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1 Introdution

2 Basi linear algebra

Exerise 2.1 The matrix K is de�ned as

K = αBTDB

where α is a salar and the dimension of B is 3 × 6.

• Determine the dimension of K

• Determine the dimension of D

• For the situation where D = DT
show that K is symmetri.

Exerise 2.2 Calulate det(K) when K is de�ned as

K =









1 6 2 3
0 2 0 0
1 6 −2 1
0 3 1 2









Exerise 2.3 Consider the quantity aTKa (K is symmetri) where dim(K) is n × n and

dim(a) is n × 1. Moreover, aTKa ≥ 0, and aTKa = 0 for some a 6= 0

• Determine det(K)

• Does Kx = 0 have non-trivial solutions ?

• b is known and non zero. How many solutions to Kx = b exists ?

Exerise 2.4 In an experiment the variable x is hanged and the variable T is measured.

The following results are obtained

i Ti xi

1 0.31 0.12

2 0.32 0.15

3 0.34 0.16

4 0.36 0.19

Table 1: Experimental results

A model desribing the physial nature of the problem is given by T = α1+α2x+α3x
2+α4x

3
.

• Fit the parameters αi to the experimental data.
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Exerise 2.5 A beam of water with veloity v = [1 3 2]T m/s is �owing through a surfae

with area A = 0.2m2
and unit (outward) normal vetor n = 1

2

[√
3 1 0

]T
. Calulate the

amount of water passing the surfae per seond.

Exerise 2.6 In a �nite element analysis the following linear equation system is obtained









1 6 −2 −3
6 2 −4 0
−2 −4 2 −1
−3 −2 −1 2

















2
4
u3

u4









=









f1

f2

30
40









Calulate (by hand) the unkonwns u3, u4 and f1 and f2.

Exerise 2.7 Use the alfem ommand solveq to solve Exerise 2.6, i.e.

>>x=solveq(K,f,b)

where K is the matrix, f is the right hand side in the system of equations above. Note that

f(1) and f(2) are assigned 0 in the funtion all. Sine x(1) = 2 and x(2) = 4 the variabel bc

should be assigned

bc =

[

1 2
2 4

]
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3 Diret approah

Exerise 3.1 a) Derive the sti�ness matrix for a spring with the spring sti�ness k. The

spring is loaded with the fores P1 and P2. The nodal displaements are denoted u1 and u2.

2

P

u u

P1 2

1

k

b) Derive the global sti�ness matrix, K, for the spring system shown in the �gure below

u1 2u
1 2

uu

F F4

4

3

3

FF

k

k

k

k

k1

2

3

4

5

) Give a physial interpretation of det(K) = 0.

d) For the system given above the following holds:

u1 = 1mm, u4 = 0, F2 = 0N, F3 = 20N
k1 = k2 = k3 = k4 = k5 = 8N/mm.

Calulate the displaements u2 and u3 and the fores F1 and F4 .
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Exerise 3.2 a) Derive the element sti�ness matrix for a spring with spring onstant, k,
subjeted to the fores F1 and F2. The displaements are denoted u1 and u2, f. the

�gure below.

u1 2u

k
F1 F2

b) Derive the global load-displaement relation Ka = f for the assembly below.

u1

1F

2u
2F

k1

k2

k4

k3

u

F3

3

) For u1 = 0, F2 = 0 oh F3 = 10N derive F1, u2 oh u3 if k1 = k2 = k3 = k4 = 10N/mm.

d) Find an a 6= 0 suh that aTKa = 0.
Hint: What does det(K) = 0 means in terms of boundary onditions.
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Exerise 3.3 Consider the assembly of eletrial resistanes below, f. Fig.1

Node 4

Node 3

Node 1

Node 2

Ii, Vi

Ij , Vj

rα

A

B

C

r1

r2

r3

r4

r5

Figure 1: a) Assembly of eletrial resistors. b) Typial element of assembly.

If a typial resistane is isolated (f. Fig.1b), the relation for the urrent entering the element

at the ends, (Ii, Ij) and the end voltages (Vi,Vj) an be written as (Ohm's law)

[

Ie
i

Ie
j

]

=
1

rα

[

1 −1
−1 1

] [

V e
i

V e
j

]

• Use the "diret method" to establish the system of governing equations, i.e. Ka = f ,

for the situation r1 = r2 = r3 = r4 = r5 = r∗.

• Solve the system for the situation where the urrent P=1A is supplied to the system at

A. Moreover, the point B and C is onneted to ground, VB = VC = 0V .

Hint. The Kirhho� (�rst) law states that the sum of all urrents entering a point is zero.
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Exerise 3.4 The element sti�ness matrix for a bar is given by

Ke =
AE

L









cos2 φ sinφ cos φ − cos2 φ − sinφ cos φ
sinφ cos φ sin2 φ − sinφ cos φ − sin2 φ
−cos2φ − sinφ cos φ cos2 φ sinφ cos φ

− sinφ cos φ − sin2 φ sinφ cos φ sin2 φ









φ
L

AE

u i

ju

uk

u l

where the degrees of freedom i, j, k oh l orresponds to the rows 1, 2, 3, oh 4 in element

sti�ness matrix. Use this result to establish the global sti�ness matrix for the system below

45

135

o

ou

u
u

u u7

u8u4

3

u1

2

F

5

6

Assume that k = AE/L for the three elements is the same. Morover, note that sin(45) =

sin(135) = cos(45) = −cos(135) = 1/
√

2.
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4 Strong and weak form- one dimensional heat

Exerise 4.1 Two bodies with di�erent temperatures are loated at distane ∆x between

eah other. Give intuitive answers to the questions below:

T = 0K T = 40K

a)

∇T

T = 0K T = 80K

b)

∇T

T = 0K T = 40K

c)

∇T

Figure 2: Retangular diss with given temperature distribution.

• In what diretion is the heat �owing in Fig.2 a ?

• The temperature di�erene between the bodies is doubled. What happens to the tem-

perature derivative ? What happens to the heat �ux ?

• The distane between the bodies is doubled. What happens to the temperature deriva-

tive ? What happens to the heat �ux ?

• Can you onlude your �ndings ?

Exerise 4.2 Derive the strong form of the (one-dimensional) heat �ow problem depited in

the �gure below. Derive the weak form orresponding to strong form (leave the boundary

x

x=bx=a

Q

onditions unspei�ed).

Exerise 4.3 The weak form of the uniaxial heat �ow problem is given by

∫ L

0

dv

dx
Ak

dT

dx
dx = −(vAq)x=L + (vAh)x=0 +

∫ L

0
vQdx, T (x = L) = g

and the strong form of the heat �ow problem is given by

d

dx

(

Ak
dT

dx

)

+ Q = 0, 0 ≤ x ≤ L

q(x = 0) = −
(

k
dT

dx

)

x=0

= h, T (x = L) = g

Show that the weak form implies that strong form.
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Exerise 4.4 A rod is subjeted to a distributed fore is depited below.

x

b(x) A(x)

0 L

Show that the strong form of the equilibrium equations an be written as

dN

dx
+ b = 0 ; N = σ A

where N is the normal fore and σ the stress.

Derive the weak form of the problem.

Exerise 4.5 An insulated able with radius R1 is submerged into the sea. The thikness of

the insulation is R2 − R1, f. Fig. 3.

R1

R 2

Figure 3: Insulated able

• Establish the strong form of the one dimensional heat �ow equation for the insulation.

• Derive the weak form orresponding to the strong form.
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5 Gradient, Gauss divergene theorem and Green-Gauss theo-

rem

Exerise 5.1

• In the three-dimensional situation the spaial variation of a salar �eld given by the

gradient. What is the 1-D ounterpart ?

• In the three-dimensional situation a volume integral of a divergene of a vetor �eld an

be transformed into a surfae integral (Gauss's theorem). What is the 1-D ounterpart

?

• What is the one dimensional ounterpart to the Green-Gauss theorem ?

Exerise 5.2 The temperature in a retangular dis is given by T (x, y) = ax + by, f. Fig.

4.

c

d

x

y

Figure 4: Retangular dis with given temperature distribution.

a) Calulate the integral

∮

(∇T )TndL where n is the normal vetor to the dis.

b) Calulate the divergene of the temperature gradient.

) Could the result in a) have been obtained diretly from b) ?

Exerise 5.3 For φ = x2 + y + 10, alulate the line integral

∫

L
φ(x, y)dL

where L is the straight line from (x, y) = (1, 4) to (5, 1). What happens if the integration is

performed from (5, 1) to (1, 4) instead ?

Exerise 5.4 A urve in the x − y plane is de�ned by φ = x2 + y + 10 = 0. Calulate the

normal vetor to the urve at (1,−11).
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6 Strong and weak form of 2-D and 3-D heat �ow

Exerise 6.1 An ellipti dis is de�ned by

(

2x − L

2L

)2

+

(

2y

3L

)2

≤ 1

The temperature �eld within the dis is given by

T = T0

[

(x/3L)2 + (y/L)2
]

The onstitutive law for heat �ow is assumed to be given by the law of Fourier, i.e.

q = −D∇T, D = kI

a) Determine the heat �ux vetor at the boundary point (L/2,3L/2)

b) Determine the normal vetor at the boundary point (L/2,3L/2)

) Determine the heat per unit area leaving the dis at the boundary point (L/2,3L/2)

Exerise 6.2 Let Q be the amount of heat supplied to a body per unit time ([Q] = [J/m3s).
Let the heat �ux per unit time and unit area leaving the body be denoted qn ([qn] = [J/m2s]).

• Derive the global heat balane for the stationary (time-independent) situation.

• Use Gauss divergene theorem to establish the strong form of the heat equation.

• Derive the weak form of the heat �ow problem. Assume that qn is presribed at a part

Sh of the boundary whereas on a part Sg the temperature is presribed.

Exerise 6.3 For isotropi materials the D matrix in q = −D∇T is given by

D =





k 0 0
0 k 0
0 0 k





Show that q is parallell to ∇T .

Exerise 6.4 The Fourier's law an be written as

q = −D∇T

where q is the heat �ux vetor. From experiments we have that the following inequality holds

qT
∇T < 0 ∀∇T 6= 0

Show that D−1
exsits.

Exerise 6.5 Newton onvetion is given by

qn = α(T − T∞)

What is the mehanial analogy to this boundary ondition ?
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7 Choie of approximating funtion

Exerise 7.1 For the one dimensional mesh below, determine

a) The element shape funtions

b) The global shape funtions

Use the C-matrix method as well as Lagrange polynomials. Sketh your result.

Exerise 7.2 For the one dimensional mesh below, determine

a) The element shape funtions

b) The global shape funtions

Use the C-matrix method as well as Lagrange polynomials. Sketh your result. The internal

node is loated at the enter of the element.
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Exerise 7.3

a) An element mesh is based on the following 6-node and 9-node elements

The approximation for the 6-node element is T = α1 +α2x+α3y +α4xy +α5x
2 +α6y

2
,

while the approximation for the 9-node element is T = β1 + β2x + β3y + β4x
2 + β5y

2 +
β6xy + β7x

2y2 + β8xy2 + β9x
2y

Chek if the onvergene riterion is ful�lled.

b) An element mesh is based on the following 6 element

The approximation for the 6-node element is T = α1 +α2x+α3y +α4xy +α5x
2 +α6y

2
,

Chek if the onvergene riterion is ful�lled.
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Exerise 7.4 An element mesh is based on the following 3-node and 4-node elements

x

y

0 0.5 1 1.5

0.5

The approximation for the 4-node element is T = α1 + α2x + α3y + α4xy, while the approxi-
mation for the 3-node element is T = β1 + β2x + β3y

a) Is the onvergene riterion is ful�lled ?

b) Use the C-matrix method to obtain the element shape funtions for the 3-node element.

Exerise 7.5 Due to a hemial reation, heat is generated within a body. The heat �ow is

governed by the loal balane law (div(q) − Q = 0) where q is the heat �ux vetor [J/m2s]
and Q [J/m3s]is the heat generated by the hemial reation. The body is modelled by one

9-node element and one 6-node triangular element. Along the boundaries L1−5, L1−10 and

L10−12 the body is ompletely insulated whereas Newton onvetion applies along L5−12, i.e.

qn = α(T − T∞).

The result of the FE-analysis is given below:

aT = [13 15 18 14 14 16 13 15 18 14 14 19]

and the nodal oordinates are given by

Coord =

[

0 b 2b 3b 4b 0 b 2b 3b 0 b 2b
0 0 0 0 0 b b b b 2b 2b 2b

]

where the �rst row orresponds to x-oordinates and the seond row orresponds to y-oordinates.

Determine the total heat generated within the struture due to the hemial reation for the

situation where the thikness is b and the ambient temperature, T∞ = 0.
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Exerise 7.6 For a two-dimensional thermal analysis, where φ is the unknown temperature

�eld onsider the following questions:

a) For an 8-node element, φ is approximated by a polynomial (element borders are parallel to

the oordinate axes).

x

y

1 2 3

4

567

8

Suggest a form for φ and show that the proposed form ful�lls the onvergene requirement.

b) Same as for a), but onsider now the 6-node element given below.

x

y

1 2 3

6 5 4

Exerise 7.7 Consider the four node element below

x

y

1

4

2

3

Figure 5: Four node element.

a) Suggest a suitable approximation for a salar problem for the element above.

b) Does the proposed approximation involve any parasiti terms ?

) Use the C-matrix method to obtain the element shape funtions. You do not need to

alulate the inverse of C, i.e. it is su�ient to establish the matries that are involved in the

alulation.

d) What is the value of the element shape funtion N e
2 at the nodes 1, 2 and 3 ?
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8 Choie of weight funtion

Exerise 8.1 The di�erential equation governing the response of the olumn depited below

is given by

d2u

dx2
+

1

π2
u + sin x = 0 0 ≤ x ≤ π

u(0) = u(π) = 0 P P

u

x

Adopt the following approximation for the de�etion

uapp(x) =

n
∑

k=1

ak sin(kx)

1. Derive an expression for the error, e(x)

2. Desribe the di�erene between the "point olloation", "subdomain olloation", "least-

square" and "Galerkin" methods.

3. For the situation n = 1, determine uapp
using the "point olloation" and "Galerkin"

method.

Exerise 8.2 Consider the di�erential equation

d2u

dx2
+ u + 1 = 0

together with the boundary onditions u = 0 at x = ±1. An approximative solution should

be derived using Galerkin's weighted residual method.

• Suggest a suitable approximation that involves one unknown parameter. The trial fun-

tion should be hosen as a trigonometri funtion.

• Determine the unkown parameter using the ondition that the weight funtion is or-

thogonal to the residual, i.e.

∫ 1

−1
e · vdx = 0
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9 FE formulation of one dimensional heat �ow

Exerise 9.1 A rod is subjeted to a distributed load and a temperature distribution

x

b(x) A(x)

0 L

The equation of equilibrium for the rod an be written as

dN

dx
+ b = 0 ; N = σ A

where N is the normal fore and σ the stress.

For the uniaxial ase, the onstitutive relation for a linear thermoelasti material is given by

σ = E(ǫ − α ∆T )

where ∆T is the temperature di�erene measured for the referene state.

Derive the weak form of the problem and the orresponding FE-formulation aording to

Galerkin (ǫ = du/dx where u is the displaement). Then for the following ase

u(0) = 0 ; N(L) = 0
b = onstant ∆T = To(1 + x

L)

alulate the displaement at x = L/2, assuming that E, A, α and To are onstants. Use two

2-node elements to approximate the rod.
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Exerise 9.2 Consider a metal whih is overed by a thin �lm of oxide.

y

x

2L

M

e

t

a

l

A

i

r

O

x

i

d

e

x=0

L 2L

The growth law of the oxide �lm is governed by Fik's law, i.e.

q = −D
dc

dx

where q is the number of ions di�using through the ross setion per unit area and unit time.

The onentration is denoted c. The di�usion parameter, D, is for this oxide �lm given by

D = D0(1 + 2ax)

Moreover, for stationary onditions the ion balane requires

− dq

dx
+ Q = 0

where Q is the ion supply per unit volume and unit time.

a) Establish the �nite element formulation for the di�usion problem desribed above. All

steps in the derivation should be presented.

b) Using two linear �nite elements, alulate the onentration c through the oxide �lm. The

onentration at the oxide/metal surfae is cm whereas the onentration at oxide/air surfae

is given by ca. The thikness of the oxide layer is 2L. D0 and a are onstants in the onstitutive

law. Moreover no internal supply is present, i.e. Q = 0.
) Modify the boundary onditions at x = 2L suh that q = kc and alulate the new sti�ness

matrix (K̃a = f̃). Note that the new system does not need to be solved.
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Exerise 9.3 A tapered �n of thikness t and length L is exposed to onvetion along it's

length. The temperature distribution for this situation is governed by

d

dx

(

x
dT

dx

)

− N2(T − T∞) = 0, 0 < x < L
(1)

where N is a onstant (given) parameter de�ned as N2 = α
k

√

1 + L2

Y 2 . The ambient (onstant)

temperature is given by T∞. Moreover, α represents the onvetion oe�ent and k the

ondutivity. L and Y are shown in Fig. 6. The boundary onditions are given by

[

x
dT

dx

]

x=0

= 0, T (L) = T0

a) Determine the weak form of the heat �ow problem given by above.

b) Determine the orrespondning �nite element formulation.

) For the situation N2 = 6/L, use two linear elements of equal size and alulate K and

f in the FE equation Ka = f .

d) Assuming that T∞ = 0oC and T0 = 100oC, determine the temperature distribution in

the �n.

x

y

T∞

T0

L

Y

Figure 6: Measures of the tapered �n.

19



FE formulation of one dimensional transient heat �ow - Not overed in the

text book

Exerise 9.4 The one dimensional di�usion problem an be written as

d

dx

(

k1
dc

dx

)

+ Q = k2ċ, 0 ≤ x ≤ L

where k1 and k2 are onstant material parameters and c the onentration. Q represents

the (onstant) internal generation. The boundary and initial onditions are given by

dc
dx(x =

0, t) = q0, c(L, t) = 0 and c(x, 0) = c0sin(πx/L).

a) Derive the FE formulation orresponding to the di�erential equation above.

b) Use two equally long elements and alulate the element matries.

) Desribe (in words or equations or both) how the time integration is performed. Desribe

how the initial ondition is introdued.

Exerise 9.5 The governing equation for a rod subjeted to a distributed load (per unit

length), b(x, t) an be written as

0 L
x

b(x,t) A(x)

d

dx

(

EA
du

dx

)

+ b = mü, σ = Eǫ = E
du

dx

where E is the Young's modulus, A ross setion area, σ the stress and u the displaement.

The mass per unit length is denoted m.

a) Derive the weak form of the problem.

b) Derive �nite element formulation.

) Show that the sti�ness matrix is postitive semide�nite if EA is positive.

d) The struture is modeled using three two-node elements of equal length. Calulate the

system matries for the situation b = b(t), A = const., m = const. and E = const..

Note that you do not need to integrate the system over the time.
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10 FE formulation of 3D heat �ow

Exerise 10.1 In order to analyze the heat exhange from a himney a FE-analysis is per-

formed. The gas entering the himney from the stove has the temperature T = 300oC. The

himney as well as a ross setion showing the three hannels are illustrated in the �gures be-

low. Moreover, the FE-mesh that is used in the FE-analysis is also provided. The governing

L2

L3

L4 L1

Element 27

(1000, 800)

(850, 750)

(1000, 700)

a) b) ) d)

x

y

Figure 7: a) Chimney. b) Cross-setion of himney. ) FE-mesh of element 27 and its sur-

rounding elements. d) Loation of element 27

equation for the heat �ow problem is given by

divq = 0, q = −k∇T

where k represents the onstant ondutivity, q the heat �ux vetor and T the temperature.

The boundary ondition for the problem is given by

L1 : qn = α(T − 22) L2 : T = 300oC L3 : qn = α(T − 22) L4 : qn = α(T − 22)

a) Derive the FE-formulation for the two-dimensional heat �ow problem.

b) Calulate the element matries above for element 27, i.e alulate the element sti�ness

matrix, element fore vetors and the matries that arises from the boundary onditions.

Hint: The following relation holds





1 850 750
1 1000 700
1 1000 800





−1

=







20
3

14
3 −31

3
− 1

150
1

300
1

300

0 − 1
100

1
100
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Exerise 10.2 Continuity for the urrent density in a B requires that

div(j) = 0 or ∇ · j = 0

where j represents the urrent density
[

A/m2
]

. Moreover, the onstitutive law (Ohm) relating

the urrent density to the eletri �eld is given by

j = σE, σ = σ(x) > 0

Note that σ not neessarily need to be onstant througout the body. Moreover, the eletri

�eld is obtained from the potential V as E = −∇V .

• Determine the weak form and the FE formulation (Ka = f) for the problem given

above.

• Show that K is positive semide�nite as long as no boundary onditions are imposed.

(Your statement must be shown.)

Exerise 10.3 In the drying proess of timber it is of utmost importane to be able to

determine and ontrol the moisture ontent in the timber. As an example, due to unfavourable

moisture distribution, a rak has been formed in the upper of the two boards shown in Fig.8a.

The moisture ontent is governed by the partial di�erential equation div(∇m) = 0 where m
is the moisture ontent measured as

[

kg water/m3
]

. A �nite element analysis of the board

is performed. The board is modeled using 9-node Lagrangian elements. The approximation

that is used in the problem is given as

m = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 + α7x
2y + α8xy2 + α9x

2y2

• Does the suggested interpolation involve any parasiti terms ?

• Does the suggested interpolation guarantee onvergene ? (Prove your statement !).

• For the element (side length 2) indiated in Fig.8 ) alulate the ontribution from the

boundary term

∮

LN
T qndL, qn = −k(∇m)Tn (k is a onstitutive parameter and n

the normal vetor to the boundary) to the nodes 1,2 and 3. Moreover, qn is presribed

to be onstant qn = q0 along the boundary L.
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123

y

x

2

2

L

1 2 3

a) b) )

Figure 8: a) Two boards that have been dried under di�erent onditions. b) The boundary

and three elements that are used in the �nite element analysis of the moisture problem. )

One 9-node Lagrangian element.

Exerise 10.4 For the di�usion problem below, the onentration is given by c (
[

ions/m3
]

).

+ c=2
c
y

1 2

34

c=1

= 0
c
x

= 1
c
x

x

y

In order to simplify the problem it is assumed that the geometry is quadrati with the side

length 1. The onentration is governed by the Laplae equation, i.e.

div(∇c) = 0

supplemented by the boundary onditions

∂c

∂x
= 0 along x = 0;

∂c

∂x
= 1 along x = 1

c = 1 along y = 0;
∂c

∂y
+ c = 2 along y = 1

a) Derive the �nite element formulation.

b) Determine the onentration along y = 1. The problem shall be solved by using one four

node element.
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11 Guidelines for element meshes and global nodal nubering

12 Stresses and strains

Exerise 12.1 Derive the strains orresponding the the following displaement �elds. Can

you desribe the displaement �elds ? (k1 and k2 are onstants)

a) ux(x, y) = k1, uy(x, y) = k2

b) ux(x, y) = 0, uy(x, y) = k1y

) ux(x, y) = k1y, uy(x, y) = −k1x

d) ux(x, y) = 2k1y, uy(x, y) = 0

Exerise 12.2 a) Consider a dis ( uniform thikness t) subjeted to a plane stress state.

A

n

x

y

Establish the global equilibrium balane and then derive the loal equilibrium equation, i.e.

∂σxx

∂x
+

∂σxy

∂y
+ bx = 0

∂σxy

∂x
+

∂σyy

∂y
+ by = 0

b) For the dis depited below the stress in P is given by

S =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 =





12 6 0
6 −4 0
0 0 0





x

(3, 1)

(2, 2)

y

◦

◦
◦P

Determine the tration vetor in the point P
) Determine the normal and shear omponents of the tration vetor in P
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13 Linear elastiity

Exerise 13.1 The strain energy is given by W = 1
2σ

T ǫ. In the situation where plane stress

applies show that the out-of-plane strain omponent ǫzz does not ontribute to the strain

energy.

Exerise 13.2 The sti�ness tensor D present in the onstitutive law σ = Dǫ is given by

D =
E

(1 + ν)(1 − 2ν)

















1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1

2(1 − 2ν) 0 0
0 0 0 0 1

2(1 − 2ν) 0
0 0 0 0 0 1

2 (1 − 2ν)

















a) Derive D for plane strain onditions

b) DeriveD for plane stress onditions (Note that you need some software for task (e.g. Maple)

25



14 FE formulation of non-irular shafts

15 Approximating funtions for the FE-method-vetor prob-

lems

Exerise 15.1 For a plane mehanial analysis the displaement �eld (ux, uy) within an ele-

ment is interpolated as

ux =
∑

N e
i uxi, uy =

∑

N e
i uyi

where uxi and uyi represent the nodal x and y displaements. The small strain omponents

are de�ned as

ǫxx =
∂ux

∂x
, ǫyy =

∂uy

∂y
, γxy =

∂uy

∂x
+

∂ux

∂y

Establish the Ne
and Be

in the matrix relations u = Neae
and ǫ = Beae

.
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16 FE formulation of three dimensional elastiity

Exerise 16.1 For a plane stress analysis the FE-formulation an be written as

∫

A
B

TσtdA =

∫

A
N

T
btdA +

∫

L
N

T
ttdL

where b is the body fore vetor and t the tration fore vetor.

x

y

1

2

3

4

Figure 9: Four node element.

a) Suggest a suitable approximation for the displaement �eld (ux, uy) for the four node ele-
ment above.

b) Identify, for one element, the size of the matries (rows x olumns) of the matries B, σ,

N, b and t that are present in the �nite element formulation.

For a thermoelasti material the Hooke's law an be stated as

σ = D
(

ǫ− ǫθ
)

, ǫ = Ba

) Derive the matries in the �nal FE-formulation Ka = f when a plane stress thermo-elasti

analysis is performed.

27



Exerise 16.2 Consider the plane elastiity problem below, f. Fig.10

(xi, yi) (yj, xj)

(xk, yk)tx = ay

x

y

L5

L1

L2

L3

L4

Figure 10: a) Plane elasti problem. b) Typial 3-node element.

The weak form of the equilibrium equations for the struture are given by

∫

A
(∇̃v)

T
σtdA =

∫

L
vT ttdL +

∫

A
vTbtdA, ∇̃ =







∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x







and the onstitutive relation is provided by the Hooke's law, i.e.





σxx

σyy

σxy



 =





D11 D12 D13

D21 D22 D23

D31 D32 D33









ǫxx

ǫyy

γxy



 , σ = Dǫ, D = DT

The governing equation for the supporting surfae at L3 is given by

ty = −kuy,

where q denotes the supporting fore per square meter and k the spring onstant f. Fig. 10.

• a) Speify the boundary onditions for the struture depited in Fig.10a.

• b) Derive the FE-formulation for the two-dimensional elastiity problem. Note that the

boundary ondition at L3 must be given speial attention.

• ) Show that the sti�ness matrix, K, is symmetri.

• d) For the situation where three node elements are employed, determine the dimension

of the matries K, f and a as well as N e
, Be

, Ke
, f e

. Assume that the �nite element

mesh onsists of ndof/2 nodes ndof degrees of freedom and nelm elements.
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Exerise 16.3 For a strutural problem, a disk is modelled by 4-node elements. The struture

has 16 degrees of freedom. The matrix relation found from the FE-formulation is given by

Ka = f b + f l, where the sti�ness matrix is denoted K, nodal vetor a, load vetor f l and

the boundary vetor with f b.

P

q

P

u

u
3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

















































































































































































































































=

























































































































+

























































































































Mark with an x for omponents known and di�erent from zero, and with 0 for omponents

equal to zero and with ? for unknown omponents.
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Exerise 16.4 A strutural analysis of a body subjeted to its body weight (g is ating in

negative y diretion) should be performed using the �nite element method. In addition to its

body weight it is subjeted to an inhomogeneous temperature distribution. The �nite element

formulation is given by

∫

A
BTσdA =

∫

L
NT tdL +

∫

A
NTbdA

The onstitutive law governing the mehanial behaviour is given by the Hooke's law, i.e.

σ = D(ǫ − ǫ∆T ) where ǫ∆T
is the thermal strain. The body is supported by two beds

of springs. Along L2, tx = −kxux where tx and ux are omponents of the tration and

displaements vetors. A similar relation along L3 holds, i.e. ty = −kyuy. Note that kx and

ky are onstant parameters.

y

x

1 2

6 7

54 3
L

L

L

3

2

1

1

• Derive the �nal FE formulation onsidering the onstitutive law and boundary ondi-

tions.

• As indiated in the �gure three node elements are used in the analysis.

Show that the three node triangular element satis�es the ompleteness and the ompat-

ibility ondition.
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17 FE formulation of beams

Exerise 17.1 The equilibrium for a beam is given by

dV

dx
= −q ;

dM

dx
= V

where q is the load per unit length, M is the bending moment and V is the shear fore.

a) Eliminate the shear fore V from the equilibrium equations above and derive an equi-

librium equation expressed in terms of the bending moment M .

b) From the equilibrium equation establish the weak form.

) What are the natural and essential boundary onditions for an arbitrary beam ?

d) The de�etion, w, is governed by

M = −E∗I∗
d2w

dx2

where E∗I∗ = 1
A

∫

A Ez2dA is bending sti�ness. Based on b) derive the FE-formulation

for an arbitrary beam.

e) Suggest an approximation for w that guarantees that the FE-solution is onvergent =

ompatibility + ompleteness.
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Exerise 17.2 A beam with length 3L and bending sti�ness EI is rigidly mounted in both

ends. A moment M [Nm℄ is plaed at a distane of 2L from the left side of the beam, f. the

�gure below.

M

2L L

AL
z,w

x

The governing equations for the problem is given by

d2M

dx2
+ q = 0 , M = −EI

d2w

dx2

where q denotes the load intensity (positive in z-diretion). Note that the equilibrium equation

is derived from the following relations

dM

dx
= V ,

dV

dx
= −q

a) Derive the weak form of the governing equation, and speify the essential and natural

boundary onditions.

b) Derive the FE-formulation for the problem, suh that a symmetri sti�ness matrix is

obtained.

) Use two elements with the lengths 2L and L to determine the de�etion at a distane of L
form the left side of the beam, i.e. at the point A in the �gure. L = 0.5 m, EI = 7000 Nm2

and M = 5000 Nm. All steps in the alulation should be presented.

u1 u3

u2 u4

Hint:

For a beam with length a the interpolation for the simplest onforming element is given by

w = N e
1u1 + N e

2u2 + N e
3u3 + N e

4u4

where the shape funtions are de�ned as

N e
1 = 1 − 3

x2

a2
+ 2

x3

a3
, N e

3 =
x2

a2
(3 − 2

x

a
)

N e
2 = x(1 − 2

x

a
+

x2

a2
) , N e

4 =
x2

a
(
x

a
− 1)

whih results in the following element sti�ness matrix

Ke =
EI

a3









12 6a −12 6a
6a 4a2 −6a 2a2

−12 −6a 12 −6a
6a 2a2 −6a 4a2
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18 FE formulation of plates
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19 Isoparametri mapping

Exerise 19.1 A four node element will be used in a thermal analysis aording to the �gure

below.

x

y

node 1 (x1, y1)

node 4 (x4, y4)

node 2 (x2, y2)

node 3 (x3, y3)

a) Show that the element above does not satisfy the ompatibility ondition (no isoparametri

mapping is used).

b) Show that the element satis�es the ompatibilty onditions if isoparametri mapping is

used.

Hint: Isoparametri mapping implies the following mapping of the element oordinates

x(ξ, η) = Ne(ξ, η)xe, y(ξ, η) = N e(ξ, η)ye

where the shape funtions are given as

N e
1 =

1

4
(ξ − 1)(η − 1), N e

2 = −1

4
(ξ + 1)(η − 1)

N e
3 =

1

4
(ξ + 1)(η + 1), N e

4 = −1

4
(ξ − 1)(η + 1)

Note that the temperature appoximation as usual is given by

T = N eae

Exerise 19.2 For the problem above, derive the B matrix in terms of the Jaobian and

shape funtions.
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20 Numerial integration

q

1 5 2

8
9

6

4 7 3

Node number

(1,1)(0,1)

(1,0)(0,0)

(x, y)

y

x

Exerise 20.1 A nine-node Lagrange element will be used for a two-dimensional FE-analysis.

The element is subjeted to a distributed load, q, f. the �gure above. The boundary load

vetor is given by f b =
∫

L tNT tdL, where t is the tration vetor and t the thikness. Assume

that t = 1.

a) Calulate the ontribution from q (in the y-diretion) to f b in node 3 and 7 using an

analytial integration

b) Calulate the ontribution from q (in the y-diretion) to f b in node 3 and 7 using a

numerial Gauss integration. The least number of integration points required for an

exat integration shall be used.
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Exerise 20.2 The sti�ness matrix for a four node isoparametri element for �nite element

analysis is given by

Ke =

∫ 1

η=−1

∫ 1

ξ=−1

[

∂N eT

∂ξ

∂N eT

∂η

]

J−1D(J−1)
T











∂N e

∂ξ

∂N e

∂η











det(J)dξdη

Assume that D = I and that the nodal oordinates are given by

xT = [10 14 14 10] yT = [10 10 14 14]

• Compute the omponent K11 using numerial integration (2x2 Gauss points).

Exerise 20.3 The funtion f is de�ned as

f(x) = x + 1 + 3x2 − 2x3

• Use Gauss quadrature (two integration points) to evaluate I =
∫ 1
0 f(x)dx.

• Is the result exat ?

• Comment upon the result.
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21 Variational priniples

Exerise 21.1 a) Derive the strain energy for a spring with the spring sti�ness k. The nodal
displaements are denoted u1 and u2.

k

2u u1

b) For the situation u1 = 0, derive the total strain energy for the spring system shown in the

�gure below

u1 2u
1 2

uu

F F4

4

3

3

FF

k

k

k

k

k1

2

3

4

5

) Establish the potential, Π to the system i.e., Strain energy minus potential due to external

fores.

d) Show that minimization of the potential Π yields the equlibrium equations.
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Exerise 21.2 A rod is subjeted to a distributed as depited below.

x

b(x) A(x)

0 L

The boundary onditions for the problem is given by

N(L) = F and u(0) = 0

The priniple of virtual work for the rod (for b = 0) an be formulated as

∫ L

0
σAδǫdx − δu(L)F = 0, ∀δu(0) = 0

where δǫ = dδu
dx .

Show that the priniple of virtual work implies the boundary ondition and the equilibrium

equation

d(σA)
dx = 0
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Solutions:

2 Basi linear algebra

Solution 2.1

a) Dim(K) = [6x6]

b) Dim(D) = [3x3]

) KT = (αBTDB)T = α(B)T (D)T (BT )T = αBTDB = K

Solution 2.2 Expand along 2:nd row: det(K) = 2(−1)2+2

∣

∣

∣

∣

∣

∣

1 2 3
1 −2 1
0 1 2

∣

∣

∣

∣

∣

∣

= −12

Solution 2.3

a) K is positive semi-de�nite, i.e. det(K) = 0.

b) Non-trivial solutions exists.

) No or in�nite many solutions.

Solution 2.4

T1 = α1 + α2x1 + α3x
2
1 + α4x

3
1

T2 = α1 + α2x2 + α3x
2
2 + α4x

3
2

T3 = α1 + α2x3 + α3x
2
3 + α4x

3
3

T4 = α1 + α2x4 + α3x
2
4 + α4x

3
4

Arrange on matrix format and solve for α1 − α4, i.e. α = A−1T =









α1 = 0.0041
α2 = −0.0765
α3 = 0.5024
α4 = −1.0714









· 103

Solution 2.5 Projet the veloity vetor on the normal to the surfae,

q = AvTn = 0.4732m3/s

Solution 2.6 Partition of the system yields

[

A1 A2

A3 A4

] [

x

u

]

=

[

f

y

]

whih an be solved to yield u = [51.3 52.66]T and f = [−235 − 185]T
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3 Diret approah

Solution 3.1 a) The fore in the spring, N , an be expressed as N = k(u2 − u1) and

P1 = −N, P2 = N whih an be written as

[

k −k
−k k

] [

u1

u2

]

=

[

P1

P2

]

b) The global system of equation is given by









k1 + k2 −k1 −k2 0
−k1 k1 + k3 + k4 −k4 −k3

−k2 −k4 k2 + k4 + k5 −k5

0 −k3 −k5 k5 + k3

















u1

u2

u3

u4









=









F1

F2

F3

F4









With the numerial values inserted the system of equations that shall be solved is formed as

8









2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1

0 −1 −1 2

















1
u2

u3

0









=









F1

0
20
F4









The solution is given by

u2 = 0.81 mm, u3 = 1.44 mm, F1 = −2 N, F4 = −18 N

Solution 3.2

a)

[

k −k
−k k

] [

u1

u2

]

=

[

F1

F2

]

b)

K =





k1 + k2 + k4 −k1 − k2 −k4

−k1 − k2 k1 + k2 + k3 −k3

−k4 −k3 k3 + k4



 , a =





0
u2

u3



 , f =





F1

0
10





)

[

u2

u3

]

=
1

5

[

1
3

]

d) a = [1 1 1]T results in aTKa = 0. Rigid body motion is not prevented.
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Solution 3.3 Diret assembly results in the system

1

r∗









2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1

0 −1 −1 2

















V1

0
V3

0









=









1
I2

0
I4









whih gives V1 = 0.6r∗ V3 = 0.2r∗

Solution 3.4

Ke
1256 = k









1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0









,Ke
3456 =

k

2









1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1









,Ke
5678 =

k

2









1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1









The total sti�ness matrix is given by

K =
k

2

























2 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0
0 0 1 −1 −1 1 0 0
0 0 −1 1 1 −1 0 0

−2 0 −1 1 4 0 −1 −1
0 0 1 −1 0 2 −1 −1
0 0 0 0 −1 −1 1 1
0 0 0 0 −1 −1 1 1
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4 Strong and weak form- one dimensional heat

Solution 4.1

• Heat is �owing from the 'warm' region to the 'ool' region.

• Doubled temperature di�erene implies a doubled heat �ow.

• Doubled distane redue the heat �ow by a fator of two.

• To summarize we have that the heat �ow, q is given by q ∝ ∆T 1
∆x . Compare to Fourier's

law q = −k dT
dx .

Solution 4.2 Strong form: See ourse book, pp. 49-51. Weak form: See ourse book, pp.

56-57.

Solution 4.3 Consult the ourse book, pages 57-59.

Solution 4.4 Weak form:

∫ L

0

dv

dx
Ndx − [vN ]L0 −

∫ L

0
vbdx = 0

Solution 4.5 Balane of a ring of the insulation assuming stationary onditions results in

d
dr (qr) = 0. Multiply by arbitrary weight funtion and integrate over the body

[vqr]R2

R1
−
∫ R2

R1

dv

dr
rqdr = 0
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5 Gradient, Gauss divergene theorem and Green-Gauss theo-

rem

Solution 5.1

• The gradient of a salar �eld degenerates to a derivative in a one dimensional ase.

• The gauss theorem states that

∫

V
div(q)dV =

∫

S
qndS. The one-dimensional ounter-

part is simply

∫ b
a

df
dxdx = f(b) − f(a) i.e. "derivative, divergene" is transformed into a

boundary term "funtion value in end-points, line integral".

• In the multi-dimensional situation an integral

∫

A
ϕdiv(q)dV an be transformed into

∫

S
ϕqTndS −

∫

V
(∇ϕ)T qdV whih redues to the 'integration by parts' in the one di-

mensional ase, i.e.

∫ b

a

df

dx
gdx = [fg]ba −

∫ b

a
f

dg

dx
dx

Solution 5.2

a) The gradient is given by ∇T = [a b]T . Integration along the boundary results in

∮

L(∇T )TndL = 0

b) div(∇T ) = 0

)

∫

L(∇T )TndL =
∫

A div(∇T )dA = 0

Solution 5.3 Line is parametrized as y = 4 − (3x − 3)/4

∫

L
(x2 + y(x) + 10)

√

1 +

(

dy

dx

)2

|dx| =

√

1 +

(

3

4

)2 ∫

L
(x2 + y(x) + 10)|dx| =

685

6

Solution 5.4 The normal is given by n = ∇φ

|∇φ| , i.e. n = 1√
5
[2 1]T
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6 Strong and weak form of 2-D and 3-D heat �ow

Solution 6.1

a) The gradient of the temperature �eld is given by ∇T =
T0

L2
[
2x

9
2y]T . The heat �ux

vetor is given by q = −kT0

L2
[
2x

9
2y]T whih at (L/2, 3L/2) beomes q = −kT0

L
[
1

9
3]T

b) The normal to the surfae is given by n = ∇g/||∇g|| where g(x, y) =
(

2x−L
2L

)2
+
(

2y
3L

)2
.

Evaluation yields n = [0 1]T

) The heat �ux is given by qn = qTn = −3kT0

L

Solution 6.2

a) Heat generated within the body=Heat leaving the body. This balane priniple an be

formulated as

∫

V
QdV =

∫

S
qndS

where V and S represents the volume and boundary to the body.

b) Using that qn = qTn

∫

V
QdV =

∫

S
qndS =

∫

S
qTndS =

∫

V
div(q)dV

Sine the volume V an be hosen arbitrarily we obtain the loal form as

div(q) − Q = 0

whih is the strong form to the problem.

) Multiply by an arbitrary weight funtion and integrate over the entire body. Use of the

Green-Gauss's theorem results in the weak form. Consult the ourse book page 85.

Solution 6.3 Sine the Fourier's law states that q = −D∇T = −k∇T it follows that q is

parallell to ∇T .

Solution 6.4 The inequality shows that D is positive de�nite. This ondition implies that

D−1
exsists, f. ourse book page 23.

Solution 6.5 A spring is the mehanial analogy (Fore is proportional to extension the, i.e.

F = k(u − u0)
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7 Choie of approximating funtion

Solution 7.1 Element shape funtions:

N1
1 = 1 − x, N1

2 = x

N2
1 = 2 − x, N2

2 = −1 + x

Global shape funtions:

N1 =

{

1 − x, 0 ≤ x ≤ 1
0, 1 < x ≤ 2

N2 =

{

x, 0 ≤ x ≤ 1
2 − x, 1 < x ≤ 2

N3 =

{

0, 0 ≤ x ≤ 1
−1 + x, 1 < x ≤ 2

Solution 7.2 Element shape funtions (element 1)

N1
1 = 2(1 − x)(0.5 − x), N1

2 = 4x(1 − x), N1
3 = −2x(0.5 − x)

Element shape funtions (element 2)

N2
1 = 2(1.5 − x)(2 − x), N2

2 = 4(x − 1)(2 − x), N2
3 = −2(x − 1)(1.5 − x)

Global shape funtions

N1 =

{

N1
1 , 0 ≤ x ≤ 1

0, 1 < x ≤ 2

N2 =

{

N1
2 , 0 ≤ x ≤ 1

0, 1 < x ≤ 2

N3 =

{

N1
3 , 0 ≤ x ≤ 1

N2
1 , 1 < x ≤ 2

N4 =

{

0, 0 ≤ x ≤ 1
N2

2 , 1 < x ≤ 2

N5 =

{

0, 0 ≤ x ≤ 1
N2

3 , 1 < x ≤ 2

Solution 7.3

a) Convergene guaranteed.

b) Convergene guaranteed.
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Solution 7.4 a) The ompleteness requirement is ful�lled for both elements. To ful�ll the

ompatibility requirement the approximated �eld must be ontinuous, i.e. the approximation

must be uniquely determined by the nodal values on the boundaries. This is not satis�ed for

the urrent on�guration, i.e. ompatibility is not satis�ed.

b) The C-matrix method

N = N̄C−1 = [1 x y]C−1; C =





1 0 0
1 1 0
1 0.5 0.5





whih results in the following shape funtions

N = [1 − x − y x − y 2y]

Solution 7.5 Gauss's theorem yields

∫

S qndS =
∫

V div(q)dV =
∫

V QdV = Total heat gener-

ated within the body. The only ontribution to

∫

S qndS =
∫

L qntdL is from L5−12. Introduing

an axis (η) along 5 − 12 starting in 12 allow us to write the temperature distribution as

T (η) = T12(η −
√

2b)(η − 2
√

2b)/(4b2) − T9η(η − 2
√

2b)/(2b2) + T5η(η −
√

2b)/(4b2)

Total heat is given as

∫ 2
√

2b
0 αT (η)bdη = α

√
2b2

3 (T12 + 4T9 + T5) = α
√

2b2

3 (19 + 4 · 18 + 14) =

35α
√

2b2

Solution 7.6

a) φ = α1 + α2x + α3y + α4xy + α5x
2 + α6y

2 + α7x
2y + α8xy2

. For x = const we obtain
φ = β1 + β2y + β3y

2
, i.e. three parameters and three nodes, i.e. a unique temperature

distribution is obtained. Similar arguments holds for the y diretion.

b) φ = α1+α2x+α3y+α4xy+α5x
2+α6x

2y. For y = const we obtain φ = β1+β2x+β3x
2
,

i.e. three parameters and three nodes, i.e. a unique temperature distribution is obtained.

For x = const we obtain φ = β1 + β2y, i.e. two parameters and two nodes, i.e. a unique

temperature distribution is obtained.
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Solution 7.7

a)

φ = α1 + α2x + α3y + α4xy

b)

α4xy

)

N = N̄C−1

where

N̄ =
[

1 x y xy
]

and C =









1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4









d)

N e
2 (x1, y1) = 0, N e

2 (x2, y2) = 1, N e
2 (x3, y3) = 0
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8 Choie of weight funtion

Solution 8.1

a)

d2u

dx2
+

1

π2
u + sin(x) = 0, ⇒ L(u) + g(x) = 0

where

L =
d2

dx2
+

1

π2
, g(x) = sin(x)

The residual is given by

e = L(uapp) + g(x)

b) • Point olloation: Enfore e = 0 at spei� points

• Subdomain olloation: Enfore

∫

ve dx = 0 over a spei� region

• Least square: Minimize the integral

∫

e2 dx
• Galerkin: weight funtion= trial funtion

) Spei� approximation

ψ = {sin(x)} , a = {a} ⇒ L(ψ) = −sin(x) +
sin(x)

π2

Point olloation, V = δ(x − π/2) results in

(

−sin(π/2) +
sin(π/2)

π2

)

a = −sin(π/2) ⇒ a =
−π2

1 − π2

Galerkin, V = sin(x) results in

∫ π

0
−sin2(x) +

sin2(x)

π2
dx a = −

∫ π

0
sin2(x) ⇒ a =

−π2

1 − π2

Note: Corret solution u = −π2

1−π2 sin(x)

Solution 8.2

• The approximation must satisfy the boundary onditions. Choose uapp = a cos(π
2 x)

• Error is de�ned as e = d2uapp

dx2 + uapp + 1.
Insertion into the orthogonal ondition yields a = −4

π(1−(π

2
)2)
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9 FE formulation of one dimensional heat �ow

Solution 9.1 Multiply the balane equation by an arbitrary weight funtion, v and integrate

over the entire body. The result is:

[vN ]L0 −
∫ L

0

dv

dx
Ndx +

∫ L

0
vbdx = 0

whih is the weak form of the problem. Using the approximation u = Na as well as the

Galerkin hoie of weight funtion v = Nc results in

cT

[

[NT N ]L0 −
∫ L

0
BT Ndx +

∫ L

0
NT bdx

]

= 0

where is was used that ǫ = du
dx = d

dxNa = Ba. Using that c is arbitrary along with N =
AE(ǫ − α∆T ) = AE(Ba− α∆T ) results in �nite element formulation

∫ L

0
BT AEBdxa = [NT N ]L0 +

∫ L

0
NT bdx +

∫ L

0
BT AEα∆Tdx

or

Ka = f b + f l + f0

Using two linear elements results in:

Element 1: N e
1 = 1 − 2x

L , N e
2 = 2x

L , Be = 2
L [−1 1] and Ke

1 = 2AE
L

[

1 −1
−1 1

]

= Ke
2

whih gives the total sti�ness matrix as K = 2AE
L





1 −1 0
−1 2 −1
0 −1 1





Load vetor: b = const results in f l = bL
4 [1 2 1]T

Load vetor due to thermal strains, f0:

f0 = AEαT0

∫ L

0
[
dN1

dx

dN2

dx

dN3

dx
]T (1 + x/L)dx =

AEαT0

4
[−5 − 2 7]T

Boundary load vetor, f b = [−Nx=0 0 Nx=L]T

Finally we end up with

2AE

L





1 −1 0
−1 2 −1
0 −1 1









u1(= 0)
u2

u3



 =





−Nx=0

0
0



+
AEαT0

4





−5
−2
7



+
bL

4





1
2
1





whih gives u2 = 5LαT0

8 + 3bL2

8AE
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Solution 9.2

a) Strong form

dq

dx
− Q = 0

Multipliation by a weight funtion and integration over the region of interest results in

∫

dv

dx
q dx − [vq] +

∫

vQ dx = 0

Choose weight funtion v = Nc = cTNT
,

dv
dx = cTBT

giving

∫

BT q dx = [NT q] −
∫

NT Q dx

Fik's law q = −D dc
dx , together with the interpolation

dc
dx = Ba results in

−
∫

DBTB dx a = [NT q] −
∫

NT Q dx ⇒ Ka = f

where

K =

∫

DBTB dx, f = −[NT q] +

∫

NT Q dx

b) Linear element B = [−1 1]/L results in

Ke =
1

L2

[

1 −1
−1 1

] ∫ L

0
D dx

i.e.

Ke
1 =

D0(L + aL2)

L2

[

1 −1
−1 1

]

, Ke
2 =

D0(L + 3aL2)

L2

[

1 −1
−1 1

]

Resulting in

D0

L





1 + aL −(1 + aL) 0
−(1 + aL) 2 + 4aL −(1 + 3aL)

0 −(1 + 3aL) 1 + 3aL









cm

c2

ca



 =





f1

0
f3





Row 2 gives

c2 =
(1 + aL)cm + (1 + 3aL)ca

2 + 4aL

)

f b = −[NT q]2L
0 = −[NT q]x=2L+[NT q]x=0 ⇒ f b = −[kNTN ]x=2L a+[NT q]x=0

i.e.



K + k





0 0 0
0 0 0
0 0 1







a = [NT q]x=0
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Solution 9.3

a)

∫ L

0

dv

dx

(

x
dT

dx

)

dx +

∫ L

0
vN2Tdx =

[

vx
dT

dx

]L

0

+

∫ L

0
vN2T∞dx

b)

Ka = f , where K =

∫ L

0

(

BT xB +NT N2N
)

dx and

f =

(

xNT dT

dx

)

|x=l +

∫ L

0
NT N2T∞dx

)

1

2





3 0 0
0 8 −2
0 −2 5









T1

T2

T3



 =





0
0

(xdT
dx )|x=l



+ N2T∞
L

4





1
2
1





d)

T = Na where a = [0 25 100]T

Solution 9.4 Multipliation and integration over the body and also use of the c = Na as

well as v = Nc results in

[

NT k1
dc

dx

]L

0

−
∫ L

0
BT k1Bdxa+

∫ L

0
NT Qdx =

∫ L

0
NT k2Ndxȧ

The element shape funtions are given by N e
1 = 1 − 2x/L and N e

2 = 2x/L. These shape

funtions results in Be = [−2/L, 2/L]. The following element funtions an be obtained

Ke
1 =

∫ L/2

0
BeTk1B

edx =
2k1

L

[

1 −1
−1 1

]

, Ce
1 =

∫ L/2

0
N eT k2N

edx =
k2L

12

[

2 1
1 2

]

f e
L1 =

∫ L/2

0
N eT Qdx =

QL

4

[

1
1

]

The element matries for the seond element is idential to the element matries of element

1. Assembly of the element matries yields

K =

∫ L

0
BT k1Bdx =

2k1

L





1 −1 0
−1 2 −1
0 −1 1



 , C =

∫ L

0
NT k2Ndx =

k2L

12





2 1 0
1 4 1
0 1 2





and

fL =

∫ L

0
NT Qdx =

QL

4





1
2
1



 , f b =

[

NT k1
dc

dx

]L

0

=





k1q0

0

k1(
dc
dx)|x=L



 , a(t = 0) =





0
c0

0





The system an be written as Cȧ+Ka = f b + fL.
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Solution 9.5

• Weak form:

[

vEA
du

dx

]L

0

−
∫ L

0

dv

dx
EA

du

dx
dx +

∫ L

0
vbdx =

∫ L

0
vmüdx

• Finite element formulation:

[

NT EA
du

dx

]L

0

−
∫ L

0
BT EABdxa+

∫ L

0
NT bdx =

∫ L

0
NT mNdxä

• K is positive de�nite sine

aTKa = aT

∫ L

0
BT EABdxa =

∫ L

0
aTBT EABadx =

∫ L

0
EA

(

du

dx

)2

dx ≥ 0

• System matries:

Ke =
3AE

L

[

1 −1
−1 1

]

, K =
3AE

L









1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1









fe
l =

bL

6

[

1
1

]

, f l =
bL

6









1
2
2
1









M e =
mL

18

[

2 1
1 2

]

, M =
mL

18









2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2









[

NT EA
du

dx

]L

0

=









−(EAdu
dx )|x=0

0
0

(EAdu
dx )|x=L
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10 FE formulation of 3D heat �ow

Solution 10.1

a) Consult ourse book, pp. 206-208

b)

1

3

2

x

y

The approximation is given by T = α1 + α2x + α3y whih an be written as T =
[1 x y][α1 α2 α3]

T = N̄ᾱ. Using the C − matrix method we obtain





T1

T2

T3



 =





1 850 750
1 1000 700
1 1000 800









α1

α2

α3





The interpolation is obtained as T = N̄C−1ae = N eae
. The sti�ness matrix is given

by Ke =
∫

Ae

BeTDBedA.

Ke =

∫

Ae

BeTDBedA = AeB
eTBek = kAe





−1
150 0
1

300
−1
100

1
300

1
100





[ −1
150

1
300

1
300

0 −1
100

1
100

]

=

k





1
3 −1

6 −1
6

−1
6

5
6 −2

3
−1

6 −2
3

5
6





Boundary term:

∫

L23

NeT qndL =

∫

L23

N eT α(T − T∞)dL =

∫

L23

N eT α(N eae − T∞)dL =

∫

L23

αN eTN edLae −
∫

L23

αN eT T∞dL =
αL

6





0 0 0
0 2 1
0 1 2



ae − αT∞L





0
1
2
1
2





where T∞ = 22oC
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Solution 10.2

a) Consult ourse book, pp. 220-221. Change q to j and T to V.

The result is

∫

A(∇v)T σ(∇V )dA = −
∮

L vjTndL where v represents the weight fun-

tions.

Using the Galerkin hoie of weight funtion we obtain

∫

A
BT σBdAa = −

∮

L
NT jTndL

b)

aTKa =

∫

A
||∇V ||2σdA ≥ 0

Find one a 6= 0 suh that

∫

A ||∇V ||2σdA = 0. Chose for instane a = [1 1 ..... 1 1].

Solution 10.3

a) Parasiti terms: α7x
2y, α8xy2, α9x

2y2

b) The interpolation is omplete and ompatible, i.e. onvergene is guaranteed.

) Contribution to node 1, 2 and 3: q0/3, 4q0/3, 2q0/3

Solution 10.4

FE-formulation

∫

AB
TBdAa =

∮

LN
T (∇c)TndL

Conentration a = [1 1 2 3/2]T , i.e. a3 = 2 and a4 = 3/2.
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11 Guidelines for element meshes and global nodal nubering

12 Stresses and strains

Solution 12.1

a) ǫ =
[

0 0 0
]T

Rigid body motion

b) ǫ =
[

0 k1 0
]

Uniaxial straining

) ǫ =
[

0 0 0
]

Rigid body rotation

) ǫ =
[

0 0 2k1

]

Shear state

Solution 12.2

a) Global equilibrium

∫

S
tds +

∫

V
bdV = 0

Cauhys formula t = STn along with Gauss's theorem yields

∫

V
(div(σT ) + b)dV = 0

This balane should hold for arbitrary regions, i.e.

div(σT ) + b = 0

b) The normal vetor is given by

n =
1√
2

[1 1 0]T

whih results in

t =
1√
2

[18 2 0]T

)

σnn = 10 σnm = 8
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13 Linear elastiity

Solution 13.1 For the plane stress situation the strain energy is given as

W = 1/2[σxx σyy 0 σxy][ǫxx ǫyy ǫzz γxy]
T = 1/2(σxxǫxx + σyyǫyy + σxyγxy)

i.e. the ǫzz omponent does not ontribute to the strain energy.

Solution 13.2 Consult ourse book pp. 254-256
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14 FE formulation of non-irular shafts

57



15 Approximating funtions for the FE-method-vetor prob-

lems

Solution 15.1 Consult the ourse book, pp 282-286
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16 FE formulation of three dimensional elastiity

Solution 16.1

a) The omponents of the displaement �eld are interpolated as ux = α1+α2x+α3y+α4xy
and uy = β1 + β2x + β3y + β4xy.

b) B [3x8], σ [3x1] N [2x8], b [2x1] t [2x1]

)

∫

A
BTσtdA =

∫

A
BTDBtdAa−

∫

A
BTDǫθtdA

i.e.

∫

A
B

TDBtdAa =

∫

A
N

T
btdA +

∫

L
N

T
ttdL +

∫

A
BTDǫθtdA

Solution 16.2

a) • (tx, ty) = (0, 0) along L1

• (tx, ty) = (ay, 0) along L2

• (tx, ty) = (0,−kuy) along L3

• (tx, ty) = (0, 0) along L4

• (ux, uy) = (0, 0) along L5

b) Consult the ourse book pp. 295-296

∫

A
BTDBtdAa =

∫

L
NT ttdL +

∫

A
NTbtdA

or

∫

A
BTDBtdAa =

∫

L3

NT ttdL +

∫

L1,2,4,5

NT ttdL +

∫

A
NTbtdA

The term

∫

L3
NT ttdL an be written as

∫

L3

NT ttdL = −
∫

L3

NTkNatdL

where k =

[

0 0
0 k

]

) Resulting sti�ness matrix

K =

∫

A
BTDBtdA +

∫

L3

NTkN tdL

whih due to the symmetry in D and k is symmetri.
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d)

• K : [ndof × ndof ] • Ke : [6 × 6]
• a : [ndof × 1] • N e : [2 × 6]
• Be : [3 × 6] • D : [3 × 3]
• f : [ndof × 1] • f e : [6 × 1]
• b : [2 × 1] • t : [2 × 1]

Solution 16.3





























































x x x x x x 0 0 x x 0 0 0 0 0 0

x x x x x x 0 0 x x 0 0 0 0 0 0

x x x x x x 0 0 x x 0 0 0 0 0 0

x x x x x x 0 0 x x 0 0 0 0 0 0

x x x x x x x x x x x x 0 0 0 0

x x x x x x x x x x x x 0 0 0 0

0 0 0 0 x x x x x x x x 0 0 0 0

0 0 0 0 x x x x x x x x 0 0 0 0

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

0 0 0 0 x x x x x x x x x x x x

0 0 0 0 x x x x x x x x x x x x

0 0 0 0 0 0 0 0 x x x x x x x x

0 0 0 0 0 0 0 0 x x x x x x x x

0 0 0 0 0 0 0 0 x x x x x x x x

0 0 0 0 0 0 0 0 x x x x x x x x

























































































































?

0
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0
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?
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0

x

0

x

x

0

x

x

x

0

x

0

0

0

0





























































Solution 16.4 a)

∫

A
BTσdA =

∫

L
NT tdL +

∫

A
NTbdA

Insertion of the onstitutive law results in

∫

A
BTDBdAa =

∫

V
BTDǫ∆T dA +

∫

L
NT tdL +

∫

A
NTbdA

Using that tx = −kxux and ty = 0 along L2 we have

[

tx
ty

]

= −
[

kx 0
0 0

] [

ux

uy

]

or t = −k2u

In the same way for L3 we have

[

tx
ty

]

= −
[

0 0
0 ky

] [

ux

uy

]

or t = −k3u

Using that u = Na we end up with

(∫

A
BTDBdA +

∫

L2

NTk2NdL +

∫

L3

NTk3NdL
)

a =

∫

A
BTDǫ∆T dA+

∫

A
NTbdA

where b = [0 − gρ]T where ρ represents the density per area.

b) Consult the ourse book, pp. 282-283. See also pp. 124-125.
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17 FE formulation of beams

Solution 17.1

a)

d2M

dx2
+ q = 0

b) See ourse book equations 17.2.

) M and V are natural boundary onditions whereas w and

dw
dx are essential boundary ondi-

tions.

d) See ourse book equations (17.30)-(17.41).

e)

w = α1 + α2x + α3x
2 + α4x

3
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Solution 17.2 a) Consult the ourse book page 318-319. The essential boundary onditions

are w = 0 and

dw
dx = 0 at x = 0 and x = 3L.

b) See ourse book equations (17.30)-(17.41).

) The global sti�ness matrix and load vetors.

K = EI

















12/8L3 6/4L2 −12/8L3 6/4L2 0 0
6/4L2 4/2L −6/4L2 2/2L 0 0

−12/8L3 −6/4L2 12/8L3 + 12/L3 −6/4L2 + 6/L2 −12/L3 6/L2

6/4L2 2/2L −6/4L2 + 6/L2 4/2L + 4/L −6/L2 2/L
0 0 −12/L3 −6/L2 12/L3 −6/L2

0 0 6/L2 2/L −6/L2 4/L

















f l =

















0
0
0

M
0
0

















f b =

















V1

M1

0
0

V3

M3

















The resulting system of equations that has to be solved is

EI

[

12/8L3 + 12/L3 −6/4L2 + 6/L2

−6/4L2 + 6/L2 4/2L + 4/L

] [

u3

u4

]

=

[

0
M

]

+

[

0
0

]

With numerial values the solution will be

u3 = −0.01323, u4 = 0.07937

The de�etion at the point A, use the approximations.

w|0.5 = N |T0.5 a = N3|0.5(−0.01323) + N4|0.50.07937 = −0.0165
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18 FE formulation of plates
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19 Isoparametri mapping

Solution 19.1

a) Chose for instane T = α1 + α2x + α3y + α4xy. This approximation annot satisfy the

ompatibility requirement on boundary 3 − 4.

b) Line (3-4). T = N eae
. Sine η or (ξ) is onstant along the boundaries the temperature

variation along all boundaries an be written as T = α1 + α2η, i.e. two onstants, two

parameters.

Solution 19.2

The Be
matrix an be expressed as

Be = (JT )−1









∂N e

∂ξ

∂N e

∂η









, J =









∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η









wher the omponents in the jaobian are given as

∂x

∂ξ
=
∑

i

∂N e
i

∂ξ
xi,

∂x

∂η
=
∑

i

∂N e
i

∂η
xi

∂y

∂ξ
=
∑

i

∂N e
i

∂ξ
yi,

∂y

∂η
=
∑

i

∂N e
i

∂η
yi

64



20 Numerial integration

Solution 20.1 Shape funtions along the upper boundary:

N3 =
x(x − 0.5)

1 · 0.5 = 2x2 − x N7 =
x(x − 1)

0.5(−0.5)
= 4x − 4x2

a) Exat integration:

fb3y = −
∫ 1

0
N3qdx = −q

[

2

3
x3 − 1

2
x2

]1

0

= −1

6
q

fb7y = −
∫ 1

0
N7qdx = −q

[

2x2 − 4

3
x3

]1

0

= −2

3
q

b) Numerial integration:

Map the domain [0 1] onto [−1 1] and perform the transformation

∫ 1
0 Niqdx =

∫ 1
−1 Niq

dx
dξ dξ.

The mapping is given by ξ = −1 + 2x, i.e. dx
dξ = 1/2.

Using two integration points then results in

fb3y = −
∫ 1

−1
N3q

dx

dξ
dξ = −0.16667q

fb7y = −
∫ 1

−1
N7q

dx

dξ
dξ = −0.66667q
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Solution 20.2 The map purely sales the element, i.e. J = 2I . If this is not realized

diretly, the omponents in the Jaobian is simply given as

∂x

∂ξ
=

∂N e

∂ξ
xe =

1

4
(η − 1)10 − 1

4
(η − 1)14 +

1

4
(η + 1)14 − 1

4
(η + 1)10 = 2

the other three omponents are given in the same manner. In onlusion

J = 2I det(J) = 4 J−1 =
1

2
I (J−1)T =

1

2
I

The omponent we seek is given by

Ke
11 =

∫ 1

−1

∫ 1

−1

[

(

∂N e
1

∂ξ

)2

+

(

∂N e
1

∂η

)2
]

dξdη =

∫ 1

−1

∫ 1

−1

1

16

[

(η − 1)2 + (ξ − 1)2
]

dξdη

Gauss integration yield

Ke
11 =

1

16

([

{

1√
3
− 1

}2

+

{

1√
3
− 1

}2
]

+

[

{

− 1√
3
− 1

}2

+

{

1√
3
− 1

}2
]

+

[

{−1√
3
− 1

}2

+

{−1√
3
− 1

}2
]

+

[

{

1√
3
− 1

}2

+

{−1√
3
− 1

}2
])

=
2

3

Solution 20.3 Use the variable ξ = −1 + 2x

I =

∫ 1

0
f(x)dx =

∫ 1

−1
f(ξ)

dx

dξ
dξ =

1

2

∫ 1

−1
f(ξ)dξ ≈

1

2

(

f(ξ = −1/
√

3) + f(ξ = 1/
√

3)
)

=
1

2

(

f(x =
1 − 1/

√
3

2
) + f(x =

1 + 1/
√

3

2
)

)

= 2

Exat result

I =

∫ 1

0
f(x)dx =

[

x2

2
+ x + x3 − x4

2

]1

0

=
1

2
+ 1 + 1 − 1

2
= 2

The exat result is expeted sine Gauss integration integrates a polynomial of order 2n − 1
where n is the number of integration points.
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