
Finite element formulation of transient heat transferFor a material where the spe
i�
 heat c and density ρ are 
onstants the general form forthe heat transfer equation reads
cρṪ + div(q) − Q = 0 (1)Multipli
ation by an arbitrary (time-independent) weight fun
tion and making use of theGreen-Gauss theorem results in

∫

S

vqT ndS −

∫

V

(∇v)T qdV −

∫

V

vQdV +

∫

V

vcρṪ dV = 0 (2)The weight fun
tion is 
hosen as v(x) = N(x)c, i.e. the Galerkin approximation is adopted.Insertion of the weight fun
tion, v, in to (2) results in
cT

{
∫

S

NT qT ndS −

∫

V

BT qdV −

∫

V

NT QdV +

∫

V

NT cρṪ dV

}

= 0 (3)Sin
e c 
an be 
hosen arbitrarily we obtain
∫

S

NT qT ndS −

∫

V

BT qdV −

∫

V

NT QdV +

∫

V

NT cρṪ dV = 0 (4)The spatial interpolation is 
hosen as
T = Na (5)It should be noted that the spatial dependen
e is 
aptured in N = N(x) whereas the timedependen
e is in
luded in the nodal temperatures, i.e. a = a(t). Insertion of (5) into (6)results in

∫

S

NT qndS +

∫

V

BT DBdV a −

∫

V

NT QdV +

∫

V

NT cρNdV ȧ = 0 (6)where use were made of the Fourier law, i.e. q = −D∇T . Rearranging (6) results in
Cȧ + Ka = f b + f l (7)where

C =

∫

V

NT cρNdV, K =

∫

V

BT DBdV, f l =

∫

V

NT QdV, f b = −

∫

S

N T qndS (8)
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Time integration pro
edures for transient heat transferTo derive a relatively simple family of time integration s
hemes, let us start to make aan approximation for the time derivative in (7). The most simple way to estimate thederivative is to make use of two time steps that are 
lose in time, i.e.
ȧ =

a(tn+1) − a(tn)

tn+1 − tn
(9)where tn+1 and tn represent the time at two instants. Next, we will make use of thefollowing approximations for a and f

a = θan+1 + (1 − θ)an,

f = θfn+1 + (1 − θ)fn,
(10)where the notation [·]n+1 = [·](tn+1) were for simpli
ity introdu
ed. Note that θ is anumeri
al parameter that has to be 
hosen. Insertion of (9) and (10) into (7) result in

C
a(tn+1) − a(tn)

tn+1 − tn
+ K(θan+1 + (1 − θ)an) = θfn+1 + (1 − θ)fn (11)No de�nite answer regarding the 
hoi
e of θ 
an be made, but the most 
ommon s
hemes
an be summarized in

• θ = 1. This is known as an impli
it s
heme and is often 
hosen due to it's stabilityproperties
• θ = 1/2. Midpoint rule or Crank-Ni
holson s
heme. Often used due to its a

ura
yproperties.
• θ = 0. Forward s
heme or expli
it s
heme. If additional assumption regarding the Cmatrix is made, this method enables a very e�
ient s
heme on large s
ale 
lusters tobe obtained.
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