Some examples

Principle of minimum energy - Discrete system systems

We have previously derived the equilibrium equations Ka = f for a system
of springs based on equilibrium of the nodes. An alternative approach to
derive the equilibrium equations can be found by considering the potential
IT defined as

(a) =W(a)—a'F (1)
where W = %aTK a is the stored energy of the system and a’ F is referred
to as the potential due to the external load. Note that in the definition of

IT the external force F' is constant. Minimization of the potential IT implies
that II should be stationary and therefore
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must hold, where {a}; represents the i:th component of a. Due to symmetry
of the stiffness matrix this expression can be rewritten as
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i.e. we have found that a minimization of the potential II implies the equi-
librium. In many textbook the principle of minimum energy is taken as the
basis for the finite element formulation.

Let us now turn to the two-spring’ example shown in Fig. 1. The total
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Figur 1: Tllustration of a two connected springs loaded in tension.

stored energy for this system is given as the sum of the stored energy in
each spring. For spring 1 the elongation, Ay, is equal to us since u; = 0. For
spring 2 the elongation, As, is Ay = ug — ug. The total stored energy can
now be expressed as
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Referring to (1) the total potential, II, for the system can be written as
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The minumum of II is found by requiring g—g =0 and g—i =0, i.e.
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These two equations can be written in matrix format as
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i.e. the minimium potential energy enable us to form Ka = f.

Principle of minimum energy - continous system

For an axially loaded bar the potential energy can be expressed as
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where ¢ = %. We shall now prove that a minimum to Il corresponds is

an equilibruim solution. For this reason we assume that u is an equilibrium
solution. If u minimizies the potential IT then II(u) < II(u*) or II(u) —
II(u*) < 0 for all choices of u*. If we chose u* = u + v where v is a function
that satisfies the essential boundary conditions if follows that u* satisfies
the essential boundary conditions. Using the definition for II we obtain

ATl (u, u*) = (u) — M(u*) = /OL (%AE (Z—Z)Q - %AE (3—5 + Z—;)Q> dx
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Expansion and simplification of (9) results in
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Since u is an equilibrium solution it must satisfy the weak form. Using this
result we conclude that

ATI(u, w*) = T(w) — TI(u*) = — /OL AE% (%)2@ <0 (11

and we conclude that II(u) < II(u*), i.e. the displacement field that is min-
imizing the potential II is soving the equlibrium.



Principle of minimum energy - General elasticity

Assume that a strain energy potential exsists, i.e. w = w(e) where € = Vu.
An obvious generalization of (8) reads
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where we require that u safisfies the essential boundary conditions. Suppose
that w is a displacement field that satisfies equilibrium. In that case II takes
a minimal value for II(w). The minimization principle may be reformulated
as

M(uw) <I(u*), VYu* (13)

Let us now define w = tv where ¢ is a scalar. Using this definition we can
reformulate the minimization problem (13) as
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Let is now assume that the material is linear elastic, i.e.
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where € = e(u). Using (12), (14) and (15) we obtain
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After expaning the terms in (16) and using D = D7 we obtain

/Q <6’U>T D (@u) dv — /am tTvds =0 (17)

which we recognize as the weak form of the equilibrium equations and we
can, again, conclude that minimization of the potential IT results in the weak
form



