LUNDS UNIVERSITET

Lunds Tekniska Hogskola

Introduction to the Finite Element Method
Exercises

Mathias Wallin

Division of Solid Mechanics Report LUTFD2/(TFHF-3086)
Lund University, 2013




1 Introduction

2 Basic linear algebra

Exercise 2.1 The matrix K is defined as
K =aB"DB

where « is a scalar and the dimension of B is 3 x 6.

e Determine the dimension of K
e Determine the dimension of D

e For the situation where D = DT show that K is symmetric.
Exercise 2.2 Calculate det(K) when K is defined as
2
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Exercise 2.3 Consider the quantity a’ Ka (K is symmetric) where dim(K) is n x n and
dim(a) is n x 1. Moreover, a’ Ka >0, and a’Ka =0 for some a # 0

e Determine det(K)
e Does Kx = 0 have non-trivial solutions ?

e b is known and non zero. How many solutions to Ka = b exists ?

Exercise 2.4 In an experiment the variable x is changed and the variable T is measured.
The following results are obtained

11031 0.12
21032)0.15
31034 |0.16
41036 0.19

Table 1: Experimental results

A model describing the physical nature of the problem is given by T = o + sz +azz? +aya?.

e Fit the parameters o; to the experimental data.



Exercise 2.5 A beam of water with velocity v = [1 3 2]” m/s is flowing through a surface

with area A = 0.2m?2 and unit (outward) normal vector n = % [\/§ 1 O]T. Calculate the
amount of water passing the surface per second.

Exercise 2.6 In a finite element analysis the following linear equation system is obtained

1 6 -2 -377[2 fi
6 2 -4 0 4 | f
—2 -4 2 —1||wu| |30
3 -2 -1 2 uy 40

Calculate (by hand) the unkonwns ug,us and fi and fo.

Exercise 2.7 Use the calfem command solveq to solve Exercise 2.6, i.e.
>>x=solveq(K,f,bc)

where K is the matrix, f is the right hand side in the system of equations above. Note that
f(1) and f(2) are assigned 0 in the function call. Since (1) = 2 and z(2) = 4 the variabel bc
should be assigned

1 2
bc:[z 4]



3 Direct approach

Exercise 3.1 a) Derive the stiffness matrix for a spring with the spring stiffness k. The
spring is loaded with the forces P; and P». The nodal displacements are denoted uy and wus.

k
u, u,

F, F, F, F,

u; U, Us Uy

c¢) Give a physical interpretation of det(K) = 0.

d) For the system given above the following holds:

u; = Ilmm, ug = 0, F» = ON, F3 = 20N

k1 = ko = ks = k4 = ks = 8N/mm.

Calculate the displacements ug and ug and the forces F; and Fj .



Exercise 3.2  a) Derive the element stiffness matrix for a spring with spring constant, k,

subjected to the forces F; and F5. The displacements are denoted u; and us, cf. the
figure below.

L LN R
LT U U
— .
K3
K,
K,

c) For u; =0, F; =0 och F3 = 10N derive F, ug och ug if k1 = ko = k3 = k4 = 10N/mm.

d) Find an a # 0 such that a” Ka = 0.
Hint: What does det(K) = 0 means in terms of boundary conditions.



Exercise 3.3 Consider the assembly of electrical resistances below, cf. Fig.1
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Figure 1: a) Assembly of electrical resistors. b) Typical element of assembly.

If a typical resistance is isolated (cf. Fig.1b), the relation for the current entering the element
at the ends, (I;, ;) and the end voltages (V;,V;) can be written as (Ohm’s law)

IR
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e Use the "direct method" to establish the system of governing equations, i.e. Ka = f,
for the situation r1 =ro =rg =ry =r5 =1r".

e Solve the system for the situation where the current P=1A is supplied to the system at
A. Moreover, the point B and C is connected to ground, Vg = Vo = 0V.

Hint. The Kirchhoff (first) law states that the sum of all currents entering a point is zero.



Exercise 3.4 The element stiffness matrix for a bar is given by

cos? ¢ sin ¢ cos ¢ —cos? ¢ — sin ¢ cos ¢
Ke - AE | singcos¢ sin? ¢ —singcos¢p  —sin? ¢
L —cos¢ — sin ¢ cos ¢ cos? ¢ sin ¢ cos ¢
—sin ¢ cos ¢ —sin? ¢ sin ¢ cos ¢ sin? ¢

U

where the degrees of freedom ¢, j, k och [ corresponds to the rows 1, 2, 3, och 4 in element

stiffness matrix. Use this result to establish the global stiffness matrix for the system below

u
Uy 8
Us

Assume that k = AE/L for the three elements is the same. Morover, note that sin(45) =

5in(135) = cos(45) = —cos(135) = 1/+/2.



4 Strong and weak form- one dimensional heat

Exercise 4.1 Two bodies with different temperatures are located at distance Ax between
each other. Give intuitive answers to the questions below:

T=0K T=40K T=0K T=8K T=0K T =40K
vT A\ A\

— — ——

a) b) ¢)

Figure 2: Rectangular discs with given temperature distribution.

e In what direction is the heat flowing in Fig.2 a 7

e The temperature difference between the bodies is doubled. What happens to the tem-
perature derivative 7 What happens to the heat flux ?

e The distance between the bodies is doubled. What happens to the temperature deriva-
tive 7 What happens to the heat flux ?

e Can you conclude your findings ?

Exercise 4.2 Derive the strong form of the (one-dimensional) heat flow problem depicted in
the figure below. Derive the weak form corresponding to strong form (leave the boundary

conditions unspecified).

Exercise 4.3 The weak form of the uniaxial heat flow problem is given by

and the strong form of the heat flow problem is given by

i Ak:g +Q=0, 0<z<L
dx dx

g(z = 0) = — <k%>$0 =h, Tx=L)=g

Show that the weak form implies that strong form.



Exercise 4.4 A rod is subjected to a distributed force is depicted below.

b(x) A(x)

T T > X
0 L
Show that the strong form of the equilibrium equations can be written as

d—N+b:0; N=cA
dz

where N is the normal force and o the stress.

Derive the weak form of the problem.

Exercise 4.5 An insulated cable with radius R; is submerged into the sea. The thickness of
the insulation is Ry — Ry, cf. Fig. 3.

QY
Ry

Figure 3: Insulated cable

e Establish the strong form of the one dimensional heat flow equation for the insulation.

e Derive the weak form corresponding to the strong form.



5 Gradient, Gauss divergence theorem and Green-Gauss theo-
rem

Exercise 5.1
e In the three-dimensional situation the spacial variation of a scalar field given by the
gradient. What is the 1-D counterpart ?

e In the three-dimensional situation a volume integral of a divergence of a vector field can

be transformed into a surface integral (Gauss’s theorem). What is the 1-D counterpart
N

e What is the one dimensional counterpart to the Green-Gauss theorem 7

Exercise 5.2 The temperature in a rectangular disc is given by T'(z,y) = ax + by, cf. Fig.
4.

Y d

Lo

C

Figure 4: Rectangular disc with given temperature distribution.

a) Calculate the integral §(VT)ndL where n is the normal vector to the disc.
b) Calculate the divergence of the temperature gradient.

c) Could the result in a) have been obtained directly from b) ?

Exercise 5.3 For ¢ = 22 + y + 10, calculate the line integral

/E<b(x,y)d£

where £ is the straight line from (x,y) = (1,4) to (5,1). What happens if the integration is
performed from (5,1) to (1,4) instead ?

Exercise 5.4 A curve in the z — y plane is defined by ¢ = x? +y + 10 = 0. Calculate the
normal vector to the curve at (1,—11).

10



6 Strong and weak form of 2-D and 3-D heat flow

Exercise 6.1 An elliptic disc is defined by

2t — L\?* [2y\?
7)<
(o) < () =
The temperature field within the disc is given by
T =Ty [(=/3L)* + (y/L)?]

The constitutive law for heat flow is assumed to be given by the law of Fourier, i.e.

a) Determine the heat flux vector at the boundary point (L/2,3L/2)
b) Determine the normal vector at the boundary point (L/2,3L/2)
c¢) Determine the heat per unit area leaving the disc at the boundary point (L/2,3L/2)
Exercise 6.2 Let Q be the amount of heat supplied to a body per unit time ([Q] = [J/m3s).
Let the heat flux per unit time and unit area leaving the body be denoted g, ([g,] = [J/m?s]).
e Derive the global heat balance for the stationary (time-independent) situation.
e Use Gauss divergence theorem to establish the strong form of the heat equation.

e Derive the weak form of the heat flow problem. Assume that g, is prescribed at a part
Sy, of the boundary whereas on a part S, the temperature is prescribed.

Exercise 6.3 For isotropic materials the D matrix in ¢ = —DVT is given by

Show that q is parallell to VT
Exercise 6.4 The Fourier’s law can be written as
q=—-DVT
where q is the heat flux vector. From experiments we have that the following inequality holds
q'VT <0 VYVT #0
Show that D! exsits.
Exercise 6.5 Newton convection is given by
qn = a(T — Ty

What is the mechanical analogy to this boundary condition ?

11



7 Choice of approximating function

Exercise 7.1 For the one dimensional mesh below, determine

a) The element shape functions

b) The global shape functions

Use the C-matrix method as well as Lagrange polynomials. Sketch your result.

X=1 X=2

Element 1
—>

— X

Element 2
—>

2 3
° °
Exercise 7.2 For the one dimensional mesh below, determine

a) The element shape functions

b) The global shape functions

Use the C-matrix method as well as Lagrange polynomials. Sketch your result. The internal
node is located at the center of the element.

X=0 X=1 X=2
1 2 3 4 5
[ 2 L L 4 L 4 L
| Element 1 | Element 2
—> < >

12



Exercise 7.3

a) An element mesh is based on the following 6-node and 9-node elements

0.5

The approximation for the 6-node element is T' = ay + qox + azy + oy + asz? + agy?,
while the approximation for the 9-node element is T = 31 + Box + B3y + Bax® + Py +
Boxy + Bra*y® + Bsxy® + Boxy

Check if the convergence criterion is fulfilled.

b) An element mesh is based on the following 6 element

0 0.5 1 X

The approximation for the 6-node element is T' = ay + qox + azy + oy + asz? + agy?,

Check if the convergence criterion is fulfilled.

13



Exercise 7.4 An element mesh is based on the following 3-node and 4-node elements

0.5

The approximation for the 4-node element is T' = a1 + aox + a3y + ayxy, while the approxi-
mation for the 3-node element is T' = (31 + Box + B3y

a) Is the convergence criterion is fulfilled ?

b) Use the C-matrix method to obtain the element shape functions for the 3-node element.

Exercise 7.5 Due to a chemical reaction, heat is generated within a body. The heat flow is
governed by the local balance law (div(q) — @ = 0) where q is the heat flux vector [J/m?s]
and Q [J/m3slis the heat generated by the chemical reaction. The body is modelled by one
9-node element and one 6-node triangular element. Along the boundaries £1_5, £1_19 and
L10—12 the body is completely insulated whereas Newton convection applies along L£5_19, i.e.
an = (T — Tw).

10 11 1

The result of the FE-analysis is given below:
al =[131518 14 14 16 13 15 18 14 14 19|

and the nodal coordinates are given by

0 b 20 3b 46 0 b 20 3b 0 b 2b

Coord=11. 00 0 0 b b b b 2 2 2

where the first row corresponds to x-coordinates and the second row corresponds to y-coordinates.

Determine the total heat generated within the structure due to the chemical reaction for the
situation where the thickness is b and the ambient temperature, T, = 0.

14



Exercise 7.6 For a two-dimensional thermal analysis, where ¢ is the unknown temperature
field consider the following questions:

a) For an 8-node element, ¢ is approximated by a polynomial (element borders are parallel to
the coordinate axes).

se ®4

y
1 2 3

X

Suggest a form for ¢ and show that the proposed form fulfills the convergence requirement.

b) Same as for a), but consider now the 6-node element given below.

[

X

Ne
w

Exercise 7.7 Consider the four node element below

y
1 2

Figure 5: Four node element.
X

a) Suggest a suitable approximation for a scalar problem for the element above.
b) Does the proposed approximation involve any parasitic terms ?

c) Use the C-matrix method to obtain the element shape functions. You do not need to
calculate the inverse of C, i.e. it is sufficient to establish the matrices that are involved in the
calculation.

d) What is the value of the element shape function N§ at the nodes 1, 2 and 3 ?

15



8 Choice of weight function

Exercise 8.1 The differential equation governing the response of the column depicted below
is given by

o 1 0 w0<uz<

— 4+ —u+4sinz = r<m

dz? = 72 - -

w0)=u(m)=0 P o e X

Adopt the following approximation for the deflection
n
uP () = Z ay, sin(kx)
k=1

1. Derive an expression for the error, e(x)

2. Describe the difference between the "point collocation", "subdomain collocation", "least-
square" and "Galerkin" methods.

3. For the situation n = 1, determine u®? using the "point collocation" and "Galerkin"
method.

Exercise 8.2 Consider the differential equation

d’*u
w —+u + 1=0
together with the boundary conditions © = 0 at z = +1. An approximative solution should
be derived using Galerkin’s weighted residual method.

e Suggest a suitable approximation that involves one unknown parameter. The trial func-
tion should be chosen as a trigonometric function.

e Determine the unkown parameter using the condition that the weight function is or-
1

thogonal to the residual, i.e. / e-vdr =0
-1

16



9 FE formulation of one dimensional heat flow

Exercise 9.1 A rod is subjected to a distributed load and a temperature distribution

b(x) A(x)

T | - X
0 L

The equation of equilibrium for the rod can be written as

ﬂ-l—sz; N=cA
dz

where N is the normal force and o the stress.

For the uniaxial case, the constitutive relation for a linear thermoelastic material is given by
o= E(e—aAT)

where AT is the temperature difference measured for the reference state.

Derive the weak form of the problem and the corresponding FE-formulation according to
Galerkin (¢ = du/dzx where u is the displacement). Then for the following case

w(0)=0; N(L)=0
b = constant AT =T,(1+ 7)

calculate the displacement at z = L/2, assuming that FE, A, o and T, are constants. Use two
2-node elements to approximate the rod.

17



Exercise 9.2 Consider a metal which is covered by a thin film of oxide.

Metal
Oxide
Air

o
-
i

o
=
N
-

fox

The growth law of the oxide film is governed by Fick’s law, i.e.

Ddc

q=— %

where ¢ is the number of ions diffusing through the cross section per unit area and unit time.
The concentration is denoted c. The diffusion parameter, D, is for this oxide film given by

D = Dy(1 + 2az)

Moreover, for stationary conditions the ion balance requires

dq
- =0
daj+Q

where @) is the ion supply per unit volume and unit time.

a) Establish the finite element formulation for the diffusion problem described above. All
steps in the derivation should be presented.

b) Using two linear finite elements, calculate the concentration ¢ through the oxide film. The
concentration at the oxide/metal surface is ¢,, whereas the concentration at oxide/air surface
is given by c¢,. The thickness of the oxide layer is 2L. Dy and a are constants in the constitutive
law. Moreover no internal supply is present, i.e. Q = 0.

¢) Modify the boundary conditions at « = 2L such that ¢ = kc and calculate the new stiffness
matrix (Ka = f). Note that the new system does not need to be solved.

18



Exercise 9.3 A tapered fin of thickness ¢ and length L is exposed to convection along it’s
length. The temperature distribution for this situation is governed by

d ( dT
—(a— ) =N T -T,) = L
T (ajdm> ( o) =0, 0<z<

(1)

where N is a constant (given) parameter defined as N? = $4/1 + % The ambient (constant)
temperature is given by T,,. Moreover, « represents the convection coefficent and k the
conductivity. L and Y are shown in Fig. 6. The boundary conditions are given by

dT
[x—} =0, T(L)=Ty
dz |,

a) Determine the weak form of the heat flow problem given by above.
b) Determine the correspondning finite element formulation.

¢) For the situation N? = 6/L, use two linear elements of equal size and calculate K and
f in the FE equation Ka = f.

d) Assuming that T, = 0°C and T = 100°C', determine the temperature distribution in
the fin.

Ty

Figure 6: Measures of the tapered fin.

19



FE formulation of one dimensional transient heat low - Not covered in the
text book

Exercise 9.4 The one dimensional diffusion problem can be written as

d d
kS ) 4+ Q =k, 0<z<L
dx dx

where k1 and k9 are constant material parameters and ¢ the concentration. (Q represents
the (constant) internal generation. The boundary and initial conditions are given by 3—;(1‘ =
0,t) = qo, ¢(L,t) = 0 and ¢(x,0) = cpsin(mx/L).

a) Derive the FE formulation corresponding to the differential equation above.

b) Use two equally long elements and calculate the element matrices.

c¢) Describe (in words or equations or both) how the time integration is performed. Describe
how the initial condition is introduced.

Exercise 9.5 The governing equation for a rod subjected to a distributed load (per unit
length), b(z,t) can be written as

b(x.t) AKX)
| ; =~ X
0 L
d du . du
%<EA%>+b—mu, U—EE—E%

where F is the Young’s modulus, A cross section area, o the stress and u the displacement.
The mass per unit length is denoted m.

Derive the weak form of the problem.
Derive finite element formulation.
Show that the stiffness matrix is postitive semidefinite if F'A is positive.

The structure is modeled using three two-node elements of equal length. Calculate the
system matrices for the situation b = b(t), A = const., m = const. and E = const..

Note that you do not need to integrate the system over the time.

20



10 FE formulation of 3D heat flow

Exercise 10.1 In order to analyze the heat exchange from a chimney a FE-analysis is per-
formed. The gas entering the chimney from the stove has the temperature 7" = 300°C'. The
chimney as well as a cross section showing the three channels are illustrated in the figures be-
low. Moreover, the FE-mesh that is used in the FE-analysis is also provided. The governing

A (1000, 800)
SO N> (850, 750)
] AL, Flement 27
L4~ r e
1 <> y . (1000, 700)
Pz
o AL
a) b) c) d)

Figure 7: a) Chimney. b) Cross-section of chimney. c¢) FE-mesh of element 27 and its sur-
rounding elements. d) Location of element 27

equation for the heat flow problem is given by
divg =0, q=—-kVT
where k represents the constant conductivity, g the heat flux vector and 7' the temperature.
The boundary condition for the problem is given by
Ly:gyn=0a(T—22) Lo:T=300°C L3:q,=0a(T—22) L4:q,=0ca(T—22)
a) Derive the FE-formulation for the two-dimensional heat flow problem.

b) Calculate the element matrices above for element 27, i.e calculate the element stiffness
matrix, element force vectors and the matrices that arises from the boundary conditions.

Hint: The following relation holds

1 850 750 1" %% %? —ﬁ%
1 1000 700 | =| -5 30 3%
1 1000 800 0 L

100 100

21



Exercise 10.2 Continuity for the current density in a B requires that
div(j) =0 or V-3=0

where j represents the current density [A/ mQ]. Moreover, the constitutive law (Ohm) relating
the current density to the electric field is given by

Note that ¢ not necessarily need to be constant througout the body. Moreover, the electric
field is obtained from the potential V as E = —VV.

e Determine the weak form and the FE formulation (Ka = f) for the problem given
above.

e Show that K is positive semidefinite as long as no boundary conditions are imposed.
(Your statement must be shown.)

Exercise 10.3 In the drying process of timber it is of utmost importance to be able to
determine and control the moisture content in the timber. As an example, due to unfavourable
moisture distribution, a crack has been formed in the upper of the two boards shown in Fig.8a.

The moisture content is governed by the partial differential equation div(Vm) = 0 where m
is the moisture content measured as [k‘g water /m3]. A finite element analysis of the board
is performed. The board is modeled using 9-node Lagrangian elements. The approximation
that is used in the problem is given as

m = o] + % + azy + oz4at2 + aszy + a6y2 + a7at2y + agmyQ + a9$2y2

e Does the suggested interpolation involve any parasitic terms ?
e Does the suggested interpolation guarantee convergence ? (Prove your statement !).

e For the element (side length 2) indicated in Fig.8 c¢) calculate the contribution from the
boundary term ¢, NTg.dL, ¢, = —k(Vm)Tn (k is a constitutive parameter and n
the normal vector to the boundary) to the nodes 1,2 and 3. Moreover, ¢, is prescribed
to be constant ¢, = qg along the boundary L.

22
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Figure 8: a) Two boards that have been dried under different conditions. b) The boundary
and three elements that are used in the finite element analysis of the moisture problem. c)
One 9-node Lagrangian element.

Exercise 10.4 For the diffusion problem below, the concentration is given by ¢ ([ions/m?]).

YA

3c ac
ox -0 X

X
|

c=1

In order to simplify the problem it is assumed that the geometry is quadratic with the side
length 1. The concentration is governed by the Laplace equation, i.e.

div(Ve) = 0

supplemented by the boundary conditions

0 0

8_303:0 along x = 0; 8_303:1 along r=1
0

c=1 along y = 0; a—c+c:2 along y=1
Y

a) Derive the finite element formulation.
b) Determine the concentration along y = 1. The problem shall be solved by using one four
node element.

23



11 Guidelines for element meshes and global nodal nubering

12 Stresses and strains

Exercise 12.1 Derive the strains corresponding the the following displacement fields. Can
you describe the displacement fields ? (k; and ks are constants)

a) u(z,y) = uy(z,y) = ko

b) ux(z,y) =0, uy(z,y) = ky

c) uz(z,y) = kry, uy(z,y) = —kiz
) uz(z,y)

d) uz(z,y) =2k1y, uy(z,y)=0

Exercise 12.2 a) Consider a disc ( uniform thickness t) subjected to a plane stress state.

Yy

X

Establish the global equilibrium balance and then derive the local equilibrium equation, i.e.

004p 004y

ox oy +be =0
00yy  Ooyy B
B + By +b,=0

b) For the disc depicted below the stress in P is given by

Ozz Ozy Ozz 12 6 O
S=| 0ys Oy Oy | = 6 —4 0
Oze Ozy Oz 0O 0 O
i
(2,2)
P
(3,1)

Determine the traction vector in the point P
c¢) Determine the normal and shear components of the traction vector in P

24



13 Linear elasticity

Exercise 13.1 The strain energy is given by W = %O'TE. In the situation where plane stress

applies show that the out-of-plane strain component €., does not contribute to the strain
energy.

Exercise 13.2 The stiffness tensor D present in the constitutive law o = De is given by

1—v v v 0 0 0
v 1—v v 0 0 0
D E v v 1—v 0 0 0
1+ v)(1-2) 0 0 0 i1-) 0 0
0 0 0 0 (1 —2v) 0
. 0 0 0 0 0 (1-2v) |

a) Derive D for plane strain conditions

b) Derive D for plane stress conditions (Note that you need some software for task (e.g. Maple)

25



14 FE formulation of non-circular shafts

15 Approximating functions for the FE-method-vector prob-
lems

Exercise 15.1 For a plane mechanical analysis the displacement field (us,u,) within an ele-

ment is interpolated as
Uy = Z Niugi, uy= ZNfuyi

where u,; and u,; represent the nodal x and y displacements. The small strain components
are defined as

e WS gy T gy Ty
Establish the IN€ and B¢ in the matrix relations © = N¢a® and € = B®a°®.

Ouy Ouy _ Ouy n Ouy

26



16 FE formulation of three dimensional elasticity
Exercise 16.1 For a plane stress analysis the FE-formulation can be written as

/ BT otdA = / NTbtdA + / NTttde
A A L

where b is the body force vector and t the traction force vector.

2 4

y
1 3

Figure 9: Four node element.

X

a) Suggest a suitable approximation for the displacement field (u,,u,) for the four node ele-
ment above.

b) Identify, for one element, the size of the matrices (rows x columns) of the matrices B, o,
N, b and t that are present in the finite element formulation.

For a thermoelastic material the Hooke’s law can be stated as

azD(e—ea), € = Ba

c¢) Derive the matrices in the final FE-formulation Ka = f when a plane stress thermo-elastic
analysis is performed.

27



Exercise 16.2 Consider the plane elasticity problem below, cf. Fig.10

Yy T r ty = ay (wg’yk)
\&

£s § jﬁ2 i, Yi) O O(Yj,x;
§ = (6, 1) (45>5)

Figure 10: a) Plane elastic problem. b) Typical 3-node element.

The weak form of the equilibrium equations for the structure are given by

0
S\ T T = s g
/ (Vv) otdA = / v ttdL —i—/ v btdA, V=| 0 g
A c A 0 9
oy Ox
and the constitutive relation is provided by the Hooke’s law, i.e.
O D11 D12 Dis €x
Oyy = D21 D22 D23 €yy y g = DG, D = DT
Oy D3y D3y Dss Yoy

The governing equation for the supporting surface at L3 is given by
ty = —kuy,

where ¢ denotes the supporting force per square meter and k£ the spring constant cf. Fig. 10.

e a) Specify the boundary conditions for the structure depicted in Fig.10a.

e b) Derive the FE-formulation for the two-dimensional elasticity problem. Note that the
boundary condition at L£3 must be given special attention.

e ¢) Show that the stiffness matrix, K, is symmetric.

e d) For the situation where three node elements are employed, determine the dimension
of the matrices K, f and a as well as N¢, B¢, K¢, f¢. Assume that the finite element
mesh consists of ndof /2 nodes ndof degrees of freedom and nelm elements.

28



Exercise 16.3 For a structural problem, a disk is modelled by 4-node elements. The structure
has 16 degrees of freedom. The matrix relation found from the FE-formulation is given by
Ka = f, + f;, where the stiffness matrix is denoted K, nodal vector a, load vector f; and
the boundary vector with f,.

P

Mark with an x for components known and different from zero, and with 0 for components
equal to zero and with 7 for unknown components.

29



Exercise 16.4 A structural analysis of a body subjected to its body weight (g is acting in
negative y direction) should be performed using the finite element method. In addition to its
body weight it is subjected to an inhomogeneous temperature distribution. The finite element

formulation is given by
/ BTodA = / NTtde + / NTbdA
A L A

The constitutive law governing the mechanical behaviour is given by the Hooke’s law, i.e.
o = D(e — €*T) where €27 is the thermal strain. The body is supported by two beds
of springs. Along Lo, t, = —kzu, where t, and u, are components of the traction and
displacements vectors. A similar relation along L3 holds, i.e. t, = —kyu,. Note that k, and
k, are constant parameters.

’ N2 N / N
[ i P )
/

’
«---

IR

LRI

e Derive the final FE formulation considering the constitutive law and boundary condi-
tions.

e As indicated in the figure three node elements are used in the analysis.

Show that the three node triangular element satisfies the completeness and the compat-
ibility condition.
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17 FE formulation of beams

Exercise 17.1 The equilibrium for a beam is given by

dVv dM
- . v
dz 4 dx

where ¢ is the load per unit length, M is the bending moment and V' is the shear force.
a) Eliminate the shear force V from the equilibrium equations above and derive an equi-
librium equation expressed in terms of the bending moment M.
b) From the equilibrium equation establish the weak form.
c) What are the natural and essential boundary conditions for an arbitrary beam ?

d) The deflection, w, is governed by

d*w
M=—-FET"—
dxz?

where E*[* = % I4 Ez%dA is bending stiffness. Based on b) derive the FE-formulation
for an arbitrary beam.

e) Suggest an approximation for w that guarantees that the FE-solution is convergent =
compatibility + completeness.
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Exercise 17.2 A beam with length 3L and bending stiffness E1 is rigidly mounted in both
ends. A moment M [Nm] is placed at a distance of 2L from the left side of the beam, cf. the
figure below.

z,W ‘r
N L » A M
| N
o ] _—
] 2L e L | X
< 0 >

The governing equations for the problem is given by

A2 M d?w
e =0 M=-FI—
dz? ta ’ dz?

where ¢ denotes the load intensity (positive in z-direction). Note that the equilibrium equation
is derived from the following relations

aM av
w0 w e

a) Derive the weak form of the governing equation, and specify the essential and natural
boundary conditions.

b) Derive the FE-formulation for the problem, such that a symmetric stiffness matrix is
obtained.

c) Use two elements with the lengths 2L and L to determine the deflection at a distance of L
form the left side of the beam, i.e. at the point A in the figure. L = 0.5 m, EI = 7000 Nm?
and M = 5000 Nm. All steps in the calculation should be presented.

Hint:

For a beam with length a the interpolation for the simplest conforming element is given by

w:NleU1+N26U2+N§U3+NEU4 u1 u3
A\ U ff\ m
where the shape functions are defined as o o
2 3 2
x x x x
Ny=1-3—=%+2— , N = —(3—2—
! a? + a3 37 ( a)
2 2
r x ¢ T
NS =z(1-2—+ — Nf=—(—-1
2 $( CL+(12) ) 4 a(a )

which results in the following element stiffness matrix

12 6a —12 6a
EI 6a 4a®> —6a 2a®
@3 | =12 —6a 12 —6a

6a 202 —6a 4a?

K=
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18 FE formulation of plates
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19 Isoparametric mapping

Exercise 19.1 A four node element will be used in a thermal analysis according to the figure
below.

node 3 (z3,y3)

node 4 (x4,y4)

y
node 1 (z1,y1) o node 2 (x2,y2)

X

a) Show that the element above does not satisfy the compatibility condition (no isoparametric
mapping is used).

b) Show that the element satisfies the compatibilty conditions if isoparametric mapping is
used.
Hint: Isoparametric mapping implies the following mapping of the element coordinates

x(§777) = Ne(§777)w67 ?J(fﬂ?) = Ne(§777)ye
where the shape functions are given as

Ne=le-nm-1), Ny=

y €+ 10— 1)

1
4
(S 1 e 1
N3 = Z(f +1(n+1), Ni= —1(5 -1(n+1)
Note that the temperature appoximation as usual is given by

T = N€a°

Exercise 19.2 For the problem above, derive the B matrix in terms of the Jacobian and
shape functions.

34



20 Numerical integration

q

©1) ST T &Y
4 7 3

|~ Node number

Qu

C; )
(0.0) 1.0
S (x,y)

Exercise 20.1 A nine-node Lagrange element will be used for a two-dimensional FE-analysis.
The element is subjected to a distributed load, ¢q, cf. the figure above. The boundary load
vector is given by f, = |, N TtdL, where t is the traction vector and t the thickness. Assume
that t = 1.

a) Calculate the contribution from ¢ (in the y-direction) to f; in node 3 and 7 using an
analytical integration

b) Calculate the contribution from q (in the y-direction) to f;, in node 3 and 7 using a
numerical Gauss integration. The least number of integration points required for an
exact integration shall be used.
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Exercise 20.2 The stiffness matrix for a four node isoparametric element for finite element
analysis is given by

ONe®
1 1 aNeT aNeT T aé'
K¢ :/ / [ ] JI'DJ! det(J)déd
e e oy (J7) AN (J)d&dn
on

Assume that D = I and that the nodal coordinates are given by

el =[10 14 14 10]  y7 =[10 10 14 14]

e Compute the component K1; using numerical integration (2x2 Gauss points).
Exercise 20.3 The function f is defined as

flz) =z +1+32% — 223

e Use Gauss quadrature (two integration points) to evaluate I = fol f(x)dx.
e Is the result exact 7

e Comment upon the result.
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21 Variational principles

Exercise 21.1 a) Derive the strain energy for a spring with the spring stiffness k. The nodal
displacements are denoted uq and wus.

b) For the situation u; = 0, derive the total strain energy for the spring system shown in the
figure below

F, F, F, F,

— — — —

u, u, U, u,

— — = — —

c) Establish the potential, IT to the system i.e., Strain energy minus potential due to external
forces.

d) Show that minimization of the potential II yields the equlibrium equations.
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Exercise 21.2 A rod is subjected to a distributed as depicted below.

b(x) A(x)

0 L
The boundary conditions for the problem is given by

N(L)=F and u(0)=0

The principle of virtual work for the rod (for b = 0) can be formulated as

L
/ ogAdedr — ou(L)F =0, VYou(0) =0
0

where de = ‘?—;‘.
Show that the principle of virtual work implies the boundary condition and the equilibrium

equation d(gf) =0
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Solutions:

2 Basic linear algebra

Solution 2.1
a) Dim(K) = [626]

b) Dim(D) = [3z3]

¢) KI' = (aBTDB)" = o(B)"(D)"(BT)" =aB'DB = K

Solution 2.2 Expand along 2:nd row: det(K) = 2(—1)?*2

Solution 2.3

a) K is positive semi-definite, i.e. det(K) = 0.

b) Non-trivial solutions exists.

c¢) No or infinite many solutions.

Solution 2.4

T = a1 + asxy + Oégl‘% + oz4:1::1)’

Ty = a1 + agxs + Oégl‘% + oz4:1:%’
Ts = a1 + ow3 + a3735 + a3

Ty = a1 + aoxrg + Oégl‘?l + oz4:1:i

Arrange on matrix format and solve for oy — oy, i.e. @ = AT =

1 |=-12

a1 = 0.0041
ag = —0.0765
a3 = 0.5024
oy = —1.0714

Solution 2.5 Project the velocity vector on the normal to the surface,

q= AvTn =0.4732m3/s

Solution 2.6 Partition of the system yields

& w17

which can be solved to yield w = [51.3 52.66]7 and f = [-235 — 185]7

39

-103



3 Direct approach

Solution 3.1 a) The force in the spring, N, can be expressed as N = k(uz — u1) and

P =—N, P>, = N which can be written as ko—k L B
—k k u9 P2

b) The global system of equation is given by

k1 + ko —kq —ko 0 Ul F
k1 k14 k3t kg —ky —k3 ug | | Iy
—,ICQ —k4 kQ + :IC4 + :IC5 —kg, us o F3

0 —ks3 —ks ks + k3 Uy Fy

With the numerical values inserted the system of equations that shall be solved is formed as

2 -1 -1 0 1 2]

o 1 3 -1 —1|jw|_| 0
~1 -1 3 =1 || us 20

0 -1 -1 2 0 Fy

The solution is given by
us = 0.81 mm, uz = 1.44 mm, Fr=-2N, Fy=—-18 N
Solution 3.2

a)

BRI

b)
ki + ko + kg —ki1— ko —ky 0 Fi
K = —k:l—kig k1+k2+k3 —kg 5 a = (25 5 _f: 0
—ky —ks3 ks + k4 U3 10

HEH

d) @ =[111]" results in a” Ka = 0. Rigid body motion is not prevented.
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Solution 3.3 Direct assembly results in the system

-1 -1

3 -1
-1 3
-1 -1

2
-1
-1

0

V3 =0.2r*

which gives V; = 0.67*

Solution 3.4

-1
-1
1
1

1 -1
1 -1
-1 1
-1 1

1
1
-1
-1

e _F
5678_2

)

1
1
-1
1

-1 -1
1 1
1 1
-1 -1

1
-1
-1

1

3456 —

-1 0
0 0
10
0 0

k [
The total stiffness matrix is given by

€ —
1256 —

1 -1 -1

0

0

0
-1

1
0
2
-1
-1

1
4
0
-1
-1

-1
-1

0 0

-1

-1

-1

0
0

0
0

0
0
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4 Strong and weak form- one dimensional heat

Solution 4.1

e Heat is flowing from the 'warm’ region to the ’cool’ region.
e Doubled temperature difference implies a doubled heat flow.
e Doubled distance reduce the heat flow by a factor of two.

e To summarize we have that the heat flow, ¢ is given by ¢ ATA%C. Compare to Fourier’s
law ¢ = —k%.

Solution 4.2 Strong form: See course book, pp. 49-51. Weak form: See course book, pp.
56-57.

Solution 4.3 Consult the course book, pages 57-59.

Solution 4.4 Weak form:

L dv I L
/ —Ndxz — [vN], — / vbdr =0
o dx 0

Solution 4.5 Balance of a ring of the insulation assuming stationary conditions results in
%(qr) = 0. Multiply by arbitrary weight function and integrate over the body

Ra2 d
R v
— —rqgdr =0
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5 Gradient, Gauss divergence theorem and Green-Gauss theo-
rem

Solution 5.1

e The gradient of a scalar field degenerates to a derivative in a one dimensional case.

e The gauss theorem states that /
v

part is simply fab %da: = f(b) — f(a) i.e. "derivative, divergence" is transformed into a
boundary term "function value in end-points, line integral".

div(q)dV = / gndS. The one-dimensional counter-
S

e In the multi-dimensional situation an integral / ediv(q)dV can be transformed into

/ 0qtndS — / (V(p)quV which reduces to the ’'integration by parts’ in the one di-
S \%
b b
. . df b / dg
1 €. —gdx = — —=d
mensional case, i.e /a 75 9dx [fal. ; fda: x

Solution 5.2

a) The gradient is given by VT = [a b]7. Integration along the boundary results in
$.(VT)'ndL =0
b) div(VT) =
) [(VT)TndL = [, div(VT)dA =0

Solution 5.3 Line is parametrized as y = 4 — (3z —

/(a: +yle +1o,/1+ |da:| 1+ :c—i—y ) +10)|da| = 3

Solution 5.4 The normal is given by n = 2 1"

i — L
|V¢|,1.e. n=_z
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6 Strong and weak form of 2-D and 3-D heat flow

Solution 6.1

Th 2
a) The gradient of the temperature field is given by VT = L—g[?x 2y]7. The heat flux
KTy 2 kTp 1
vector is given by q = —L—;[g 2y]7 which at (L/2,3L/2) becomes q = —To[g 3T

2
b) The normal to the surface is given by n = Vg/||Vg|| where g(z,y) = (MQEL)Q + (g_]lé) _
Evaluation yields n = [0 1]7
c¢) The heat flux is given by ¢, = ¢'n = _%

Solution 6.2

a) Heat generated within the body=Heat leaving the body. This balance principle can be

formulated as
/ QdV = / qndS
1% S

where V' and S represents the volume and boundary to the body.

b) Using that ¢, = ¢ n

/ QdV = / ¢ndS = / q'ndsS = / div(q)dV
\4 S S \%

Since the volume V' can be chosen arbitrarily we obtain the local form as
div(q) — Q=0
which is the strong form to the problem.

¢) Multiply by an arbitrary weight function and integrate over the entire body. Use of the
Green-Gauss’s theorem results in the weak form. Consult the course book page 85.

Solution 6.3 Since the Fourier’s law states that ¢ = —DVT = —kVT it follows that q is
parallell to VT.

Solution 6.4 The inequality shows that D is positive definite. This condition implies that
D! exsists, cf. course book page 23.

Solution 6.5 A spring is the mechanical analogy (Force is proportional to extension the, i.e.
F = k(u — uyp)
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7 Choice of approximating function

Solution 7.1 Element shape functions:
Nl=1-2z Nj==zx

Ni=2-z, NZ=—-1+z

Global shape functions:

1l—2z, 0<2x<1
Nl_{o, 1<z<2
x, 0<z<1
N2_{ 2z, l<a<2
0, 0<z<1
N3_{ ~14+z l<z<2

Solution 7.2 Element shape functions (element 1)
N} =2(1 —2)(0.5—2), N;=4x(l—2), Ni=—22(0.5-1x)
Element shape functions (element 2)
NE=2015-xz)2-2), Ni=4(z—-1)2-1z), NI=-2x-1)(15-2z)

Global shape functions

N — N, 0<z<1
Y0 1<z<2
[N}, 0<z<1
NZ_{O, l<z<?2
No — Ni, 0<z<1
PTUNE 1<z<2
0, 0<z<1
N4_{N22, l<z<2
0, 0<z<1

N5_{N§, l<z<2

Solution 7.3

a) Convergence guaranteed.

b) Convergence guaranteed.
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Solution 7.4 a) The completeness requirement is fulfilled for both elements. To fulfill the
compatibility requirement the approximated field must be continuous, i.e. the approximation
must be uniquely determined by the nodal values on the boundaries. This is not satisfied for
the current configuration, i.e. compatibility is not satisfied.

b) The C-matrix method

1 0 0
N=NC'=[1zyC™;, C=]|1 1 0
1 05 05

which results in the following shape functions
N=[l-z-y -y 2y

Solution 7.5 Gauss’s theorem yields [g¢,dS = [|, div(q)dV = [, QdV = Total heat gener-
ated within the body. The only contribution to [ g qndS = f £ qntdL is from L5_1o. Introducing
an axis (n) along 5 — 12 starting in 12 allow us to write the temperature distribution as

T(n) = Th2(n — V2b)(n — 2V/2b) /(4b?) — Ton(n — 2v/2b)/(2b*) + Tsn(n — V'2b)/(4b?)

Total heat is given as [2¥2 aT(n)bdy = a Y22 (Tyy + 4Ty + T5) = a¥22 (19 + 4 18 + 14) =
350/20?

Solution 7.6

a) ¢ = a1 + ax + azy + auxy + asz? + agy? + arzy + agxy®. For o = const we obtain
¢ = B1 + Boy + B3y?, i.e. three parameters and three nodes, i.e. a unique temperature
distribution is obtained. Similar arguments holds for the y direction.

b) ¢ = a1 +aer+azy+aszy+asz? +agr’y. For y = const we obtain ¢ = 31 + Bz + F322,
i.e. three parameters and three nodes, i.e. a unique temperature distribution is obtained.

For x = const we obtain ¢ = (31 + (oy, i.e. two parameters and two nodes, i.e. a unique
temperature distribution is obtained.
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Solution 7.7

¢ = a1 + aT + azy + agry

b)
a4xy
c)
N=NcC!
where
1 x y1 mn
X 1z y2 woye
N=|1 =z T and C =

[ 4 y] 1 x3 y3 w3ys3
1 x4 ys ways

d)

N3(z1,91) =0, Ny(w2,42) =1, Ny(w3,y3) =0
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8 Choice of weight function

Solution 8.1

a)

d*u 1 )

— 4+ —u+sin(z) =0, = L(u)+g(x)=0
dz? = w2

where

2 1 ,
L= a2 + oy g9(x) = sin(z)

The residual is given by
e = L(u™) + g(a)
e Point collocation: Enforce e = 0 at specific points
e Subdomain collocation: Enforce [wve dz = 0 over a specific region

e Least square: Minimize the integral [ e? dz
e Galerkin: weight function= trial function

Specific approximation

={sin(x)}, a={a} = L) =—sin(z)+>

Point collocation, V' = §(z — 7/2) results in

, sin(m/2) , L
(—S’L?’L(W/2) + T) a = —sin(r/2) = =1
Galerkin, V' = sin(x) results in
T 02 ™ 2
/ —sin?(z) + o 2($) dx a = —/ sin(x) = a= T 5
0 s 0 1—m

Note: Correct solution u = i2252n(x)
1-m

Solution 8.2

T

e The approximation must satisfy the boundary conditions. Choose u®P = a cos(5x)

d?u®Pp

e Error is defined as e = 75— +u™? + 1.

Insertion into the orthogonal condition yields a = 7r(1:7(4’f)2)
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9 FE formulation of one dimensional heat flow

Solution 9.1 Multiply the balance equation by an arbitrary weight function, v and integrate
over the entire body. The result is:

L dv L
[vN)§ —/ — Ndx +/ vbdr =0
0 d 0

X

which is the weak form of the problem. Using the approximation u = INa as well as the
Galerkin choice of weight function v = IN¢ results in

L L
c’ [[NTN]OL - / BT Ndz + / Ndea:} =0
0 0
where is was used that € = ‘;—;‘ = %Na = Ba. Using that ¢ is arbitrary along with N =

AE(e — aAT) = AE(Ba — aAT) results in finite element formulation

L L L
/ BTAEBdza = [NTN)§ + / NTbdz + / BT AEaATdx
0 0 0

or
Ka=f,+f+fo

Using two linear elements results in:

1 -1
A
Elementl:Nle—%‘”,Nfz%,Be:%[—ll]andK§:¥[ L1 }: S

1 =1 0
which gives the total stiffness matrix as K = ZATE -1 2 -1
0 -1 1
Load vector: b = const results in f; = %[1 2 1)7
Load vector due to thermal strains, f:
L
dN1 dN2 dN3 T AEOéTo T
= AEQT, — — "1 L)dx = -5 =27
fo= AT, [ [ 2 T+ a/Dae = 25 |
Boundary load vector, f, = [~Ny—o 0 Ny—r]T
Finally we end up with
oap | 1 10 u(=0) ~Na=0 AEaT, | ~° L | L
T -1 2 -1 u9 = 0 + 4 -2 + I 2
0o -1 1 us 0 7 1
which gives up = 2£ad0 4 2%
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Solution 9.2

a) Strong form
dq
2 _0=0
dx @
Multiplication by a weight function and integration over the region of interest results in

/d—qux—[’uq]—i-/dex:O
dx
dv

Choose weight function v = Ne¢ = ¢’ N7, o= ¢ BT giving

/ BTqdx=[NTq - / NTQ dz
Fick’s law ¢ = —D , together with the interpolation d—; Ba results in
—/DBTdea:[NTq]—/NTde = Ka=f

where

K= /DBTB dz, f=—-[NTq + /NTQ dx

b) Linear element B = [—1 1]/L results in
K° = L D d
B —1 v
ie.
e — Do(L+al?) [ 1 -1 e _ Do(L +3al?) [ 1 -1
! L2 -1 1 |’ 2 L2 -1 1
Resulting in
D 1+alL —(1+4al) 0 Cm fi
TO —~(1+aL) 2+4aL —(1+3al) o | =10
0 —(14+3aLl) 1+ 3aL Cq f3

Row 2 gives

(I4+aL)cy, + (14 3aL)c,
2+ 4al

Cy =

fb = _[NTQ](Q)L = _[NTQ]:B:2L+[NTQ]$:O = fb = _[kNTN];B:QL a+[NTQ]$:0
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Solution 9.3

a)

L L L L
T T
/ d_v d d:z:—l—/ oN?Tdz = v:z:d— +/ oN? T dx
0 dl’ dl’ 0 dl’ 0 0

b)
L
Ka=f, where K = / (B'zB + N"N?N)dx and
0
TdT L T A72
f=(aNT=) o1+ | NTN?Tyda
dx 0
c)
(3 0 0 Ty 0 [
5|0 8 -2 T, | = 0 +N2TOOZ 2
0 -2 5 T3 (%)= 1
d)

T =Na where a=1[025100]"

Solution 9.4 Multiplication and integration over the body and also use of the ¢ = Na as
well as v = N ¢ results in

[N% ] / BTk Bdza + / NTQdz = / NTkyNdza

The element shape functions are given by NY = 1 — 2z/L and N§ = 2z/L. These shape

functions results in B¢ = [-2/L, 2/L]. The following element functions can be obtained
L/ 2% [ 1 -1 L2 koL [2 1
e _ eT ey, “h e _ eT e, _ 2
Kl—/o Bk:lex—L[_l 1}, (051 /0 N ko NCdx 12[12]
L/2 L
fu= [ NTaw=%E| 1
0 1|1

The element matrices for the second element is identical to the element matrices of element
1. Assembly of the element matrices yields

o [ 1 -1 0 L Lp[2 10
K= / BTk Bdx = Ll -1 2 -1/, C:/ NTngdx:f—Q 14 1
0 -1 1 0 01 2
and
L 1 k1qo 0
L d
fL:/ NTde‘: QT 2 s f |:NTk}1dC:| = 0 s a(t:()) = Co
X
0 1 kl(d_;)‘a::L 0

The system can be written as Ca + Ka = f, + fr.
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Solution 9.5

Weak form:

L L L L
[vEAd—u} —/ d—vEAd—udac—i—/ vbda::/ vmudx
d.’L‘ 0 0 d.’L‘ dl’ 0 0

Finite element formulation:

’ dul® L . L . L . )
N FA—| - B* FABdxa + N*bdx = N mNdzxa
dx 0 0 0 0

K is positive definite since

L L
a'Ka = aT/ BTEABdza :/

L du 2
a' BTEABadx = / EA <—) dx >0
0 0 0

dx

System matrices:

BAE [ 1 -1 BAE | -1 2 -1 0
e_— = —
K_L[—ll]’K L 0 -1 2 -1

0 0 -1 1
1
bL [ 1 bL | 2
e __ 7~ — =
1
2 100
. mL[2 1 - mL |1 410
M‘§[12}’MF0141
00 1 2
I _(EA%)‘:BZO
du 0
NTEA—| =
[ da:] 0
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10 FE formulation of 3D heat flow

Solution 10.1

a) Consult course book, pp. 206-208

b)

The approximation is given by T' = a3 + asx + agy which can be written as 7' =
[1 2 y][ar s 3]’ = Na. Using the C — matriz method we obtain

Ty 1 850 750 o
T, | = | 1 1000 700 a9
T3 1 1000 800 o3

The interpolation is obtained as T = NC~la® = N¢a®. The stiffness matrix is given
by K¢ = [, B’ DB‘dA.

@_5 0 11
K¢ :/ BBTDBedA:AeBETBek‘:k‘Ae @ it § [ 150 3709 390 } —
Ae ==

L B 0 100 100
300 100
r 1 _1
3 6 g
k|l =1 5 _2
P %S
6 3 6
Boundary term:
Nl g, dL = NTQ(T — Ty)dL = NTo(Na® — Ty )dL =
Lo3 Lo3 Lag
ol 0 0 0 0
/ aN“"N¢dLa® - / aN“TTdL=—10 2 1 |a°—alxL| %
Lo3 Lo3 6 01 2 %

where T, = 22°C'
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Solution 10.2

a) Consult course book, pp. 220-221. Change q to 7 and T to V.
The result is [,(Vv)To(VV)dA = — §.vj"ndL where v represents the weight func-

tions.

Using the Galerkin choice of weight function we obtain

/ BToBdAa = — 7{ NTjTndc
A L

a’'Ka = / IVV|[PedA > 0
A
Find one a # 0 such that [, |[VV|[?0dA = 0. Chose for instancea = [1 1 ... 1 1]

Solution 10.3
a) Parasitic terms: arz?y, agzy?, agr?y?

b) The interpolation is complete and compatible, i.e. convergence is guaranteed.

c¢) Contribution to node 1, 2 and 3: qo/3, 44q0/3, 2q0/3

Solution 10.4
FE-formulation [, BT BdAa = §, N"(V¢)"ndL

Concentration a = [1 1 2 3/2]" ie. a3 =2 and a4 = 3/2.
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11 Guidelines for element meshes and global nodal nubering

12 Stresses and strains

Solution 12.1

[0 0 0] Rigid body motion
[ 0 k& O ] Uniaxial straining

€= [ 0 00 ] Rigid body rotation
[ 0 0 2k ] Shear state

Solution 12.2

a) Global equilibrium

/tds—i—/de:O
s 1%

Cauchys formula ¢t = S”n along with Gauss’s theorem yields

/ (div(a™) +b)dV =0

1%

This balance should hold for arbitrary regions, i.e.
div(e?)+b=0

b) The normal vector is given by

1 T
n=—(110
o
which results in
o (182 0"
V2

Onn = 10 opm =8
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13 Linear elasticity

Solution 13.1 For the plane stress situation the strain energy is given as
W =1/20u 0y 0 oullese €y €2 Yaylt = 1/2(0unern + Oyyeyy + Tayay)
i.e. the €,, component does not contribute to the strain energy.

Solution 13.2 Consult course book pp. 254-256

o6



14 FE formulation of non-circular shafts
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15 Approximating functions for the FE-method-vector prob-
lems

Solution 15.1 Consult the course book, pp 282-286

o8



16 FE formulation of three dimensional elasticity

Solution 16.1

a) The components of the displacement field are interpolated as u, = a3 +asr+asy+agxy
and u, = B + fox + B3y + Bazy.

b) B [328], 0 [3z1] N [2z8],b [2z1]t [2x1]
)

/ BTotdA = / BTDBtdAa — / BT De%tdA
A A A
i.e.

/ BT DBtdAa = / NTbtdA + / NTttde + / BT DetdA
A A L A

Solution 16.2

a) ® (tz,ty) = (0,0) along £y
o (tz,ty) = (ay,0) along Lo
o (ty,ty) = (0, —kuy) along L3
o (tz,ty) = (0,0) along Ly
[ ]
(

Uz, Uy) = (0,0) along Ls

b) Consult the course book pp. 295-296

/ BT DBtdAa = / NTttdL + / NTbtdA
A L A
or

/ BTDBtdAa = NTtde + /
A

L1245

NTtde + / NTbtdA
L3 A

The term fﬁs NTttdL can be written as

/ NTtdL = — / NTkNatdL
[,3 [:3

00
Wherek—[o l{:}

¢) Resulting stiffness matrix

K = / BTDBtdA+ | NTENtdL
A L3

which due to the symmetry in D and k is symmetric.

29



e K :[ndof x ndof] e K°¢:[6
e a:[ndof x 1] e N°: |
e B°:[3 x 6] eD:[3
o f:[ndof x 1] o fC:[6
eb:[2 x 1] ot:[2 x 1]

Solution 16.3

sla|s|(s|s|s|a|s|s|s|s|s|o|o|olo
gla|s|s|s|s|a|s|s|s|s|s|o|o|olo
NN EEEEEEEE
slulsla|sls|n|s|o|o|o|lo|olo|olo
NN R EEEEEEEE
slulsla|sls|n|s|o|o|o|lo|olo|olo
‘\3“\3‘0"\3"\3"\3"\3"\3“\3“\3“\3“\3‘0‘0‘0"\3

<l ===l ===
Il =l = = =TT

BIR (BRI [(R|BR[(R (| (|| [(R|R®|R

BN || (BRI ||| (8|8|8

o|lo|o|lor (88888 |8|8|o|o|o|o

O|o|o|Ior (888|888 |8|o|o|o|o

O|o|o|o|oo|R |8 |O|OI8|IR[IB|IRI®|R
o|lo|o|lojlo|lolg |y |olols |y |y|r|R |8
O|o|o|o|oo|IR |8 |O|OI8|IR[IB|IRI®|R
o|lo|o|lojlo|lolg |y |olols |y |y|y|y |8
O|IOo|IO|IOIR|IRIR[I®(I|I8I8|IR|IR|IR|IR|R
OO |&|IB[IR|IE|IB|I®|I®IB|IR|IR|R

Solution 16.4 a)

/ BTodA = / NTtde + / NTbdA
A L A
Insertion of the constitutive law results in

/ BT"DBdAa = / BTDeRrTqA + / NTtdL + / NTbdA
A 1% L A

Using that ¢, = —k;u, and ¢, = 0 along Ly we have

ty kr 0] ug |

- _ or t=—kou
L by | L 00 | [ uy |
In the same way for Ls we have
te | _ _ 00 e or t= —ksu
ty 10 Ky | | uy |

Using that u = Na we end up with

( / BTDBdA+ | NTkyNdL + NTngd£>a: / BTDeATdA+ / NTbdA
A Lo A A

L3

where b= [0 — gp]T where p represents the density per area.

b) Consult the course book, pp. 282-283. See also pp. 124-125.
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17 FE formulation of beams
Solution 17.1

a)
M =0
dzz 17
b) See course book equations 17.2.

c) M and V are natural boundary conditions whereas w and ‘fi—‘; are essential boundary condi-
tions.

d) See course book equations (17.30)-(17.41).

e)

W= o1 + 0x + oz3:132 + oz4:1:3
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Solution 17.2 a) Consult the course book page 318-319. The essential boundary conditions
are w = 0 and %anthOandwzi%L.

b) See course book equations (17.30)-(17.41).

c) The global stiffness matrix and load vectors.

12/8L3  6/4L* —12/8L3 6/4L> 0 0
6/4L> 4/2L —6/4L2 2/2L 0 0
—12/8L3 —6/4L? 12/8L3 +12/L3 —6/4L*+6/L?> —12/L3 6/L?
6/4L> 2/2L —6/4L?+6/L? 4/2L +4/L  —6/L? 2/L

0 0 —12/L3 —6/L> 12/L®* —6/L*

0 0 6/L? 2/L —6/L*  4/L

The resulting system of equations that has to be solved is

w2 s (][4

With numerical values the solution will be

us = —0.01323, w4 = 0.07937

The deflection at the point A, use the approximations.

w\0,5 = N‘g;g) a = N3‘0,5(—0.01323) + N4‘0,50.07937 = —0.0165
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18 FE formulation of plates
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19 Isoparametric mapping
Solution 19.1
a) Chose for instance T' = ay + sz + asy + agxy. This approximation cannot satisfy the

compatibility requirement on boundary 3 — 4.

b) Line (3-4). T'= N®a®. Since n or () is constant along the boundaries the temperature
variation along all boundaries can be written as T' = a3 4+ a2n, i.e. two constants, two
parameters.

Solution 19.2

The B® matrix can be expressed as

ON* ox O
_ o€ o0& 0On

e __ T\—1 _
B - ('] ) aNe ’ '] - @ @
on o5 0n

wher the components in the jacobian are given as

@_ZaNf‘ dx = ONP
T T
oy ON;¢ ‘ oy ON;¢ ‘
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20 Numerical integration

Solution 20.1 Shape functions along the upper boundary:

—05 —1
Ny = PEZ0D) o o 2EZD e
1-05 0.5(—0.5)
a) Exact integration:
1 1
2 , 1 1
fosy =— | Nagde = —q [gw:g wZ] =54
0
1 1
4 2
fory=— | Nrgdzr = —q [2932 - 5@“3] = -3¢
0 0

b) Numerical integration:

Map the domain [0 1] onto [—1 1] and perform the transformation fol N;qdx = fil Niqi—fdﬁ.
The mapping is given by £ = —1 + 2z, i.e. g—g =1/2.

Using two integration points then results in

1 dx
Jo3y = —/ N3qg—d§ = —0.16667¢q
-1 d§

! dx
Jory = —/ N7q—dé = —0.66667¢
1 dg
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Solution 20.2 The map purely scales the element, i.e. J = 2I. If this is not realized
directly, the components in the Jacobian is simply given as

dx _ON° 1 1 1 1
7= o™ — g~ D0- =D+ 7+ D14 = 7(n+ 110 =2

the other three components are given in the same manner. In conclusion

1 1
J=2I det(J)=4 J'= 51 (JHT = 51

The component we seek is given by

ON- ON-
si=[ [ [( 0 (2 1)]d€dn—//16 117 4 (e~ 1)?] dedy
Gauss integration yield
1 1 2 1 2
e 16([{%‘1}+{ﬁ‘1}
—1 S| 2
SRR b R
Solution 20.3 Use the variable £ = —1 4 2z
1
I_/f da:—/f —5— /_lf(i)déw

YN R YNG)) (f(fv L L %)) =

+

R
Gt +{a}])-

- -

2

Exact result

411
T 1 1
/f x[—i—x—l—x 2}0 SH1+1-g

The exact result is expected since Gauss integration integrates a polynomial of order 2n — 1
where n is the number of integration points.
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