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Problem 1 :

a) Multiply
—vp = p+ydiv(Vp) — A
by a scalar weight function, v, and integrate over the domain, V. Use

Green-Gauss theorem on the divergence term. Split the boundary into
S = 85.+ S}. The result is:
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b) Use of the interpolation, p = Np yields p = Np and Vp = Bp.
The weight function, v, is chosen as v = IN¢ which yields Ve = Be.
Insertion into the weak form results in
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Problem 2 :
The contribution to node 1 is given as

{foh = / NitdL = / NtdL+ Nitdl = [symmetry| = 2/ NitdL
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In the element located to the right, the shape function associated with node
1 can be expressed as N{ = (a —1)(2a —1)(3a —n)/(6a%)
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Since £ = —1 + :2,’—2, we have that 2—2 = 3¢ and (¢ = —0.57) = 220.43.
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Problem 3

a) Premultiply and postmultiply K + K by a” and a, respectively. Identi-
fying Na = T and Ba = VT reveals that a’ (K + K)a > 0 for a > 0.

b) An example of an approximation is T' = a1 + asx + asy + auz + asxy +
agxz+aryz+agryz. Show that the approximation satisfies the convergence
criterion, i.e. completeness+compatibility requirements. See page 91-94.



Problem 4

The displacement, u, is discretized as

u(z,y) = N(z,y)a (1)

where IN and a are the shape functions and nodal values associated with
the mechanical problem. The total strain is

e

o
e=Vu=VN(z,y)a=Ba where V=|0 ay (2)
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The stress is calculated using Hooke’s law, i.e.
o = De* = D(e — ) = D(e —aAT(z,y)[1 1 0]7)

The temperature difference is AT = T'(z,y) — Tp, where T is the stress free
temperature and the current temperature, T', is discretized as

T(z,y) = N%a®

where N? and a® are the shape functions and nodal values associated with
the temperature problem.



Problem 5
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Problem 6 FHLFO1

a)
One possible ansatz with the unknowns a1 and as which fulfils the boundary
conditions is,

¢ = (sin(ra)sin(ry))ar + (sin(2mz) sin(27y)) az

This can also be written as

a

o | = o

ay

Y = [sin(rz) sin(ry), sin (27z) sin (27y)] [ ] _ Na

az

b)

Define



dN1 dNa

dx dx
B=VN =

ANy dNy

dy dy

Stationarity of the functional then provides
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Since this expression should be true for arbitrary variations e, then the
following equation holds,

where
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Problem 6 (FHLO064) : (10p)

See Chapter 17 in Ottosen.



