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Some examples

Principle of minimum energy - Discrete system systems

We have previously derived the equilibrium equations Ka = f for a system
of springs based on equilibrium of the nodes. An alternative approach to
derive the equilibrium equations can be found by considering the potential

Π defined as

Π(a) = W (a)− aTF (1)

where W = 1

2
aTKa is the stored energy of the system and aTF is referred

to as the potential due to the external load. Note that in the definition of

Π the external force F is constant. Minimization of the potential Π implies
that Π should be stationary and therefore

∂Π

∂{a}i
= 0 (2)

must hold, where {a}i represents the i:th component of a. Due to symmetry

of the stiffness matrix this expression can be rewritten as

∂Π

∂{a}i
=

ndof
∑

j=1

Kijaj − {F }i = 0 ∀i (3)

i.e. we have found that a minimization of the potential Π implies the equi-
librium. In many textbook the principle of minimum energy is taken as the

basis for the finite element formulation.

Let us now turn to the ’two-spring’ example shown in Fig. 1. The total
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Figur 1: Illustration of a two connected springs loaded in tension.

stored energy for this system is given as the sum of the stored energy in
each spring. For spring 1 the elongation, ∆1, is equal to u2 since u1 = 0. For
spring 2 the elongation, ∆2, is ∆2 = u3 − u2. The total stored energy can

now be expressed as

W (u2, u3) =
k1u

2
2

2
+

k2(u3 − u2)
2

2
(4)

Referring to (1) the total potential, Π, for the system can be written as

Π = W −Qu3 =
k1u

2
2

2
+

k2(u3 − u2)
2

2
−Qu3 (5)
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The minumum of Π is found by requiring ∂Π
∂u2

= 0 and ∂Π
∂u3

= 0, i.e.

∂Π

∂u3
= k1u2 − k2(u3 − u2) = 0

∂Π

∂u3
= k2(u3 − u2)−Q = 0 (6)

These two equations can be written in matrix format as
[
k1 + k2 −k2
−k2 k2

] [
u2
u3

] [
0
Q

]

(7)

i.e. the minimium potential energy enable us to form Ka = f .

Principle of minimum energy - continous system

For an axially loaded bar the potential energy can be expressed as

Π =

∫ L

0

1

2
AEε2dx

︸ ︷︷ ︸

W

−

∫ L

0

budx− [uN ]L
0

(8)

where ε = du
dx
. We shall now prove that a minimum to Π corresponds is

an equilibruim solution. For this reason we assume that u is an equilibrium
solution. If u minimizies the potential Π then Π(u) ≤ Π(u∗) or Π(u) −
Π(u∗) ≤ 0 for all choices of u∗. If we chose u∗ = u+ v where v is a function

that satisfies the essential boundary conditions if follows that u∗ satisfies
the essential boundary conditions. Using the definition for Π we obtain

∆Π(u, u∗) = Π(u)−Π(u∗) =

∫ L

0

(

1

2
AE

(
du

dx

)2

−
1

2
AE

(
du

dx
+

dv

dx

)2
)

dx

−

∫ L

0

budx− [uN ]L
0
+

∫ L

0

b(u+ v)dx+ [(u+ v)N ]L
0

(9)

Expansion and simplification of (9) results in

∆Π(u, u∗) = −

∫ L

0

(

AE

(

dv

dx

du

dx
+

1

2

(
dv

dx

)2
))

dx+

∫ L

0

bvdx+ [vN ]L
0

(10)

Since u is an equilibrium solution it must satisfy the weak form. Using this
result we conclude that

∆Π(u, u∗) = Π(u)−Π(u∗) = −

∫ L

0

AE
1

2

(
dv

dx

)2

dx ≤ 0 (11)

and we conclude that Π(u) ≤ Π(u∗), i.e. the displacement field that is min-
imizing the potential Π is soving the equlibrium.
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Principle of minimum energy - General elasticity

Assume that a strain energy potential exsists, i.e. w = w(ε) where ε = ∇̃u.
An obvious generalization of (8) reads

Π(u∗) =

∫

Ω

wdV

︸ ︷︷ ︸

W

−

∫

∂Ωt

tTu∗dS (12)

where we require that u safisfies the essential boundary conditions. Suppose
that u is a displacement field that satisfies equilibrium. In that case Π takes
a minimal value for Π(u). The minimization principle may be reformulated

as
Π(u) ≤ Π(u∗), ∀u∗ (13)

Let us now define u = tv where t is a scalar. Using this definition we can

reformulate the minimization problem (13) as

dΠ(u+ tv)

dt
|t=0 = 0, ∀v (14)

Let is now assume that the material is linear elastic, i.e.

w =
1

2
εTDε (15)

where ε = ε(u). Using (12), (14) and (15) we obtain

dΠ(u+ tv)

dt
|t=0 = 0 =

d

dt
|t=0

{∫

Ω

1

2

(

∇̃(u+ tv)
)T

D
(

∇̃(u+ tv)
)

dV −

∫

∂Ωt

tT (u+ tv)ds

}

(16)

After expaning the terms in (16) and using D = DT we obtain

∫

Ω

(

∇̃v
)T

D
(

∇̃u
)

dV −

∫

∂Ωt

tTvds = 0 (17)

which we recognize as the weak form of the equilibrium equations and we
can, again, conclude that minimization of the potential Π results in the weak
form


