum strain is a measure
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of the impact of the material. Due to ideal elastic-plastic material models will
the stress only reach a fixed value but the strain will keep increase why the
strain is more interesting.

• Normal adhesion is based on the measured values from the adhesion test,
this adhesion is given the name L in the result chapter.

• Higher adhesion is two times L, 2Gc and 2σmax, this has been given the
letter H

• Extreme adhesion has been given the TIE in the result chapter to indicate
that a TIE constraint has been used instead of surface based cohesive
behavior

• The variation of the LDPE is either the normal value of 300MPa or the
higher value of 400MPa

3.4.7 The Final Model

All steps in ABAQUS are now explained and how the whole model looks like,
in a deformed stage, can be seen in figure 3.10.

Figure 3.10: The Model

Building the final numerical model

The numerical crack model are based on the geometry of the fold test, presented
in section 3.2, see figure. To build a proper model the work was carried out
systematic with different stages where different parts and physical phenomena
was implemented.
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1. Develop the geometry, load case and boundary conditions of the model.

2. Implementation of the different materials. One by one with surface based
cohesive behavior so one can see that the model work and to detect early
errors and difficulties.

3. Testing of different meshes and loads.

4. Implement material models one by one.

5. Implementation of XFEM.

Geometry and load

The geometry was set like this with consideration that the geometry should
be easy to implement both i ABAQUS and in a physical test. The basis of
the geometry is two plates that are pushed together as the material is folded
between them. To initiate the proper path for the material a small pressure
pushes the standing material into it’s right path. This pressure also reduce the
risk for instability with this kind if load case, it can be compared with Euler’s
buckling cases.

Boundary conditions

When setting the boundary conditions the goal was to simulate the reality while
numerical and mechanical difficulties was tried to be avoided. The upper parts
surfaces of the specimen was coupled together to one point by a couple constraint
in ABAQUS, this point was then locked only in the x-direction so that the
specimen could both rotate around the locked point and translated in the y-
direction.

The lower parts of the specimen was locked together to a point by coupling in
ABAQUS exactly like the upper part but the lower parts coupled point was also
locked int the y-direction but not in a rotational manner.

XFEM implementation in ABAQUS

In ABAQUS one first need to create the XFEM crack editor and give the crack
a geometry. After this one creates an interaction named XFEM Crack Growth
and makes a coupling to the already existing crack one created earlier. The last
step is to give the material in the section where the crack can appear the right
material behavior, this is done by defining a Maxps Damage with both Damage
Initiation and Damage Evolution in the material editor. For further information
about Damage Evolution and Initiation see Chapter Theory or [12].

Convergence problems in XFEM

The discontinuities in the enriched area in a XFEM simulation can some times
lead to convergence failure even if a well refined mesh is used or the damage pa-
rameters are set realistic [15]. The XFEM method is in a computional manner
harder than the ordinary Finite Element Method because of its singularities. Do
to these numerical problems some parameters in ABAQUS need to be changed.
The parameters are changed in the General Solutions Controls Manager, the
number of attempts per increment IA is set to 10 or more and the box for
Discontinuous Analyses are toggled on. To improve the convergence even more
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one can change some material parameters and set stabilization for the dam-
age. These parameters are changed in the Material Editor, the stabilization for
Damage and the tolerence for damage is changed under sub option for Maxps
Damage. For further information about these parameters see [15] and [12].

If none of the above methods work one can prove to refine the mesh. After
different attempts in ABAQUS one saw that the convergence can be achieved
with a more refined mesh, both horizontal and vertical.



Chapter 4

Results

4.1 Results from the bend test

The results from the bend test is reported with pictures from the microtome.
Figure 3.7 shows a crack in the material. Zones like this were searched in the
following microscope pictures. No such zones could be recognized which led to
development of a new test method, the fold test. The test specimens was also
investigated with the flashlight test method.

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4
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Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

4.2 Results from the Fold Test

The test specimens was investigated with a flashlight before they were investi-
gated with the microtome. Motivation for these tests was to ensure that a crack
really did appear after the fold test, which it did. Figure 4.11 shows failure in
the material after the fold test.

To compare the reaction force between the simulation and the physical tests the
maximum force from the tests were measured and a mean value was calculated.
The difference in reaction force between the simulation and the physical tests
can be explained because of the increased stiffness due to the full integration.
Tests results can be seen in the table bellow.
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Figure 4.11: Failure after the Fold Test

Test Max.Reac.Force(N)
1 4.662
2 4.417
3 4.304
4 5.066
5 4.999
6 4.485
7 4.892
8 4.803
9 4.391
10 4.971

Meanvalue 4.699

Verification of the Fold Test

To verify the simulation model displacement- and force plots from the simula-
tions was compared with plots from the physical tests. In figure 4.12 one can
see these plots compared, the simulation plot is Run 1 in the table bellow.

Figure 4.13 shows that a real physical phenomena appears in the simulation as
well.
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Figure 4.12

Figure 4.13

The Parameter Study

Different variation has been carried out, these can be seen in the tables bellow.
Here are the different reaction forces and the different strains presented as well.

Table shows the parameter study with variation of the adhesion.
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Run Ins-Foil Foil-Lam Board-Lam Force (N) Strain (%)
1 L L L 7.77415 0.174152
2 L L H 7.77415 0.174152
3 L H L 7.77415 0.174152
4 L H H 7.77415 0.174152
5 H L L 7.77415 0.174152
6 H L H 7.77415 0.174152
7 H H L 7.77415 0.174152
8 H H H 7.77415 0.174152
9 L L TIE 8.23257 0.20621
10 L TIE L 823257 0.195444
11 TIE L L 7.98751 0.146813

The location for the maximum strain in Run 1 can be seen in figure 4.14.
The picture is taken from Run 1 because this model is based on the measured
adhesion values.

Figure 4.14: Location for Maximum Strain

Table shows the parameter study with variation of the stiffness in the LDPE
layers.

Run Ins.(MPa) Lam (MPa) Adhesion Force (N) Strain
12 300 300 L 7.77415 0.174152
13 300 400 L 7.92772 0.170073
14 400 300 L 8.23905 0.154461

4.3 Results from the XFEM simulation

No real results was carried out by the XFEM simulation. The reader could have
help from Chapter 3 when implementing the XFEM in other models. This is
why the XFEM field still serves a spot in this thesis.
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4.4 Results from Microtome Pictures

Ståhle et al has written an article [16] about necking in laminates of LDPE and
aluminum linked to the adhesion. In this article there were no physical tests
done and no real pictures, only FEM calculations and simulations. The results
founded during this study shows and proofs the theory in Ståhle et al article
[16].

Figure 4.15: Picture from [16]

Figure 4.16: Microtome picture

One can easy see the similarities between the figure 4.15 and figure 4.16
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4.5 Discussion

Some of the differences in the verification can be explained out from physical
phenomena and numerical problems. The load peak in the beginning of the
simulation curve in figure 4.12 can depend on the instability that the system
holds in the beginning of the bending, just like an Euler buckling case. The
fluctuation of the load at the end of the compression can be explained with
collapse of the adhesion between the board and the outside LDPE, or by the
boards material model.

The choice of full integration can affect the stiffness of the material, this can be
the reason for the difference in the maximum load between the physical tests
and the simulation.

Some of these differences could have been reduced by calibrating the model or
to make better physical tests that were more like the boundary conditions in the
simulation. Maybe one could have found a better solution to reduce the hour
glass phenomena than to use full integration. If this would be possible maybe
the difference in reaction force could have been eliminated or reduced.

4.6 Conclusions

The ultimate case is to have a maximum reaction force to increase the fold
stiffness in the material and to minimize the strain to reduce the risk for cracks
in the aluminum. In the tables for the parameter study it seems to be the cases
with extreme adhesion between the inside and the foil and a stiffer inside LDPE
that is the best solution to reduce cracks and big bend radius.

4.6.1 Future work

Through out my work I found many areas that needs further investigation,
areas that could be done as small tasks or as new master thesis. Because of the
limited time these areas could not be investigated but there significance is not
neglectable.

The Mesh

The mesh can be seen in figure 3.9 and the asymmetry in the elements is obvious.
This asymmetry can contribute to stress and force differences in the ares where
the asymmetry is located and the maximum strain location can be explained
due to this mesh. A more refined mesh could also be interesting to investigate,
and how this could impact the reaction force and maximum strain.

The Initial Load

The initial pressure in the model can affect the reaction of the model, an al-
ternative to this small pressure can be an initial deformation of the specimen
instead of the initial pressure.

Material behavior
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The material models that is used is simplified and could be both expand to
involve hardening behavior and delamination of the paper board. The delami-
nation could be modeled with surface based cohesive behavior, cohesive elements
or just with layers in the paper that not is tied together.

Simulation of a adhesion test

The biggest area that needs further investigation is the adhesion test. Adhesion
is a very hard physical phenomena to measure and to quantify. The best way
to verify the adhesion test should be to model an exactly peel test in ABAQUS
that was used to measure the adhesion, see Chapter 3. With a modeled peel
test the physical test could be used to calibrate the model in ABAQUS and help
to quantify the adhesion parameters. This implementation is not an easy task
and could be carries out as an new master’s thesis. The implementation is then
easy to use and implement in the model used in this thesis.
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Chapter 5

Appendix

5.1 Data from adhesion tests

To get the force for document [8] one have to multiply the dimensions bellow,
these are in (N/m).

Figure 5.1: Graph, 180o Peel test for the decor and board

Average Load/Width (N/m)
1 113
2 113
3 114
Mean 114
Std 0.69
CV 1
Max 114
Min 113
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Figure 5.2: Graph, 180o Peel test for the inside LDPE and the Foil

Average Load/Width (N/m)
1 177
2 193
3 188
4 210
5 211
Mean 196
Std 14,6
CV 7
Max 211
Min 177

Figure 5.3: Graph, 90o Peel test for the inside LDPE and the Foil
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Average Load/Width (N/m)
1 308
2 284
3 332
4 312
5 314
Mean 310
Std 17.03
CV 5
Max 332
Min 284

Figure 5.4: Graph, 180o Peel test for the inside Laminate and the Foil

Average Load/Width (N/m)
1 74
2 89
Mean 81
Std 10,7
CV 13
Max 89
Min 74

5.2 Plots from the parameter study

The following plots are compared with the physical test. The material properties
can be seen in the run tables in Chapter 4.
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Figure 5.5: Run 1

Figure 5.6: Run 2
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Figure 5.7: Run 3

Figure 5.8: Run 4
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Figure 5.9: Run 5

Figure 5.10: Run 6
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Figure 5.11: Run 7

Figure 5.12: Run 8
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Figure 5.13: Run 9

Figure 5.14: Run 10
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Figure 5.15: Run 11

Figure 5.16: Run 12
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Figure 5.17: Run 13

Figure 5.18: Run 14


