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1 Introdu
tion

2 Basi
 linear algebra

Exer
ise 2.1 The matrix K is de�ned as

K = αBTDB

where α is a s
alar and the dimension of B is 3 × 6.

• Determine the dimension of K

• Determine the dimension of D

• For the situation where D = DT
show that K is symmetri
.

Exer
ise 2.2 Cal
ulate det(K) when K is de�ned as

K =









1 6 2 3
0 2 0 0
1 6 −2 1
0 3 1 2









Exer
ise 2.3 Consider the quantity aTKa (K is symmetri
) where dim(K) is n × n and

dim(a) is n × 1. Moreover, aTKa ≥ 0, and aTKa = 0 for some a 6= 0

• Determine det(K)

• Does Kx = 0 have non-trivial solutions ?

• b is known and non zero. How many solutions to Kx = b exists ?

Exer
ise 2.4 In an experiment the variable x is 
hanged and the variable T is measured.

The following results are obtained

i Ti xi

1 0.31 0.12

2 0.32 0.15

3 0.34 0.16

4 0.36 0.19

Table 1: Experimental results

A model des
ribing the physi
al nature of the problem is given by T = α1+α2x+α3x
2+α4x

3
.

• Fit the parameters αi to the experimental data.
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Exer
ise 2.5 A beam of water with velo
ity v = [1 3 2]T m/s is �owing through a surfa
e

with area A = 0.2m2
and unit (outward) normal ve
tor n = 1

2

[√
3 1 0

]T
. Cal
ulate the

amount of water passing the surfa
e per se
ond.

Exer
ise 2.6 In a �nite element analysis the following linear equation system is obtained









1 6 −2 −3
6 2 −4 0
−2 −4 2 −1
−3 −2 −1 2

















2
4
u3

u4









=









f1

f2

30
40









Cal
ulate (by hand) the unkonwns u3, u4 and f1 and f2.

Exer
ise 2.7 Use the 
alfem 
ommand solveq to solve Exer
ise 2.6, i.e.

>>x=solveq(K,f,b
)

where K is the matrix, f is the right hand side in the system of equations above. Note that

f(1) and f(2) are assigned 0 in the fun
tion 
all. Sin
e x(1) = 2 and x(2) = 4 the variabel bc

should be assigned

bc =

[

1 2
2 4

]

3



3 Dire
t approa
h

Exer
ise 3.1 a) Derive the sti�ness matrix for a spring with the spring sti�ness k. The

spring is loaded with the for
es P1 and P2. The nodal displa
ements are denoted u1 and u2.

2

P

u u

P1 2

1

k

b) Derive the global sti�ness matrix, K, for the spring system shown in the �gure below

u1 2u
1 2

uu

F F4

4

3

3

FF

k

k

k

k

k1

2

3

4

5


) Give a physi
al interpretation of det(K) = 0.

d) For the system given above the following holds:

u1 = 1mm, u4 = 0, F2 = 0N, F3 = 20N
k1 = k2 = k3 = k4 = k5 = 8N/mm.

Cal
ulate the displa
ements u2 and u3 and the for
es F1 and F4 .
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Exer
ise 3.2 a) Derive the element sti�ness matrix for a spring with spring 
onstant, k,
subje
ted to the for
es F1 and F2. The displa
ements are denoted u1 and u2, 
f. the

�gure below.

u1 2u

k
F1 F2

b) Derive the global load-displa
ement relation Ka = f for the assembly below.

u1

1F

2u
2F

k1

k2

k4

k3

u

F3

3


) For u1 = 0, F2 = 0 o
h F3 = 10N derive F1, u2 o
h u3 if k1 = k2 = k3 = k4 = 10N/mm.

d) Find an a 6= 0 su
h that aTKa = 0.
Hint: What does det(K) = 0 means in terms of boundary 
onditions.
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Exer
ise 3.3 Consider the assembly of ele
tri
al resistan
es below, 
f. Fig.1

Node 4

Node 3

Node 1

Node 2

Ii, Vi

Ij , Vj

rα

A

B

C

r1

r2

r3

r4

r5

Figure 1: a) Assembly of ele
tri
al resistors. b) Typi
al element of assembly.

If a typi
al resistan
e is isolated (
f. Fig.1b), the relation for the 
urrent entering the element

at the ends, (Ii, Ij) and the end voltages (Vi,Vj) 
an be written as (Ohm's law)

[

Ie
i

Ie
j

]

=
1

rα

[

1 −1
−1 1

] [

V e
i

V e
j

]

• Use the "dire
t method" to establish the system of governing equations, i.e. Ka = f ,

for the situation r1 = r2 = r3 = r4 = r5 = r∗.

• Solve the system for the situation where the 
urrent P=1A is supplied to the system at

A. Moreover, the point B and C is 
onne
ted to ground, VB = VC = 0V .

Hint. The Kir
hho� (�rst) law states that the sum of all 
urrents entering a point is zero.
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Exer
ise 3.4 The element sti�ness matrix for a bar is given by

Ke =
AE

L









cos2 φ sinφ cos φ − cos2 φ − sinφ cos φ
sinφ cos φ sin2 φ − sinφ cos φ − sin2 φ
−cos2φ − sinφ cos φ cos2 φ sinφ cos φ

− sinφ cos φ − sin2 φ sinφ cos φ sin2 φ









φ
L

AE

u i

ju

uk

u l

where the degrees of freedom i, j, k o
h l 
orresponds to the rows 1, 2, 3, o
h 4 in element

sti�ness matrix. Use this result to establish the global sti�ness matrix for the system below

45

135

o

ou

u
u

u u7

u8u4

3

u1

2

F

5

6

Assume that k = AE/L for the three elements is the same. Morover, note that sin(45) =

sin(135) = cos(45) = −cos(135) = 1/
√

2.
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4 Strong and weak form- one dimensional heat

Exer
ise 4.1 Two bodies with di�erent temperatures are lo
ated at distan
e ∆x between

ea
h other. Give intuitive answers to the questions below:

T = 0K T = 40K

a)

∇T

T = 0K T = 80K

b)

∇T

T = 0K T = 40K

c)

∇T

Figure 2: Re
tangular dis
s with given temperature distribution.

• In what dire
tion is the heat �owing in Fig.2 a ?

• The temperature di�eren
e between the bodies is doubled. What happens to the tem-

perature derivative ? What happens to the heat �ux ?

• The distan
e between the bodies is doubled. What happens to the temperature deriva-

tive ? What happens to the heat �ux ?

• Can you 
on
lude your �ndings ?

Exer
ise 4.2 Derive the strong form of the (one-dimensional) heat �ow problem depi
ted in

the �gure below. Derive the weak form 
orresponding to strong form (leave the boundary

x

x=bx=a

Q


onditions unspe
i�ed).

Exer
ise 4.3 The weak form of the uniaxial heat �ow problem is given by

∫ L

0

dv

dx
Ak

dT

dx
dx = −(vAq)x=L + (vAh)x=0 +

∫ L

0
vQdx, T (x = L) = g

and the strong form of the heat �ow problem is given by

d

dx

(

Ak
dT

dx

)

+ Q = 0, 0 ≤ x ≤ L

q(x = 0) = −
(

k
dT

dx

)

x=0

= h, T (x = L) = g

Show that the weak form implies that strong form.
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Exer
ise 4.4 A rod is subje
ted to a distributed for
e is depi
ted below.

x

b(x) A(x)

0 L

Show that the strong form of the equilibrium equations 
an be written as

dN

dx
+ b = 0 ; N = σ A

where N is the normal for
e and σ the stress.

Derive the weak form of the problem.

Exer
ise 4.5 An insulated 
able with radius R1 is submerged into the sea. The thi
kness of

the insulation is R2 − R1, 
f. Fig. 3.

R1

R 2

Figure 3: Insulated 
able

• Establish the strong form of the one dimensional heat �ow equation for the insulation.

• Derive the weak form 
orresponding to the strong form.
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5 Gradient, Gauss divergen
e theorem and Green-Gauss theo-

rem

Exer
ise 5.1

• In the three-dimensional situation the spa
ial variation of a s
alar �eld given by the

gradient. What is the 1-D 
ounterpart ?

• In the three-dimensional situation a volume integral of a divergen
e of a ve
tor �eld 
an

be transformed into a surfa
e integral (Gauss's theorem). What is the 1-D 
ounterpart

?

• What is the one dimensional 
ounterpart to the Green-Gauss theorem ?

Exer
ise 5.2 The temperature in a re
tangular dis
 is given by T (x, y) = ax + by, 
f. Fig.

4.

c

d

x

y

Figure 4: Re
tangular dis
 with given temperature distribution.

a) Cal
ulate the integral

∮

(∇T )TndL where n is the normal ve
tor to the dis
.

b) Cal
ulate the divergen
e of the temperature gradient.


) Could the result in a) have been obtained dire
tly from b) ?

Exer
ise 5.3 For φ = x2 + y + 10, 
al
ulate the line integral

∫

L
φ(x, y)dL

where L is the straight line from (x, y) = (1, 4) to (5, 1). What happens if the integration is

performed from (5, 1) to (1, 4) instead ?

Exer
ise 5.4 A 
urve in the x − y plane is de�ned by φ = x2 + y + 10 = 0. Cal
ulate the

normal ve
tor to the 
urve at (1,−11).
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6 Strong and weak form of 2-D and 3-D heat �ow

Exer
ise 6.1 An ellipti
 dis
 is de�ned by

(

2x − L

2L

)2

+

(

2y

3L

)2

≤ 1

The temperature �eld within the dis
 is given by

T = T0

[

(x/3L)2 + (y/L)2
]

The 
onstitutive law for heat �ow is assumed to be given by the law of Fourier, i.e.

q = −D∇T, D = kI

a) Determine the heat �ux ve
tor at the boundary point (L/2,3L/2)

b) Determine the normal ve
tor at the boundary point (L/2,3L/2)


) Determine the heat per unit area leaving the dis
 at the boundary point (L/2,3L/2)

Exer
ise 6.2 Let Q be the amount of heat supplied to a body per unit time ([Q] = [J/m3s).
Let the heat �ux per unit time and unit area leaving the body be denoted qn ([qn] = [J/m2s]).

• Derive the global heat balan
e for the stationary (time-independent) situation.

• Use Gauss divergen
e theorem to establish the strong form of the heat equation.

• Derive the weak form of the heat �ow problem. Assume that qn is pres
ribed at a part

Sh of the boundary whereas on a part Sg the temperature is pres
ribed.

Exer
ise 6.3 For isotropi
 materials the D matrix in q = −D∇T is given by

D =





k 0 0
0 k 0
0 0 k





Show that q is parallell to ∇T .

Exer
ise 6.4 The Fourier's law 
an be written as

q = −D∇T

where q is the heat �ux ve
tor. From experiments we have that the following inequality holds

qT
∇T < 0 ∀∇T 6= 0

Show that D−1
exsits.

Exer
ise 6.5 Newton 
onve
tion is given by

qn = α(T − T∞)

What is the me
hani
al analogy to this boundary 
ondition ?
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7 Choi
e of approximating fun
tion

Exer
ise 7.1 For the one dimensional mesh below, determine

a) The element shape fun
tions

b) The global shape fun
tions

Use the C-matrix method as well as Lagrange polynomials. Sket
h your result.

Exer
ise 7.2 For the one dimensional mesh below, determine

a) The element shape fun
tions

b) The global shape fun
tions

Use the C-matrix method as well as Lagrange polynomials. Sket
h your result. The internal

node is lo
ated at the 
enter of the element.
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Exer
ise 7.3

a) An element mesh is based on the following 6-node and 9-node elements

The approximation for the 6-node element is T = α1 +α2x+α3y +α4xy +α5x
2 +α6y

2
,

while the approximation for the 9-node element is T = β1 + β2x + β3y + β4x
2 + β5y

2 +
β6xy + β7x

2y2 + β8xy2 + β9x
2y

Che
k if the 
onvergen
e 
riterion is ful�lled.

b) An element mesh is based on the following 6 element

The approximation for the 6-node element is T = α1 +α2x+α3y +α4xy +α5x
2 +α6y

2
,

Che
k if the 
onvergen
e 
riterion is ful�lled.
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Exer
ise 7.4 An element mesh is based on the following 3-node and 4-node elements

x

y

0 0.5 1 1.5

0.5

The approximation for the 4-node element is T = α1 + α2x + α3y + α4xy, while the approxi-
mation for the 3-node element is T = β1 + β2x + β3y

a) Is the 
onvergen
e 
riterion is ful�lled ?

b) Use the C-matrix method to obtain the element shape fun
tions for the 3-node element.

Exer
ise 7.5 Due to a 
hemi
al rea
tion, heat is generated within a body. The heat �ow is

governed by the lo
al balan
e law (div(q) − Q = 0) where q is the heat �ux ve
tor [J/m2s]
and Q [J/m3s]is the heat generated by the 
hemi
al rea
tion. The body is modelled by one

9-node element and one 6-node triangular element. Along the boundaries L1−5, L1−10 and

L10−12 the body is 
ompletely insulated whereas Newton 
onve
tion applies along L5−12, i.e.

qn = α(T − T∞).

The result of the FE-analysis is given below:

aT = [13 15 18 14 14 16 13 15 18 14 14 19]

and the nodal 
oordinates are given by

Coord =

[

0 b 2b 3b 4b 0 b 2b 3b 0 b 2b
0 0 0 0 0 b b b b 2b 2b 2b

]

where the �rst row 
orresponds to x-
oordinates and the se
ond row 
orresponds to y-
oordinates.

Determine the total heat generated within the stru
ture due to the 
hemi
al rea
tion for the

situation where the thi
kness is b and the ambient temperature, T∞ = 0.
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Exer
ise 7.6 For a two-dimensional thermal analysis, where φ is the unknown temperature

�eld 
onsider the following questions:

a) For an 8-node element, φ is approximated by a polynomial (element borders are parallel to

the 
oordinate axes).

x

y

1 2 3

4

567

8

Suggest a form for φ and show that the proposed form ful�lls the 
onvergen
e requirement.

b) Same as for a), but 
onsider now the 6-node element given below.

x

y

1 2 3

6 5 4

Exer
ise 7.7 Consider the four node element below

x

y

1

4

2

3

Figure 5: Four node element.

a) Suggest a suitable approximation for a s
alar problem for the element above.

b) Does the proposed approximation involve any parasiti
 terms ?


) Use the C-matrix method to obtain the element shape fun
tions. You do not need to


al
ulate the inverse of C, i.e. it is su�
ient to establish the matri
es that are involved in the


al
ulation.

d) What is the value of the element shape fun
tion N e
2 at the nodes 1, 2 and 3 ?
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8 Choi
e of weight fun
tion

Exer
ise 8.1 The di�erential equation governing the response of the 
olumn depi
ted below

is given by

d2u

dx2
+

1

π2
u + sin x = 0 0 ≤ x ≤ π

u(0) = u(π) = 0 P P

u

x

Adopt the following approximation for the de�e
tion

uapp(x) =

n
∑

k=1

ak sin(kx)

1. Derive an expression for the error, e(x)

2. Des
ribe the di�eren
e between the "point 
ollo
ation", "subdomain 
ollo
ation", "least-

square" and "Galerkin" methods.

3. For the situation n = 1, determine uapp
using the "point 
ollo
ation" and "Galerkin"

method.

Exer
ise 8.2 Consider the di�erential equation

d2u

dx2
+ u + 1 = 0

together with the boundary 
onditions u = 0 at x = ±1. An approximative solution should

be derived using Galerkin's weighted residual method.

• Suggest a suitable approximation that involves one unknown parameter. The trial fun
-

tion should be 
hosen as a trigonometri
 fun
tion.

• Determine the unkown parameter using the 
ondition that the weight fun
tion is or-

thogonal to the residual, i.e.

∫ 1

−1
e · vdx = 0
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9 FE formulation of one dimensional heat �ow

Exer
ise 9.1 A rod is subje
ted to a distributed load and a temperature distribution

x

b(x) A(x)

0 L

The equation of equilibrium for the rod 
an be written as

dN

dx
+ b = 0 ; N = σ A

where N is the normal for
e and σ the stress.

For the uniaxial 
ase, the 
onstitutive relation for a linear thermoelasti
 material is given by

σ = E(ǫ − α ∆T )

where ∆T is the temperature di�eren
e measured for the referen
e state.

Derive the weak form of the problem and the 
orresponding FE-formulation a

ording to

Galerkin (ǫ = du/dx where u is the displa
ement). Then for the following 
ase

u(0) = 0 ; N(L) = 0
b = 
onstant ∆T = To(1 + x

L)


al
ulate the displa
ement at x = L/2, assuming that E, A, α and To are 
onstants. Use two

2-node elements to approximate the rod.
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Exer
ise 9.2 Consider a metal whi
h is 
overed by a thin �lm of oxide.

y

x

2L

M

e

t

a

l

A

i

r

O

x

i

d

e

x=0

L 2L

The growth law of the oxide �lm is governed by Fi
k's law, i.e.

q = −D
dc

dx

where q is the number of ions di�using through the 
ross se
tion per unit area and unit time.

The 
on
entration is denoted c. The di�usion parameter, D, is for this oxide �lm given by

D = D0(1 + 2ax)

Moreover, for stationary 
onditions the ion balan
e requires

− dq

dx
+ Q = 0

where Q is the ion supply per unit volume and unit time.

a) Establish the �nite element formulation for the di�usion problem des
ribed above. All

steps in the derivation should be presented.

b) Using two linear �nite elements, 
al
ulate the 
on
entration c through the oxide �lm. The


on
entration at the oxide/metal surfa
e is cm whereas the 
on
entration at oxide/air surfa
e

is given by ca. The thi
kness of the oxide layer is 2L. D0 and a are 
onstants in the 
onstitutive

law. Moreover no internal supply is present, i.e. Q = 0.

) Modify the boundary 
onditions at x = 2L su
h that q = kc and 
al
ulate the new sti�ness

matrix (K̃a = f̃). Note that the new system does not need to be solved.
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Exer
ise 9.3 A tapered �n of thi
kness t and length L is exposed to 
onve
tion along it's

length. The temperature distribution for this situation is governed by

d

dx

(

x
dT

dx

)

− N2(T − T∞) = 0, 0 < x < L
(1)

where N is a 
onstant (given) parameter de�ned as N2 = α
k

√

1 + L2

Y 2 . The ambient (
onstant)

temperature is given by T∞. Moreover, α represents the 
onve
tion 
oe�
ent and k the


ondu
tivity. L and Y are shown in Fig. 6. The boundary 
onditions are given by

[

x
dT

dx

]

x=0

= 0, T (L) = T0

a) Determine the weak form of the heat �ow problem given by above.

b) Determine the 
orrespondning �nite element formulation.


) For the situation N2 = 6/L, use two linear elements of equal size and 
al
ulate K and

f in the FE equation Ka = f .

d) Assuming that T∞ = 0oC and T0 = 100oC, determine the temperature distribution in

the �n.

x

y

T∞

T0

L

Y

Figure 6: Measures of the tapered �n.
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FE formulation of one dimensional transient heat �ow - Not 
overed in the

text book

Exer
ise 9.4 The one dimensional di�usion problem 
an be written as

d

dx

(

k1
dc

dx

)

+ Q = k2ċ, 0 ≤ x ≤ L

where k1 and k2 are 
onstant material parameters and c the 
on
entration. Q represents

the (
onstant) internal generation. The boundary and initial 
onditions are given by

dc
dx(x =

0, t) = q0, c(L, t) = 0 and c(x, 0) = c0sin(πx/L).

a) Derive the FE formulation 
orresponding to the di�erential equation above.

b) Use two equally long elements and 
al
ulate the element matri
es.


) Des
ribe (in words or equations or both) how the time integration is performed. Des
ribe

how the initial 
ondition is introdu
ed.

Exer
ise 9.5 The governing equation for a rod subje
ted to a distributed load (per unit

length), b(x, t) 
an be written as

0 L
x

b(x,t) A(x)

d

dx

(

EA
du

dx

)

+ b = mü, σ = Eǫ = E
du

dx

where E is the Young's modulus, A 
ross se
tion area, σ the stress and u the displa
ement.

The mass per unit length is denoted m.

a) Derive the weak form of the problem.

b) Derive �nite element formulation.


) Show that the sti�ness matrix is postitive semide�nite if EA is positive.

d) The stru
ture is modeled using three two-node elements of equal length. Cal
ulate the

system matri
es for the situation b = b(t), A = const., m = const. and E = const..

Note that you do not need to integrate the system over the time.
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10 FE formulation of 3D heat �ow

Exer
ise 10.1 In order to analyze the heat ex
hange from a 
himney a FE-analysis is per-

formed. The gas entering the 
himney from the stove has the temperature T = 300oC. The


himney as well as a 
ross se
tion showing the three 
hannels are illustrated in the �gures be-

low. Moreover, the FE-mesh that is used in the FE-analysis is also provided. The governing

L2

L3

L4 L1

Element 27

(1000, 800)

(850, 750)

(1000, 700)

a) b) 
) d)

x

y

Figure 7: a) Chimney. b) Cross-se
tion of 
himney. 
) FE-mesh of element 27 and its sur-

rounding elements. d) Lo
ation of element 27

equation for the heat �ow problem is given by

divq = 0, q = −k∇T

where k represents the 
onstant 
ondu
tivity, q the heat �ux ve
tor and T the temperature.

The boundary 
ondition for the problem is given by

L1 : qn = α(T − 22) L2 : T = 300oC L3 : qn = α(T − 22) L4 : qn = α(T − 22)

a) Derive the FE-formulation for the two-dimensional heat �ow problem.

b) Cal
ulate the element matri
es above for element 27, i.e 
al
ulate the element sti�ness

matrix, element for
e ve
tors and the matri
es that arises from the boundary 
onditions.

Hint: The following relation holds





1 850 750
1 1000 700
1 1000 800





−1

=







20
3

14
3 −31

3
− 1

150
1

300
1

300

0 − 1
100

1
100






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Exer
ise 10.2 Continuity for the 
urrent density in a B requires that

div(j) = 0 or ∇ · j = 0

where j represents the 
urrent density
[

A/m2
]

. Moreover, the 
onstitutive law (Ohm) relating

the 
urrent density to the ele
tri
 �eld is given by

j = σE, σ = σ(x) > 0

Note that σ not ne
essarily need to be 
onstant througout the body. Moreover, the ele
tri


�eld is obtained from the potential V as E = −∇V .

• Determine the weak form and the FE formulation (Ka = f) for the problem given

above.

• Show that K is positive semide�nite as long as no boundary 
onditions are imposed.

(Your statement must be shown.)

Exer
ise 10.3 In the drying pro
ess of timber it is of utmost importan
e to be able to

determine and 
ontrol the moisture 
ontent in the timber. As an example, due to unfavourable

moisture distribution, a 
ra
k has been formed in the upper of the two boards shown in Fig.8a.

The moisture 
ontent is governed by the partial di�erential equation div(∇m) = 0 where m
is the moisture 
ontent measured as

[

kg water/m3
]

. A �nite element analysis of the board

is performed. The board is modeled using 9-node Lagrangian elements. The approximation

that is used in the problem is given as

m = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 + α7x
2y + α8xy2 + α9x

2y2

• Does the suggested interpolation involve any parasiti
 terms ?

• Does the suggested interpolation guarantee 
onvergen
e ? (Prove your statement !).

• For the element (side length 2) indi
ated in Fig.8 
) 
al
ulate the 
ontribution from the

boundary term

∮

LN
T qndL, qn = −k(∇m)Tn (k is a 
onstitutive parameter and n

the normal ve
tor to the boundary) to the nodes 1,2 and 3. Moreover, qn is pres
ribed

to be 
onstant qn = q0 along the boundary L.
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123

y

x

2

2

L

1 2 3

a) b) 
)

Figure 8: a) Two boards that have been dried under di�erent 
onditions. b) The boundary

and three elements that are used in the �nite element analysis of the moisture problem. 
)

One 9-node Lagrangian element.

Exer
ise 10.4 For the di�usion problem below, the 
on
entration is given by c (
[

ions/m3
]

).

+ c=2
c
y

1 2

34

c=1

= 0
c
x

= 1
c
x

x

y

In order to simplify the problem it is assumed that the geometry is quadrati
 with the side

length 1. The 
on
entration is governed by the Lapla
e equation, i.e.

div(∇c) = 0

supplemented by the boundary 
onditions

∂c

∂x
= 0 along x = 0;

∂c

∂x
= 1 along x = 1

c = 1 along y = 0;
∂c

∂y
+ c = 2 along y = 1

a) Derive the �nite element formulation.

b) Determine the 
on
entration along y = 1. The problem shall be solved by using one four

node element.
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11 Guidelines for element meshes and global nodal nubering

12 Stresses and strains

Exer
ise 12.1 Derive the strains 
orresponding the the following displa
ement �elds. Can

you des
ribe the displa
ement �elds ? (k1 and k2 are 
onstants)

a) ux(x, y) = k1, uy(x, y) = k2

b) ux(x, y) = 0, uy(x, y) = k1y


) ux(x, y) = k1y, uy(x, y) = −k1x

d) ux(x, y) = 2k1y, uy(x, y) = 0

Exer
ise 12.2 a) Consider a dis
 ( uniform thi
kness t) subje
ted to a plane stress state.

A

n

x

y

Establish the global equilibrium balan
e and then derive the lo
al equilibrium equation, i.e.

∂σxx

∂x
+

∂σxy

∂y
+ bx = 0

∂σxy

∂x
+

∂σyy

∂y
+ by = 0

b) For the dis
 depi
ted below the stress in P is given by

S =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 =





12 6 0
6 −4 0
0 0 0





x

(3, 1)

(2, 2)

y

◦

◦
◦P

Determine the tra
tion ve
tor in the point P

) Determine the normal and shear 
omponents of the tra
tion ve
tor in P
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13 Linear elasti
ity

Exer
ise 13.1 The strain energy is given by W = 1
2σ

T ǫ. In the situation where plane stress

applies show that the out-of-plane strain 
omponent ǫzz does not 
ontribute to the strain

energy.

Exer
ise 13.2 The sti�ness tensor D present in the 
onstitutive law σ = Dǫ is given by

D =
E

(1 + ν)(1 − 2ν)

















1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1

2(1 − 2ν) 0 0
0 0 0 0 1

2(1 − 2ν) 0
0 0 0 0 0 1

2 (1 − 2ν)

















a) Derive D for plane strain 
onditions

b) DeriveD for plane stress 
onditions (Note that you need some software for task (e.g. Maple)
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14 FE formulation of non-
ir
ular shafts

15 Approximating fun
tions for the FE-method-ve
tor prob-

lems

Exer
ise 15.1 For a plane me
hani
al analysis the displa
ement �eld (ux, uy) within an ele-

ment is interpolated as

ux =
∑

N e
i uxi, uy =

∑

N e
i uyi

where uxi and uyi represent the nodal x and y displa
ements. The small strain 
omponents

are de�ned as

ǫxx =
∂ux

∂x
, ǫyy =

∂uy

∂y
, γxy =

∂uy

∂x
+

∂ux

∂y

Establish the Ne
and Be

in the matrix relations u = Neae
and ǫ = Beae

.
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16 FE formulation of three dimensional elasti
ity

Exer
ise 16.1 For a plane stress analysis the FE-formulation 
an be written as

∫

A
B

TσtdA =

∫

A
N

T
btdA +

∫

L
N

T
ttdL

where b is the body for
e ve
tor and t the tra
tion for
e ve
tor.

x

y

1

2

3

4

Figure 9: Four node element.

a) Suggest a suitable approximation for the displa
ement �eld (ux, uy) for the four node ele-
ment above.

b) Identify, for one element, the size of the matri
es (rows x 
olumns) of the matri
es B, σ,

N, b and t that are present in the �nite element formulation.

For a thermoelasti
 material the Hooke's law 
an be stated as

σ = D
(

ǫ− ǫθ
)

, ǫ = Ba


) Derive the matri
es in the �nal FE-formulation Ka = f when a plane stress thermo-elasti


analysis is performed.
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Exer
ise 16.2 Consider the plane elasti
ity problem below, 
f. Fig.10

(xi, yi) (yj, xj)

(xk, yk)tx = ay

x

y

L5

L1

L2

L3

L4

Figure 10: a) Plane elasti
 problem. b) Typi
al 3-node element.

The weak form of the equilibrium equations for the stru
ture are given by

∫

A
(∇̃v)

T
σtdA =

∫

L
vT ttdL +

∫

A
vTbtdA, ∇̃ =







∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x







and the 
onstitutive relation is provided by the Hooke's law, i.e.





σxx

σyy

σxy



 =





D11 D12 D13

D21 D22 D23

D31 D32 D33









ǫxx

ǫyy

γxy



 , σ = Dǫ, D = DT

The governing equation for the supporting surfa
e at L3 is given by

ty = −kuy,

where q denotes the supporting for
e per square meter and k the spring 
onstant 
f. Fig. 10.

• a) Spe
ify the boundary 
onditions for the stru
ture depi
ted in Fig.10a.

• b) Derive the FE-formulation for the two-dimensional elasti
ity problem. Note that the

boundary 
ondition at L3 must be given spe
ial attention.

• 
) Show that the sti�ness matrix, K, is symmetri
.

• d) For the situation where three node elements are employed, determine the dimension

of the matri
es K, f and a as well as N e
, Be

, Ke
, f e

. Assume that the �nite element

mesh 
onsists of ndof/2 nodes ndof degrees of freedom and nelm elements.
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Exer
ise 16.3 For a stru
tural problem, a disk is modelled by 4-node elements. The stru
ture

has 16 degrees of freedom. The matrix relation found from the FE-formulation is given by

Ka = f b + f l, where the sti�ness matrix is denoted K, nodal ve
tor a, load ve
tor f l and

the boundary ve
tor with f b.

P

q

P

u

u
3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

















































































































































































































































=

























































































































+

























































































































Mark with an x for 
omponents known and di�erent from zero, and with 0 for 
omponents

equal to zero and with ? for unknown 
omponents.
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Exer
ise 16.4 A stru
tural analysis of a body subje
ted to its body weight (g is a
ting in

negative y dire
tion) should be performed using the �nite element method. In addition to its

body weight it is subje
ted to an inhomogeneous temperature distribution. The �nite element

formulation is given by

∫

A
BTσdA =

∫

L
NT tdL +

∫

A
NTbdA

The 
onstitutive law governing the me
hani
al behaviour is given by the Hooke's law, i.e.

σ = D(ǫ − ǫ∆T ) where ǫ∆T
is the thermal strain. The body is supported by two beds

of springs. Along L2, tx = −kxux where tx and ux are 
omponents of the tra
tion and

displa
ements ve
tors. A similar relation along L3 holds, i.e. ty = −kyuy. Note that kx and

ky are 
onstant parameters.

y

x

1 2

6 7

54 3
L

L

L

3

2

1

1

• Derive the �nal FE formulation 
onsidering the 
onstitutive law and boundary 
ondi-

tions.

• As indi
ated in the �gure three node elements are used in the analysis.

Show that the three node triangular element satis�es the 
ompleteness and the 
ompat-

ibility 
ondition.

30



17 FE formulation of beams

Exer
ise 17.1 The equilibrium for a beam is given by

dV

dx
= −q ;

dM

dx
= V

where q is the load per unit length, M is the bending moment and V is the shear for
e.

a) Eliminate the shear for
e V from the equilibrium equations above and derive an equi-

librium equation expressed in terms of the bending moment M .

b) From the equilibrium equation establish the weak form.


) What are the natural and essential boundary 
onditions for an arbitrary beam ?

d) The de�e
tion, w, is governed by

M = −E∗I∗
d2w

dx2

where E∗I∗ = 1
A

∫

A Ez2dA is bending sti�ness. Based on b) derive the FE-formulation

for an arbitrary beam.

e) Suggest an approximation for w that guarantees that the FE-solution is 
onvergent =


ompatibility + 
ompleteness.
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Exer
ise 17.2 A beam with length 3L and bending sti�ness EI is rigidly mounted in both

ends. A moment M [Nm℄ is pla
ed at a distan
e of 2L from the left side of the beam, 
f. the

�gure below.

M

2L L

AL
z,w

x

The governing equations for the problem is given by

d2M

dx2
+ q = 0 , M = −EI

d2w

dx2

where q denotes the load intensity (positive in z-dire
tion). Note that the equilibrium equation

is derived from the following relations

dM

dx
= V ,

dV

dx
= −q

a) Derive the weak form of the governing equation, and spe
ify the essential and natural

boundary 
onditions.

b) Derive the FE-formulation for the problem, su
h that a symmetri
 sti�ness matrix is

obtained.


) Use two elements with the lengths 2L and L to determine the de�e
tion at a distan
e of L
form the left side of the beam, i.e. at the point A in the �gure. L = 0.5 m, EI = 7000 Nm2

and M = 5000 Nm. All steps in the 
al
ulation should be presented.

u1 u3

u2 u4

Hint:

For a beam with length a the interpolation for the simplest 
onforming element is given by

w = N e
1u1 + N e

2u2 + N e
3u3 + N e

4u4

where the shape fun
tions are de�ned as

N e
1 = 1 − 3

x2

a2
+ 2

x3

a3
, N e

3 =
x2

a2
(3 − 2

x

a
)

N e
2 = x(1 − 2

x

a
+

x2

a2
) , N e

4 =
x2

a
(
x

a
− 1)

whi
h results in the following element sti�ness matrix

Ke =
EI

a3









12 6a −12 6a
6a 4a2 −6a 2a2

−12 −6a 12 −6a
6a 2a2 −6a 4a2








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18 FE formulation of plates
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19 Isoparametri
 mapping

Exer
ise 19.1 A four node element will be used in a thermal analysis a

ording to the �gure

below.

x

y

node 1 (x1, y1)

node 4 (x4, y4)

node 2 (x2, y2)

node 3 (x3, y3)

a) Show that the element above does not satisfy the 
ompatibility 
ondition (no isoparametri


mapping is used).

b) Show that the element satis�es the 
ompatibilty 
onditions if isoparametri
 mapping is

used.

Hint: Isoparametri
 mapping implies the following mapping of the element 
oordinates

x(ξ, η) = Ne(ξ, η)xe, y(ξ, η) = N e(ξ, η)ye

where the shape fun
tions are given as

N e
1 =

1

4
(ξ − 1)(η − 1), N e

2 = −1

4
(ξ + 1)(η − 1)

N e
3 =

1

4
(ξ + 1)(η + 1), N e

4 = −1

4
(ξ − 1)(η + 1)

Note that the temperature appoximation as usual is given by

T = N eae

Exer
ise 19.2 For the problem above, derive the B matrix in terms of the Ja
obian and

shape fun
tions.
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20 Numeri
al integration

q

1 5 2

8
9

6

4 7 3

Node number

(1,1)(0,1)

(1,0)(0,0)

(x, y)

y

x

Exer
ise 20.1 A nine-node Lagrange element will be used for a two-dimensional FE-analysis.

The element is subje
ted to a distributed load, q, 
f. the �gure above. The boundary load

ve
tor is given by f b =
∫

L tNT tdL, where t is the tra
tion ve
tor and t the thi
kness. Assume

that t = 1.

a) Cal
ulate the 
ontribution from q (in the y-dire
tion) to f b in node 3 and 7 using an

analyti
al integration

b) Cal
ulate the 
ontribution from q (in the y-dire
tion) to f b in node 3 and 7 using a

numeri
al Gauss integration. The least number of integration points required for an

exa
t integration shall be used.
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Exer
ise 20.2 The sti�ness matrix for a four node isoparametri
 element for �nite element

analysis is given by

Ke =

∫ 1

η=−1

∫ 1

ξ=−1

[

∂N eT

∂ξ

∂N eT

∂η

]

J−1D(J−1)
T











∂N e

∂ξ

∂N e

∂η











det(J)dξdη

Assume that D = I and that the nodal 
oordinates are given by

xT = [10 14 14 10] yT = [10 10 14 14]

• Compute the 
omponent K11 using numeri
al integration (2x2 Gauss points).

Exer
ise 20.3 The fun
tion f is de�ned as

f(x) = x + 1 + 3x2 − 2x3

• Use Gauss quadrature (two integration points) to evaluate I =
∫ 1
0 f(x)dx.

• Is the result exa
t ?

• Comment upon the result.
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21 Variational prin
iples

Exer
ise 21.1 a) Derive the strain energy for a spring with the spring sti�ness k. The nodal
displa
ements are denoted u1 and u2.

k

2u u1

b) For the situation u1 = 0, derive the total strain energy for the spring system shown in the

�gure below

u1 2u
1 2

uu

F F4

4

3

3

FF

k

k

k

k

k1

2

3

4

5


) Establish the potential, Π to the system i.e., Strain energy minus potential due to external

for
es.

d) Show that minimization of the potential Π yields the equlibrium equations.
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Exer
ise 21.2 A rod is subje
ted to a distributed as depi
ted below.

x

b(x) A(x)

0 L

The boundary 
onditions for the problem is given by

N(L) = F and u(0) = 0

The prin
iple of virtual work for the rod (for b = 0) 
an be formulated as

∫ L

0
σAδǫdx − δu(L)F = 0, ∀δu(0) = 0

where δǫ = dδu
dx .

Show that the prin
iple of virtual work implies the boundary 
ondition and the equilibrium

equation

d(σA)
dx = 0
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Solutions:

2 Basi
 linear algebra

Solution 2.1

a) Dim(K) = [6x6]

b) Dim(D) = [3x3]


) KT = (αBTDB)T = α(B)T (D)T (BT )T = αBTDB = K

Solution 2.2 Expand along 2:nd row: det(K) = 2(−1)2+2

∣

∣

∣

∣

∣

∣

1 2 3
1 −2 1
0 1 2

∣

∣

∣

∣

∣

∣

= −12

Solution 2.3

a) K is positive semi-de�nite, i.e. det(K) = 0.

b) Non-trivial solutions exists.


) No or in�nite many solutions.

Solution 2.4

T1 = α1 + α2x1 + α3x
2
1 + α4x

3
1

T2 = α1 + α2x2 + α3x
2
2 + α4x

3
2

T3 = α1 + α2x3 + α3x
2
3 + α4x

3
3

T4 = α1 + α2x4 + α3x
2
4 + α4x

3
4

Arrange on matrix format and solve for α1 − α4, i.e. α = A−1T =









α1 = 0.0041
α2 = −0.0765
α3 = 0.5024
α4 = −1.0714









· 103

Solution 2.5 Proje
t the velo
ity ve
tor on the normal to the surfa
e,

q = AvTn = 0.4732m3/s

Solution 2.6 Partition of the system yields

[

A1 A2

A3 A4

] [

x

u

]

=

[

f

y

]

whi
h 
an be solved to yield u = [51.3 52.66]T and f = [−235 − 185]T
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3 Dire
t approa
h

Solution 3.1 a) The for
e in the spring, N , 
an be expressed as N = k(u2 − u1) and

P1 = −N, P2 = N whi
h 
an be written as

[

k −k
−k k

] [

u1

u2

]

=

[

P1

P2

]

b) The global system of equation is given by









k1 + k2 −k1 −k2 0
−k1 k1 + k3 + k4 −k4 −k3

−k2 −k4 k2 + k4 + k5 −k5

0 −k3 −k5 k5 + k3

















u1

u2

u3

u4









=









F1

F2

F3

F4









With the numeri
al values inserted the system of equations that shall be solved is formed as

8









2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1

0 −1 −1 2

















1
u2

u3

0









=









F1

0
20
F4









The solution is given by

u2 = 0.81 mm, u3 = 1.44 mm, F1 = −2 N, F4 = −18 N

Solution 3.2

a)

[

k −k
−k k

] [

u1

u2

]

=

[

F1

F2

]

b)

K =





k1 + k2 + k4 −k1 − k2 −k4

−k1 − k2 k1 + k2 + k3 −k3

−k4 −k3 k3 + k4



 , a =





0
u2

u3



 , f =





F1

0
10






)

[

u2

u3

]

=
1

5

[

1
3

]

d) a = [1 1 1]T results in aTKa = 0. Rigid body motion is not prevented.
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Solution 3.3 Dire
t assembly results in the system

1

r∗









2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1

0 −1 −1 2

















V1

0
V3

0









=









1
I2

0
I4









whi
h gives V1 = 0.6r∗ V3 = 0.2r∗

Solution 3.4

Ke
1256 = k









1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0









,Ke
3456 =

k

2









1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1









,Ke
5678 =

k

2









1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1









The total sti�ness matrix is given by

K =
k

2

























2 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0
0 0 1 −1 −1 1 0 0
0 0 −1 1 1 −1 0 0

−2 0 −1 1 4 0 −1 −1
0 0 1 −1 0 2 −1 −1
0 0 0 0 −1 −1 1 1
0 0 0 0 −1 −1 1 1
























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4 Strong and weak form- one dimensional heat

Solution 4.1

• Heat is �owing from the 'warm' region to the '
ool' region.

• Doubled temperature di�eren
e implies a doubled heat �ow.

• Doubled distan
e redu
e the heat �ow by a fa
tor of two.

• To summarize we have that the heat �ow, q is given by q ∝ ∆T 1
∆x . Compare to Fourier's

law q = −k dT
dx .

Solution 4.2 Strong form: See 
ourse book, pp. 49-51. Weak form: See 
ourse book, pp.

56-57.

Solution 4.3 Consult the 
ourse book, pages 57-59.

Solution 4.4 Weak form:

∫ L

0

dv

dx
Ndx − [vN ]L0 −

∫ L

0
vbdx = 0

Solution 4.5 Balan
e of a ring of the insulation assuming stationary 
onditions results in

d
dr (qr) = 0. Multiply by arbitrary weight fun
tion and integrate over the body

[vqr]R2

R1
−
∫ R2

R1

dv

dr
rqdr = 0
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5 Gradient, Gauss divergen
e theorem and Green-Gauss theo-

rem

Solution 5.1

• The gradient of a s
alar �eld degenerates to a derivative in a one dimensional 
ase.

• The gauss theorem states that

∫

V
div(q)dV =

∫

S
qndS. The one-dimensional 
ounter-

part is simply

∫ b
a

df
dxdx = f(b) − f(a) i.e. "derivative, divergen
e" is transformed into a

boundary term "fun
tion value in end-points, line integral".

• In the multi-dimensional situation an integral

∫

A
ϕdiv(q)dV 
an be transformed into

∫

S
ϕqTndS −

∫

V
(∇ϕ)T qdV whi
h redu
es to the 'integration by parts' in the one di-

mensional 
ase, i.e.

∫ b

a

df

dx
gdx = [fg]ba −

∫ b

a
f

dg

dx
dx

Solution 5.2

a) The gradient is given by ∇T = [a b]T . Integration along the boundary results in

∮

L(∇T )TndL = 0

b) div(∇T ) = 0


)

∫

L(∇T )TndL =
∫

A div(∇T )dA = 0

Solution 5.3 Line is parametrized as y = 4 − (3x − 3)/4

∫

L
(x2 + y(x) + 10)

√

1 +

(

dy

dx

)2

|dx| =

√

1 +

(

3

4

)2 ∫

L
(x2 + y(x) + 10)|dx| =

685

6

Solution 5.4 The normal is given by n = ∇φ

|∇φ| , i.e. n = 1√
5
[2 1]T
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6 Strong and weak form of 2-D and 3-D heat �ow

Solution 6.1

a) The gradient of the temperature �eld is given by ∇T =
T0

L2
[
2x

9
2y]T . The heat �ux

ve
tor is given by q = −kT0

L2
[
2x

9
2y]T whi
h at (L/2, 3L/2) be
omes q = −kT0

L
[
1

9
3]T

b) The normal to the surfa
e is given by n = ∇g/||∇g|| where g(x, y) =
(

2x−L
2L

)2
+
(

2y
3L

)2
.

Evaluation yields n = [0 1]T


) The heat �ux is given by qn = qTn = −3kT0

L

Solution 6.2

a) Heat generated within the body=Heat leaving the body. This balan
e prin
iple 
an be

formulated as

∫

V
QdV =

∫

S
qndS

where V and S represents the volume and boundary to the body.

b) Using that qn = qTn

∫

V
QdV =

∫

S
qndS =

∫

S
qTndS =

∫

V
div(q)dV

Sin
e the volume V 
an be 
hosen arbitrarily we obtain the lo
al form as

div(q) − Q = 0

whi
h is the strong form to the problem.


) Multiply by an arbitrary weight fun
tion and integrate over the entire body. Use of the

Green-Gauss's theorem results in the weak form. Consult the 
ourse book page 85.

Solution 6.3 Sin
e the Fourier's law states that q = −D∇T = −k∇T it follows that q is

parallell to ∇T .

Solution 6.4 The inequality shows that D is positive de�nite. This 
ondition implies that

D−1
exsists, 
f. 
ourse book page 23.

Solution 6.5 A spring is the me
hani
al analogy (For
e is proportional to extension the, i.e.

F = k(u − u0)
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7 Choi
e of approximating fun
tion

Solution 7.1 Element shape fun
tions:

N1
1 = 1 − x, N1

2 = x

N2
1 = 2 − x, N2

2 = −1 + x

Global shape fun
tions:

N1 =

{

1 − x, 0 ≤ x ≤ 1
0, 1 < x ≤ 2

N2 =

{

x, 0 ≤ x ≤ 1
2 − x, 1 < x ≤ 2

N3 =

{

0, 0 ≤ x ≤ 1
−1 + x, 1 < x ≤ 2

Solution 7.2 Element shape fun
tions (element 1)

N1
1 = 2(1 − x)(0.5 − x), N1

2 = 4x(1 − x), N1
3 = −2x(0.5 − x)

Element shape fun
tions (element 2)

N2
1 = 2(1.5 − x)(2 − x), N2

2 = 4(x − 1)(2 − x), N2
3 = −2(x − 1)(1.5 − x)

Global shape fun
tions

N1 =

{

N1
1 , 0 ≤ x ≤ 1

0, 1 < x ≤ 2

N2 =

{

N1
2 , 0 ≤ x ≤ 1

0, 1 < x ≤ 2

N3 =

{

N1
3 , 0 ≤ x ≤ 1

N2
1 , 1 < x ≤ 2

N4 =

{

0, 0 ≤ x ≤ 1
N2

2 , 1 < x ≤ 2

N5 =

{

0, 0 ≤ x ≤ 1
N2

3 , 1 < x ≤ 2

Solution 7.3

a) Convergen
e guaranteed.

b) Convergen
e guaranteed.
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Solution 7.4 a) The 
ompleteness requirement is ful�lled for both elements. To ful�ll the


ompatibility requirement the approximated �eld must be 
ontinuous, i.e. the approximation

must be uniquely determined by the nodal values on the boundaries. This is not satis�ed for

the 
urrent 
on�guration, i.e. 
ompatibility is not satis�ed.

b) The C-matrix method

N = N̄C−1 = [1 x y]C−1; C =





1 0 0
1 1 0
1 0.5 0.5





whi
h results in the following shape fun
tions

N = [1 − x − y x − y 2y]

Solution 7.5 Gauss's theorem yields

∫

S qndS =
∫

V div(q)dV =
∫

V QdV = Total heat gener-

ated within the body. The only 
ontribution to

∫

S qndS =
∫

L qntdL is from L5−12. Introdu
ing

an axis (η) along 5 − 12 starting in 12 allow us to write the temperature distribution as

T (η) = T12(η −
√

2b)(η − 2
√

2b)/(4b2) − T9η(η − 2
√

2b)/(2b2) + T5η(η −
√

2b)/(4b2)

Total heat is given as

∫ 2
√

2b
0 αT (η)bdη = α

√
2b2

3 (T12 + 4T9 + T5) = α
√

2b2

3 (19 + 4 · 18 + 14) =

35α
√

2b2

Solution 7.6

a) φ = α1 + α2x + α3y + α4xy + α5x
2 + α6y

2 + α7x
2y + α8xy2

. For x = const we obtain
φ = β1 + β2y + β3y

2
, i.e. three parameters and three nodes, i.e. a unique temperature

distribution is obtained. Similar arguments holds for the y dire
tion.

b) φ = α1+α2x+α3y+α4xy+α5x
2+α6x

2y. For y = const we obtain φ = β1+β2x+β3x
2
,

i.e. three parameters and three nodes, i.e. a unique temperature distribution is obtained.

For x = const we obtain φ = β1 + β2y, i.e. two parameters and two nodes, i.e. a unique

temperature distribution is obtained.
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Solution 7.7

a)

φ = α1 + α2x + α3y + α4xy

b)

α4xy


)

N = N̄C−1

where

N̄ =
[

1 x y xy
]

and C =









1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4









d)

N e
2 (x1, y1) = 0, N e

2 (x2, y2) = 1, N e
2 (x3, y3) = 0
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8 Choi
e of weight fun
tion

Solution 8.1

a)

d2u

dx2
+

1

π2
u + sin(x) = 0, ⇒ L(u) + g(x) = 0

where

L =
d2

dx2
+

1

π2
, g(x) = sin(x)

The residual is given by

e = L(uapp) + g(x)

b) • Point 
ollo
ation: Enfor
e e = 0 at spe
i�
 points

• Subdomain 
ollo
ation: Enfor
e

∫

ve dx = 0 over a spe
i�
 region

• Least square: Minimize the integral

∫

e2 dx
• Galerkin: weight fun
tion= trial fun
tion


) Spe
i�
 approximation

ψ = {sin(x)} , a = {a} ⇒ L(ψ) = −sin(x) +
sin(x)

π2

Point 
ollo
ation, V = δ(x − π/2) results in

(

−sin(π/2) +
sin(π/2)

π2

)

a = −sin(π/2) ⇒ a =
−π2

1 − π2

Galerkin, V = sin(x) results in

∫ π

0
−sin2(x) +

sin2(x)

π2
dx a = −

∫ π

0
sin2(x) ⇒ a =

−π2

1 − π2

Note: Corre
t solution u = −π2

1−π2 sin(x)

Solution 8.2

• The approximation must satisfy the boundary 
onditions. Choose uapp = a cos(π
2 x)

• Error is de�ned as e = d2uapp

dx2 + uapp + 1.
Insertion into the orthogonal 
ondition yields a = −4

π(1−(π

2
)2)
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9 FE formulation of one dimensional heat �ow

Solution 9.1 Multiply the balan
e equation by an arbitrary weight fun
tion, v and integrate

over the entire body. The result is:

[vN ]L0 −
∫ L

0

dv

dx
Ndx +

∫ L

0
vbdx = 0

whi
h is the weak form of the problem. Using the approximation u = Na as well as the

Galerkin 
hoi
e of weight fun
tion v = Nc results in

cT

[

[NT N ]L0 −
∫ L

0
BT Ndx +

∫ L

0
NT bdx

]

= 0

where is was used that ǫ = du
dx = d

dxNa = Ba. Using that c is arbitrary along with N =
AE(ǫ − α∆T ) = AE(Ba− α∆T ) results in �nite element formulation

∫ L

0
BT AEBdxa = [NT N ]L0 +

∫ L

0
NT bdx +

∫ L

0
BT AEα∆Tdx

or

Ka = f b + f l + f0

Using two linear elements results in:

Element 1: N e
1 = 1 − 2x

L , N e
2 = 2x

L , Be = 2
L [−1 1] and Ke

1 = 2AE
L

[

1 −1
−1 1

]

= Ke
2

whi
h gives the total sti�ness matrix as K = 2AE
L





1 −1 0
−1 2 −1
0 −1 1





Load ve
tor: b = const results in f l = bL
4 [1 2 1]T

Load ve
tor due to thermal strains, f0:

f0 = AEαT0

∫ L

0
[
dN1

dx

dN2

dx

dN3

dx
]T (1 + x/L)dx =

AEαT0

4
[−5 − 2 7]T

Boundary load ve
tor, f b = [−Nx=0 0 Nx=L]T

Finally we end up with

2AE

L





1 −1 0
−1 2 −1
0 −1 1









u1(= 0)
u2

u3



 =





−Nx=0

0
0



+
AEαT0

4





−5
−2
7



+
bL

4





1
2
1





whi
h gives u2 = 5LαT0

8 + 3bL2

8AE
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Solution 9.2

a) Strong form

dq

dx
− Q = 0

Multipli
ation by a weight fun
tion and integration over the region of interest results in

∫

dv

dx
q dx − [vq] +

∫

vQ dx = 0

Choose weight fun
tion v = Nc = cTNT
,

dv
dx = cTBT

giving

∫

BT q dx = [NT q] −
∫

NT Q dx

Fi
k's law q = −D dc
dx , together with the interpolation

dc
dx = Ba results in

−
∫

DBTB dx a = [NT q] −
∫

NT Q dx ⇒ Ka = f

where

K =

∫

DBTB dx, f = −[NT q] +

∫

NT Q dx

b) Linear element B = [−1 1]/L results in

Ke =
1

L2

[

1 −1
−1 1

] ∫ L

0
D dx

i.e.

Ke
1 =

D0(L + aL2)

L2

[

1 −1
−1 1

]

, Ke
2 =

D0(L + 3aL2)

L2

[

1 −1
−1 1

]

Resulting in

D0

L





1 + aL −(1 + aL) 0
−(1 + aL) 2 + 4aL −(1 + 3aL)

0 −(1 + 3aL) 1 + 3aL









cm

c2

ca



 =





f1

0
f3





Row 2 gives

c2 =
(1 + aL)cm + (1 + 3aL)ca

2 + 4aL


)

f b = −[NT q]2L
0 = −[NT q]x=2L+[NT q]x=0 ⇒ f b = −[kNTN ]x=2L a+[NT q]x=0

i.e.



K + k





0 0 0
0 0 0
0 0 1







a = [NT q]x=0
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Solution 9.3

a)

∫ L

0

dv

dx

(

x
dT

dx

)

dx +

∫ L

0
vN2Tdx =

[

vx
dT

dx

]L

0

+

∫ L

0
vN2T∞dx

b)

Ka = f , where K =

∫ L

0

(

BT xB +NT N2N
)

dx and

f =

(

xNT dT

dx

)

|x=l +

∫ L

0
NT N2T∞dx


)

1

2





3 0 0
0 8 −2
0 −2 5









T1

T2

T3



 =





0
0

(xdT
dx )|x=l



+ N2T∞
L

4





1
2
1





d)

T = Na where a = [0 25 100]T

Solution 9.4 Multipli
ation and integration over the body and also use of the c = Na as

well as v = Nc results in

[

NT k1
dc

dx

]L

0

−
∫ L

0
BT k1Bdxa+

∫ L

0
NT Qdx =

∫ L

0
NT k2Ndxȧ

The element shape fun
tions are given by N e
1 = 1 − 2x/L and N e

2 = 2x/L. These shape

fun
tions results in Be = [−2/L, 2/L]. The following element fun
tions 
an be obtained

Ke
1 =

∫ L/2

0
BeTk1B

edx =
2k1

L

[

1 −1
−1 1

]

, Ce
1 =

∫ L/2

0
N eT k2N

edx =
k2L

12

[

2 1
1 2

]

f e
L1 =

∫ L/2

0
N eT Qdx =

QL

4

[

1
1

]

The element matri
es for the se
ond element is identi
al to the element matri
es of element

1. Assembly of the element matri
es yields

K =

∫ L

0
BT k1Bdx =

2k1

L





1 −1 0
−1 2 −1
0 −1 1



 , C =

∫ L

0
NT k2Ndx =

k2L

12





2 1 0
1 4 1
0 1 2





and

fL =

∫ L

0
NT Qdx =

QL

4





1
2
1



 , f b =

[

NT k1
dc

dx

]L

0

=





k1q0

0

k1(
dc
dx)|x=L



 , a(t = 0) =





0
c0

0





The system 
an be written as Cȧ+Ka = f b + fL.
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Solution 9.5

• Weak form:

[

vEA
du

dx

]L

0

−
∫ L

0

dv

dx
EA

du

dx
dx +

∫ L

0
vbdx =

∫ L

0
vmüdx

• Finite element formulation:

[

NT EA
du

dx

]L

0

−
∫ L

0
BT EABdxa+

∫ L

0
NT bdx =

∫ L

0
NT mNdxä

• K is positive de�nite sin
e

aTKa = aT

∫ L

0
BT EABdxa =

∫ L

0
aTBT EABadx =

∫ L

0
EA

(

du

dx

)2

dx ≥ 0

• System matri
es:

Ke =
3AE

L

[

1 −1
−1 1

]

, K =
3AE

L









1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1









fe
l =

bL

6

[

1
1

]

, f l =
bL

6









1
2
2
1









M e =
mL

18

[

2 1
1 2

]

, M =
mL

18









2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2









[

NT EA
du

dx

]L

0

=









−(EAdu
dx )|x=0

0
0

(EAdu
dx )|x=L








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10 FE formulation of 3D heat �ow

Solution 10.1

a) Consult 
ourse book, pp. 206-208

b)

1

3

2

x

y

The approximation is given by T = α1 + α2x + α3y whi
h 
an be written as T =
[1 x y][α1 α2 α3]

T = N̄ᾱ. Using the C − matrix method we obtain





T1

T2

T3



 =





1 850 750
1 1000 700
1 1000 800









α1

α2

α3





The interpolation is obtained as T = N̄C−1ae = N eae
. The sti�ness matrix is given

by Ke =
∫

Ae

BeTDBedA.

Ke =

∫

Ae

BeTDBedA = AeB
eTBek = kAe





−1
150 0
1

300
−1
100

1
300

1
100





[ −1
150

1
300

1
300

0 −1
100

1
100

]

=

k





1
3 −1

6 −1
6

−1
6

5
6 −2

3
−1

6 −2
3

5
6





Boundary term:

∫

L23

NeT qndL =

∫

L23

N eT α(T − T∞)dL =

∫

L23

N eT α(N eae − T∞)dL =

∫

L23

αN eTN edLae −
∫

L23

αN eT T∞dL =
αL

6





0 0 0
0 2 1
0 1 2



ae − αT∞L





0
1
2
1
2





where T∞ = 22oC
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Solution 10.2

a) Consult 
ourse book, pp. 220-221. Change q to j and T to V.

The result is

∫

A(∇v)T σ(∇V )dA = −
∮

L vjTndL where v represents the weight fun
-

tions.

Using the Galerkin 
hoi
e of weight fun
tion we obtain

∫

A
BT σBdAa = −

∮

L
NT jTndL

b)

aTKa =

∫

A
||∇V ||2σdA ≥ 0

Find one a 6= 0 su
h that

∫

A ||∇V ||2σdA = 0. Chose for instan
e a = [1 1 ..... 1 1].

Solution 10.3

a) Parasiti
 terms: α7x
2y, α8xy2, α9x

2y2

b) The interpolation is 
omplete and 
ompatible, i.e. 
onvergen
e is guaranteed.


) Contribution to node 1, 2 and 3: q0/3, 4q0/3, 2q0/3

Solution 10.4

FE-formulation

∫

AB
TBdAa =

∮

LN
T (∇c)TndL

Con
entration a = [1 1 2 3/2]T , i.e. a3 = 2 and a4 = 3/2.
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11 Guidelines for element meshes and global nodal nubering

12 Stresses and strains

Solution 12.1

a) ǫ =
[

0 0 0
]T

Rigid body motion

b) ǫ =
[

0 k1 0
]

Uniaxial straining


) ǫ =
[

0 0 0
]

Rigid body rotation


) ǫ =
[

0 0 2k1

]

Shear state

Solution 12.2

a) Global equilibrium

∫

S
tds +

∫

V
bdV = 0

Cau
hys formula t = STn along with Gauss's theorem yields

∫

V
(div(σT ) + b)dV = 0

This balan
e should hold for arbitrary regions, i.e.

div(σT ) + b = 0

b) The normal ve
tor is given by

n =
1√
2

[1 1 0]T

whi
h results in

t =
1√
2

[18 2 0]T


)

σnn = 10 σnm = 8
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13 Linear elasti
ity

Solution 13.1 For the plane stress situation the strain energy is given as

W = 1/2[σxx σyy 0 σxy][ǫxx ǫyy ǫzz γxy]
T = 1/2(σxxǫxx + σyyǫyy + σxyγxy)

i.e. the ǫzz 
omponent does not 
ontribute to the strain energy.

Solution 13.2 Consult 
ourse book pp. 254-256
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14 FE formulation of non-
ir
ular shafts
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15 Approximating fun
tions for the FE-method-ve
tor prob-

lems

Solution 15.1 Consult the 
ourse book, pp 282-286

58



16 FE formulation of three dimensional elasti
ity

Solution 16.1

a) The 
omponents of the displa
ement �eld are interpolated as ux = α1+α2x+α3y+α4xy
and uy = β1 + β2x + β3y + β4xy.

b) B [3x8], σ [3x1] N [2x8], b [2x1] t [2x1]


)

∫

A
BTσtdA =

∫

A
BTDBtdAa−

∫

A
BTDǫθtdA

i.e.

∫

A
B

TDBtdAa =

∫

A
N

T
btdA +

∫

L
N

T
ttdL +

∫

A
BTDǫθtdA

Solution 16.2

a) • (tx, ty) = (0, 0) along L1

• (tx, ty) = (ay, 0) along L2

• (tx, ty) = (0,−kuy) along L3

• (tx, ty) = (0, 0) along L4

• (ux, uy) = (0, 0) along L5

b) Consult the 
ourse book pp. 295-296

∫

A
BTDBtdAa =

∫

L
NT ttdL +

∫

A
NTbtdA

or

∫

A
BTDBtdAa =

∫

L3

NT ttdL +

∫

L1,2,4,5

NT ttdL +

∫

A
NTbtdA

The term

∫

L3
NT ttdL 
an be written as

∫

L3

NT ttdL = −
∫

L3

NTkNatdL

where k =

[

0 0
0 k

]


) Resulting sti�ness matrix

K =

∫

A
BTDBtdA +

∫

L3

NTkN tdL

whi
h due to the symmetry in D and k is symmetri
.
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d)

• K : [ndof × ndof ] • Ke : [6 × 6]
• a : [ndof × 1] • N e : [2 × 6]
• Be : [3 × 6] • D : [3 × 3]
• f : [ndof × 1] • f e : [6 × 1]
• b : [2 × 1] • t : [2 × 1]

Solution 16.3





























































x x x x x x 0 0 x x 0 0 0 0 0 0

x x x x x x 0 0 x x 0 0 0 0 0 0

x x x x x x 0 0 x x 0 0 0 0 0 0

x x x x x x 0 0 x x 0 0 0 0 0 0

x x x x x x x x x x x x 0 0 0 0

x x x x x x x x x x x x 0 0 0 0

0 0 0 0 x x x x x x x x 0 0 0 0

0 0 0 0 x x x x x x x x 0 0 0 0

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

0 0 0 0 x x x x x x x x x x x x

0 0 0 0 x x x x x x x x x x x x

0 0 0 0 0 0 0 0 x x x x x x x x

0 0 0 0 0 0 0 0 x x x x x x x x

0 0 0 0 0 0 0 0 x x x x x x x x

0 0 0 0 0 0 0 0 x x x x x x x x

























































































































?

0

0

0

?

?

?

?

?

?

?

?

?

0

?

?





























































=





























































0

?

?

?

x

0

x

0

0

0

0

0

0

?

0

0





























































+





























































x

0

x

0

x

x

0

x

x

x

0

x

0

0

0

0





























































Solution 16.4 a)

∫

A
BTσdA =

∫

L
NT tdL +

∫

A
NTbdA

Insertion of the 
onstitutive law results in

∫

A
BTDBdAa =

∫

V
BTDǫ∆T dA +

∫

L
NT tdL +

∫

A
NTbdA

Using that tx = −kxux and ty = 0 along L2 we have

[

tx
ty

]

= −
[

kx 0
0 0

] [

ux

uy

]

or t = −k2u

In the same way for L3 we have

[

tx
ty

]

= −
[

0 0
0 ky

] [

ux

uy

]

or t = −k3u

Using that u = Na we end up with

(∫

A
BTDBdA +

∫

L2

NTk2NdL +

∫

L3

NTk3NdL
)

a =

∫

A
BTDǫ∆T dA+

∫

A
NTbdA

where b = [0 − gρ]T where ρ represents the density per area.

b) Consult the 
ourse book, pp. 282-283. See also pp. 124-125.
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17 FE formulation of beams

Solution 17.1

a)

d2M

dx2
+ q = 0

b) See 
ourse book equations 17.2.


) M and V are natural boundary 
onditions whereas w and

dw
dx are essential boundary 
ondi-

tions.

d) See 
ourse book equations (17.30)-(17.41).

e)

w = α1 + α2x + α3x
2 + α4x

3
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Solution 17.2 a) Consult the 
ourse book page 318-319. The essential boundary 
onditions

are w = 0 and

dw
dx = 0 at x = 0 and x = 3L.

b) See 
ourse book equations (17.30)-(17.41).


) The global sti�ness matrix and load ve
tors.

K = EI

















12/8L3 6/4L2 −12/8L3 6/4L2 0 0
6/4L2 4/2L −6/4L2 2/2L 0 0

−12/8L3 −6/4L2 12/8L3 + 12/L3 −6/4L2 + 6/L2 −12/L3 6/L2

6/4L2 2/2L −6/4L2 + 6/L2 4/2L + 4/L −6/L2 2/L
0 0 −12/L3 −6/L2 12/L3 −6/L2

0 0 6/L2 2/L −6/L2 4/L

















f l =

















0
0
0

M
0
0

















f b =

















V1

M1

0
0

V3

M3

















The resulting system of equations that has to be solved is

EI

[

12/8L3 + 12/L3 −6/4L2 + 6/L2

−6/4L2 + 6/L2 4/2L + 4/L

] [

u3

u4

]

=

[

0
M

]

+

[

0
0

]

With numeri
al values the solution will be

u3 = −0.01323, u4 = 0.07937

The de�e
tion at the point A, use the approximations.

w|0.5 = N |T0.5 a = N3|0.5(−0.01323) + N4|0.50.07937 = −0.0165
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18 FE formulation of plates
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19 Isoparametri
 mapping

Solution 19.1

a) Chose for instan
e T = α1 + α2x + α3y + α4xy. This approximation 
annot satisfy the


ompatibility requirement on boundary 3 − 4.

b) Line (3-4). T = N eae
. Sin
e η or (ξ) is 
onstant along the boundaries the temperature

variation along all boundaries 
an be written as T = α1 + α2η, i.e. two 
onstants, two

parameters.

Solution 19.2

The Be
matrix 
an be expressed as

Be = (JT )−1









∂N e

∂ξ

∂N e

∂η









, J =









∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η









wher the 
omponents in the ja
obian are given as

∂x

∂ξ
=
∑

i

∂N e
i

∂ξ
xi,

∂x

∂η
=
∑

i

∂N e
i

∂η
xi

∂y

∂ξ
=
∑

i

∂N e
i

∂ξ
yi,

∂y

∂η
=
∑

i

∂N e
i

∂η
yi
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20 Numeri
al integration

Solution 20.1 Shape fun
tions along the upper boundary:

N3 =
x(x − 0.5)

1 · 0.5 = 2x2 − x N7 =
x(x − 1)

0.5(−0.5)
= 4x − 4x2

a) Exa
t integration:

fb3y = −
∫ 1

0
N3qdx = −q

[

2

3
x3 − 1

2
x2

]1

0

= −1

6
q

fb7y = −
∫ 1

0
N7qdx = −q

[

2x2 − 4

3
x3

]1

0

= −2

3
q

b) Numeri
al integration:

Map the domain [0 1] onto [−1 1] and perform the transformation

∫ 1
0 Niqdx =

∫ 1
−1 Niq

dx
dξ dξ.

The mapping is given by ξ = −1 + 2x, i.e. dx
dξ = 1/2.

Using two integration points then results in

fb3y = −
∫ 1

−1
N3q

dx

dξ
dξ = −0.16667q

fb7y = −
∫ 1

−1
N7q

dx

dξ
dξ = −0.66667q
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Solution 20.2 The map purely s
ales the element, i.e. J = 2I . If this is not realized

dire
tly, the 
omponents in the Ja
obian is simply given as

∂x

∂ξ
=

∂N e

∂ξ
xe =

1

4
(η − 1)10 − 1

4
(η − 1)14 +

1

4
(η + 1)14 − 1

4
(η + 1)10 = 2

the other three 
omponents are given in the same manner. In 
on
lusion

J = 2I det(J) = 4 J−1 =
1

2
I (J−1)T =

1

2
I

The 
omponent we seek is given by

Ke
11 =

∫ 1

−1

∫ 1

−1

[

(

∂N e
1

∂ξ

)2

+

(

∂N e
1

∂η

)2
]

dξdη =

∫ 1

−1

∫ 1

−1

1

16

[

(η − 1)2 + (ξ − 1)2
]

dξdη

Gauss integration yield

Ke
11 =

1

16

([

{

1√
3
− 1

}2

+

{

1√
3
− 1

}2
]

+

[

{

− 1√
3
− 1

}2

+

{

1√
3
− 1

}2
]

+

[

{−1√
3
− 1

}2

+

{−1√
3
− 1

}2
]

+

[

{

1√
3
− 1

}2

+

{−1√
3
− 1

}2
])

=
2

3

Solution 20.3 Use the variable ξ = −1 + 2x

I =

∫ 1

0
f(x)dx =

∫ 1

−1
f(ξ)

dx

dξ
dξ =

1

2

∫ 1

−1
f(ξ)dξ ≈

1

2

(

f(ξ = −1/
√

3) + f(ξ = 1/
√

3)
)

=
1

2

(

f(x =
1 − 1/

√
3

2
) + f(x =

1 + 1/
√

3

2
)

)

= 2

Exa
t result

I =

∫ 1

0
f(x)dx =

[

x2

2
+ x + x3 − x4

2

]1

0

=
1

2
+ 1 + 1 − 1

2
= 2

The exa
t result is expe
ted sin
e Gauss integration integrates a polynomial of order 2n − 1
where n is the number of integration points.
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