Finite element formulation of transient heat transfer

For a material where the specific heat ¢ and density p are constants the general form for
the heat transfer equation reads

cpT + div(g) —Q =0 (1)

Multiplication by an arbitrary (time-independent) weight function and making use of the
Green-Gauss theorem results in

/vandS—/(Vv)quV—/deV—i-/ vepTdV =0 (2)
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The weight function is chosen as v(z) = N (x)c, i.e. the Galerkin approximation is adopted.
Insertion of the weight function, v, in to (2) results in

c’ { / NTqTnds — / BTqdVv — / NTQdV + / NTc,onV} =0 (3)
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Since ¢ can be chosen arbitrarily we obtain

/ NTqTnds — / BTqdV — / NTQdV + / NTcpTdv =0 (4)
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The spatial interpolation is chosen as

T=Na (5)
It should be noted that the spatial dependence is captured in N = IN(x) whereas the time

dependence is included in the nodal temperatures, i.e. @ = a(t). Insertion of (5) into (6)
results in

/ NTq,ds + / B"DBdVa — / NTQav + / NTepNdVa =0 (6)
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where use were made of the Fourier law, i.e. ¢ = —DVT. Rearranging (6) results in
Ca+ Ka=f,+f (7)

where

C = / NTepNdV, K = / B'DBdV, f,= / NTQdV, f,=— / N7Tq,dS (8)
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Time integration procedures for transient heat transfer

To derive a relatively simple family of time integration schemes, let us start to make a
an approximation for the time derivative in (7). The most simple way to estimate the
derivative is to make use of two time steps that are close in time, i.e.

aQ — a(ty,1) — alt,) (9)

tn-i—l - tn

where ¢,,; and ¢, represent the time at two instants. Next, we will make use of the
following approximations for @ and f

a="0a, +(1-0)a,,
fzefn+1+(1_9)fn’

where the notation [-],4+1 = [|(fn+1) were for simplicity introduced. Note that 6 is a
numerical parameter that has to be chosen. Insertion of (9) and (10) into (7) result in

(10)

a(tni1) — a(t,)
tn+1 - tn

C + K(lay,1+(1—0)a,)=0f, +1-0)f, (11)
No definite answer regarding the choice of 6 can be made, but the most common schemes
can be summarized in

e # = 1. This is known as an implicit scheme and is often chosen due to it’s stability
properties

e 0 =1/2. Midpoint rule or Crank-Nicholson scheme. Often used due to its accuracy
properties.

e = 0. Forward scheme or explicit scheme. If additional assumption regarding the C
matrix is made, this method enables a very efficient scheme on large scale clusters to
be obtained.



