
Finite element formulation of transient heat transferFor a material where the spei� heat c and density ρ are onstants the general form forthe heat transfer equation reads
cρṪ + div(q) − Q = 0 (1)Multipliation by an arbitrary (time-independent) weight funtion and making use of theGreen-Gauss theorem results in
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vcρṪ dV = 0 (2)The weight funtion is hosen as v(x) = N(x)c, i.e. the Galerkin approximation is adopted.Insertion of the weight funtion, v, in to (2) results in
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= 0 (3)Sine c an be hosen arbitrarily we obtain
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NT cρṪ dV = 0 (4)The spatial interpolation is hosen as
T = Na (5)It should be noted that the spatial dependene is aptured in N = N(x) whereas the timedependene is inluded in the nodal temperatures, i.e. a = a(t). Insertion of (5) into (6)results in
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NT cρNdV ȧ = 0 (6)where use were made of the Fourier law, i.e. q = −D∇T . Rearranging (6) results in
Cȧ + Ka = f b + f l (7)where
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Time integration proedures for transient heat transferTo derive a relatively simple family of time integration shemes, let us start to make aan approximation for the time derivative in (7). The most simple way to estimate thederivative is to make use of two time steps that are lose in time, i.e.
ȧ =

a(tn+1) − a(tn)

tn+1 − tn
(9)where tn+1 and tn represent the time at two instants. Next, we will make use of thefollowing approximations for a and f

a = θan+1 + (1 − θ)an,

f = θfn+1 + (1 − θ)fn,
(10)where the notation [·]n+1 = [·](tn+1) were for simpliity introdued. Note that θ is anumerial parameter that has to be hosen. Insertion of (9) and (10) into (7) result in

C
a(tn+1) − a(tn)

tn+1 − tn
+ K(θan+1 + (1 − θ)an) = θfn+1 + (1 − θ)fn (11)No de�nite answer regarding the hoie of θ an be made, but the most ommon shemesan be summarized in

• θ = 1. This is known as an impliit sheme and is often hosen due to it's stabilityproperties
• θ = 1/2. Midpoint rule or Crank-Niholson sheme. Often used due to its aurayproperties.
• θ = 0. Forward sheme or expliit sheme. If additional assumption regarding the Cmatrix is made, this method enables a very e�ient sheme on large sale lusters tobe obtained.
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