
Finite element method – Nonlinear systems

FHL066 – 2015

Division of Solid Mechanics

Project 2 – General instructions

A written report including results/conclusions should be returned to the
Division of Solid Mechanics no later than 2016 18/1, 10.00.

The assignment serves as part of the examination. A maximum of 20 points
can be obtained. The task should be solved in groups of two or individually.
If two persons work together they will obtain the same amount of points.

The assignment considers an analysis of the nonlinear behavior of three sim-
ple structures. The task involves static and dynamic analysis as well as
contact. To solve the problems Matlab should be used. In the toolbox
Calfem, certain general FE-routines are already established and the task is
to establish the extra routines needed to solve the nonlinear boundary value
problem.

The report should contain a description of the problem, the solution proce-
dure that is needed as well as the results from the calculations in form of
illustrative figures and tables. The program codes should be well commented
and included in an Appendix.

When writing the text it can be assumed that the reader has basic knowledge
of Solid Mechanics, but it has been a while since he/she dealt with this type
of analysis. After reading the report, the reader should be able to obtain all
the relevant results just by reading through the report, i.e. without using
the included program.

The report should be structured and give a professional description of the
methods and the obtained results and be no longer than 20 pages (appendix
excluded).
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Static analysis of sheet pressing

The first task is to solve the boundary value problem shown in Fig 1.
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Figure 1: A sheet deformed by displacing a rigid cylinder.

The material is assumed to be described by the strain energy function (Neo-
Hooke)

U =
1

2
K[

1

2
(J2 − 1)− ln J ] +

1

2
G(J−2/3tr(C)− 3), (1)

where K and G are the initial bulk and shear moduli, respectively, these
can be obtained from the elastic modulus E = 10 MPa and Poissons ratio
ν = 0.35. Moreover, C = F TF where F is the deformation gradient and
J = detF .

For simplicity plane strain conditions are assumed, i.e. thickness can be set
to 0.1 m. The radius of the cylinder is 0.03 m.

In the static numerical solution procedures a total Lagrangian formulation
should be used. The geometry, loading, 4-node isoparametric mesh and
boundary conditions are provided in the material file static2015 1.mat.
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The rigid cylinder is assumed to be displaced downwards (negative y-direction)
such that the cylinder comes in contact with the sheet and contact forces
cause the sheet to deform.

• Solve the boundary value problem using a static algorithm without
introducing the cylinder by writing the script staticNR force.m. In-
stead of the cylinder introduce a downward force in fDof and plot the
deformation of the structure as well as the force vs displacement of
fDof.

• Solve the boundary value problem considering contact between the rigid
cylinder and the deformable sheet by writing a script staticNR contact.m.
Plot the deformation of the structure and the internal force vs displace-
ment of the node in the center of the cylinder. Load the structure until
a displacement of the rigid cylinder is uy = 55 mm. The contact prob-
lem is addressed with a simplified model of the penalty method com-
monly used in FE-codes. For this purpose the three dimensional bar
elements defined in chapter 2 in Krenk [1] with a special constitutive
model will be used. Fig 2 shows how the ’contact’ bars are connected
to the deformable body.

The constitutive model for the bar elements is given by

N =







k
Λ
(Λ− Λc) if Λ < Λc

0 if Λ ≥ Λc

(2)

where

Λ =
√
2ǫG + 1 =

l

l0
, Λc =

r

l0
. (3)

The strain ǫG is the usual Green strain and Λ is the stretch, i.e. equation
(2) replaces equation (2.20) in Krenk (2009). The length r is the radius of
the cylinder as shown in Fig 1. A suitable value for k should be determined,
such that the penetrations through the cylinder becomes small.

Write two functions. The first one calculating the normal force N , as

N = norfb(ec,ee,k,r) (4)
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Figure 2: The contact bars connected to the nodes of the deformable mesh
(dimensions in meter).

according to equation (2). The second function should calculate the material
stiffness, i.e D = dN/dǫG by

D = bstiff(ec,ee,k,r) (5)

The input arguments are ec are the element nodal coordinates in the un-
deformed configuration, ee is the Green strain of the bar, k is the penalty
parameter defined in (3) and r is the radius of the rigid cylinder. The bar
elements are now positioned such that one end is located at the center of
cylinder, the other end is connected to a node in the structure. Then when
the length of the bar l becomes less than the radius of the cylinder r a
contact force will be present. This is described by the constitutive law (2).
The material file static2015 2.mat includes topology data for the problem,
quantities with B are related to the bars e.g, edofB, exB, eyB, nelmB.
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Dynamic analysis of a rotor

The geometry is shown in Fig. 3 and the file 2015 dynamic.mat contains the
geometry data. Note that the geometry is defined in [mm] and that 3 node
elements are used here. It is assumed that the rotor can rotate around a
fixed point.

In the analysis it is assumed that the rotor already rotates, i.e. initial con-
ditions exist. The initial conditions are given in the file incond rot.m. This
is released in the first step in the analysis and the dynamics of this situation
is considered. No external loading exists.

The initial density is assumed to equal 1700kg/m3. Note that if [mm] is used
in the calculations a correct scaling of ρ0 is needed such that ρ0üV = [N ],
V is the volume. The material response is here assumed to be described by
the St. Venant-Kirchhoff model, i.e. the strain energy is given by:

U =
1

2
ETDE (6)

where D is the constant elasticity matrix for plane strain conditions. The
Young’s modulus is set to E = 5 GPa and ν = 0.3.

Figure 3: Geometry of rotor

• Implement the Newmark algorithm such that the dynamic properties
of the structure shown in Fig. 3 can be analyzed. Write the script
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file dynNewmarkRotor.m. Choose suitable values for γ and β in the
Newmark algorithm.

• Plot the variation of the energy during the process. For this purpose
the element function

[KinE, IntE] = plan3gEd( suitable arguments) (7)

shold be written. The energies should be calculated for the specific
material model. Kinetic energy as well as internal energy should be
calculated. The specifc format for the function should be described in
a manual page. The manual page should be included as an Appendix
in the report.

• Let the structure ”rotate” without any Dirichlet (essential) boundary
conditions. What will happen with the system?

Dynamic analysis of a box hitting the floor

A dynamic analysis of a falling box is considered. The initial hight over
the floor is 0.2 m (the floor has the coordinate y = −0.36m). To simulate
different drop heights the initial velocity may be changed. The geometry of
the box is seen in Fig 4. The thickness can be set to 0.1 m.

It is assumed that the box has some initial velocity and rotation. Furthermore
the box is accelerated by a body force due to gravity, f b.

The density of the box is assumed to equal 1000 kg/m3. The material re-
sponse is here assumed to be described by a Neo-Hooke material with , i.e.,
the same strain energy as equation (1). The same material parameters as in
the static problem are used.

The contact of with the floor will be modeled using a node-based penalty
formulation. This is introduced by including a force vector f cont to the
residual, i.e.

r = f int +Mü− f b − f cont (8)
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Figure 4: Set up for the dynamic analysis of a box hitting the floor (dimen-
sions in meter).

The contact force vector is assumed to be given by

f cont =
nc
∑

i=1

ǭN ḡNin
w
i (9)

where nw is the normal vector to the floor, ǭN < 0 is a penalty parameter
and ḡNi is the penetration function, defined by

ḡNi =







(xi − xw)Tnw if (xi − xw)Tnw < 0

0 otherwise
(10)

where xi is the nodal position along the boundary of the box and xw is the
closet point projection, i.e. the point on the floor which gives the smallest
distance to the node xi. Note that a parametrization of the floor can be
written as xw

t = (s, 0) where s ∈ R. The linearisation of the contact force
vector f cont provides the stiffness matrix given by

Kcont =

nc
∑

i=1

ǭNn
w(nw)T (11)
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• Solve the dynamic boundary value problem using the Newmark method.
Write a script file dynNewmarkBox.m with the Newmark paramaters
γ = 0.5 and β = 0.25 and find a suitable value for ǭN (less than 0)
in the Newmark algorithm which gives a convergent solution. Plot the
motion of the box before hitting the ground and during impact. The
geometry of box is provided in dynamic2015 box.m (quantities with S

are associated with the surface).

The function (v0,a0)=incon2015Box(omega,Vx,Vy,Coord) generate
initial velocity (m/s) and rotation around the center of mass. omega is
the counter-clockwise angular velocity in revolutions per second.

• Vary some parameters in the model, such as the initial velocity, elasitc
modulus and/or penalty parameter. And comment upon the what
happens at impact and why.

Note: the contact introduces a non-smoothness of the problem and therefore
it is not expected that the problem have quadratic convergence at during
impact. Also the Newmark algorithm is sensitive to the time step length,
therefore small time increments during impact is recommended.

Hints

To speed up the program you should instead of zeros use sparse to initialize
matrices.

The assem command in Calfem is very slow, a slightly faster algorithm is
obtained by using

nd = Edof(element, 2:nrdof element);

K(nd,nd) = K(nd,nd) + Ke

The Calfem command: [empty,fbe] = plante(ex(el,:),ey(el,:),[1,th],

zeros(3),[0;-rho*g]) can be used to calculate the elementwise body forces.
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To draw circles the Matlab command: viscircles(CENTERS, RADII) can
be used.
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