
Computational Inelasticity FHLN05

Assignment 2019

A non-linear elasto-plastic wellborne drilling
problem

General instructions

A written report should be submitted to the Division of Solid Mechanics no later
than November 11 at 10.00, both a printed version and a digital version should
be handed in. The digital version is sent via e-mail to axel.henningsson@solid.lth.se.

The assignment serves as a part exam, thus help with coding and debugging will
not be provided. A maximum of 5 points can be obtained. The task can be
solved individually or in groups of two. If two students work together they will
obtain the same amount of points.

The report should be clear and well-structured and contain a description of the
problem as well as the solution procedure; including necessary derivations and
the results from the calculations in form of illustrative figures and tables. The
program code should be included as an appendix. It should be sufficient with 15
pages, appendix excluded.

It can be assumed that the reader posses basic knowledge of Solid Mechanics but
it has been a while since he/she dealt with this type of analysis.

After reading the report, the reader should be able to reproduce the results just by
reading through the report, i.e. without using the included program. This implies
that all derivations of necessary quantities such as stiffness tensor etc. should be
presented in some detail.

Note, a report should be handed in even if you are not able to solve
all tasks or if your program does not work!
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Problem description

A wellbore drilling operation in search of water is planned to be performed. As
depicted in Figure 1, the borehole is to be drilled as a perfect cylinder in a rock like
structure, introducing an internal pressure p for wall support. The surrounding
rock formation is in its’ natural state under a compressive stress at each point.
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Figure 1: A drill hole is held in equilibrium by the internal pressure p. Each
volume element, dV , in the body is under compressive stress.

To understand how the internal wall pressure relates to borehole contraction and
potential collapse, the excavation process is to be simulated using an elasto-plastic
Finite Element Model (FEM) together with a classical Newton-Raphson scheme.
To simplify the procedure, a limited region around the borehole is included in the
model, using plane strain conditions to reduce the problem to two dimensions.
The resulting boundary value problem can be viewed in Figure 2A. Note that
due to symmetry it is not necessary to model the entire structure, but rather one
fourth of the borehole needs to be considered, as depicted in Figure 2B. Note
also that the thickness, t, of the geometry is arbitrary due to the plane strain
assumption. However, for practical reasons, a thickness of 1 m is to be selected.
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Figure 2: The edges of the rock formation is fixed in space from displacing in A.
In B the symmetry is used and the boundary conditions on the right and bottom
boundary is gives freedom in e2 and e1 respectively. The thickness of the rock
formation, in the e3 direction, is to be taken as 1 m.

The task is to calculate the elasto-plastic response of the rock formation during
unloading of the supporting wall pressure, p. To solve the problem the CALFEM-
toolbox should be used. In CALFEM, certain general FE-routines are already
established but you need to establish extra routines in order to solve the elastic-
plastic boundary value problem. A good starting point is the code you developed
in the computer lab. Three-node triangle elements are used for the finite element
calculations. The mesh can be generated in Matlab using the pdetool GUI as
we will return to in a bit.

For simplicity the rock formation is assumed to be both homogeneous and isotropic,
and the elastic response, ε(e)kl , of the rock formation is modelled linearly using
Hooke’s law σij = Dijklε

(e)
kl where

Dijkl = 2G
[1

2
(δikδjl + δilδjk) +

ν

1− ν
δijδkl

]
, G =

E

2(1 + ν)
(1)

where E and ν are the Young’s modulus and Poisson’s ratio, respectively and G
is the shear modulus.

To model the plastic response a Drucker-Prager strain-hardening model is to be
used, defining the current yield surface, f , as

f =
√

3J2 + αI1 + β (2)
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where J2 and I1 are the stress invariants,

J2 =
1

2
sijsji, I1 = σii, (3)

and σij and sij are the Cauchy stress tensor and deviatoric stress tensor, respec-
tively. The parameters α and β in equation (2) are taken as

α = α(εpd) =
εpd
(

tan(γf )− tan(γi)
)

3(εpd + c)
+

1

3
tan(γi), β = 0 (4)

where εpd is the accumulated deviatoric effective plastic strain,

εpd =

∫
ε̇pddt, ε̇pd =

√
3

2
ėpij ė

p
ji, (5)

and epij is the deviatoric plastic strain. Here the constant material parameters γf ,
γi and c are selected to mimic the rock behaviour, and numerical values can be
found in table 1.

Table 1: Material parameters.

G [MPa] ν [-] γi [o] γf [o] c [-]
300 0.3 30 42 0.01

To determine the evolution of plastic strain, ε̇(p)ij , for simplicity an associated
plasticity is assumed

ε̇
(p)
ij = λ̇

∂f

∂σij
(6)

where λ̇ is the plastic multiplier. Especially, the evolution law can be recast as

ε̇pd = λ̇ (7)

Note: in this plasticity formulation the so called hardening parameter and in-
ternal variable, denoted K and κ in the course book, is selected as α and εpd:

K(κ) = α(κ), κ̇ = ε̇pd, (8)

The evolution law is however not given in the common format

κ̇ 6= λ̇
∂f

∂K
= λ̇

∂f

∂α
(9)

but instead we have that

κ̇ = ε̇pd = λ̇ (10)
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To be able to use the above relation in a FE-setting a useful format must be
determined. This is found by integration of the evolution laws, a fully implicit
scheme should be used. Thus during plastic loading, when the strain increment
results in a stress state lying on the outside of the yield surface, the above flow
rules must be integrated to find an appropriate step ∆λ used to correct the stress
and return to the yield surface. The increment, ∆λ, is further used to update
the internal variable, κ, which results in a change of the yield surface. In the
Appendix important help to perform and implement these derivations are given.

To achieve a quadratic convergence in the Newton-Raphson scheme, the appro-
priate algorithmic tangent stiffness must be computed. Note again, as specified
in the box above, that the general procedure on pages 497-499 in the course book
does not apply, since

κ̇ 6= λ̇
∂f

∂K
(11)
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Setting up the boundary value problem

Before the elasto-plastic borehole boundary value problem depicted in Figure 2
can be solved, the effect of the experienced stress state of the rock formation
must be established as well as the wall pressure needed for equilibrium to exist
after excavation. To do this we will first solve two linear FEM problems denoted
problem 1 and problem 2.

In problem 1 we will model an elastic undisturbed rock formation, introducing
a compressive stress tensor to each element in the FEM mesh. The resulting
boundary displacement field can then be used as boundary conditions for prob-
lem 2. In practice two seperate meshes can be constructed using the Matlab
pdetool.

A B

Figure 3: Two meshes are used to set up the boundary value problem. A is
used in problem 1 and the mesh B is used in problem 2 as well as the final
elasto-plastic problem.

Note that the geometry in Figure 3B must include the same elements as A,
only removing the borehole elements. This can be realised by either adding or
subtracting the same circular shape to a square in the Matlab pdetool as seen in
Figure 4. Make sure that the mesh looks the same outside the borehole for the
two geometries.
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Figure 4: The Matlab pdetool is to be used in order to generate the required
geometries.

We now proceed to solve the two initial linear FEM problems one at the time.

Problem 1

The geometry representing the untouched soil (Figure 3A) is prescribed, the
appropriate symmetry boundary conditions together with an initial uniform stress
field as shown below

dV
σ11

σ22

σ33

e1

e2 e3

Figure 5: The untouched soil is modelled with a compressive stress to find the
traction force at the drillhole boundary and the initial displacements of problem
2. Note that only one quarter of the body is modelled, hence the symmetry
boundary conditions.
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The stress tensor has been selected to ensure that the resulting stress state is
located inside the Drucker-Prager yield surface (see pages 163-164 in the course
book), i.e the elastic domain. This is the reason that the problem described in
Figure 5 can be solved using linear FEM, i.e no plasticity model nor Newton-
Raphson scheme is needed. The initial stress should be selected as

σ =

−11.25 0 0
0 −11.25 0
0 0 −6.75

 MPa (12)

Assemble the global linear stiffness matrix using Hook’s law, and the internal force
vector resulting from the uniform stress state. Solve for the resulting displacement
field in the rock formation and save the displacements present on the left and
top boundary. i.e the free boundaries.

To compute the pressure needed for balance at the drill hole wall, one may as-
semble the internal forces for only the elements which exist inside the radius of
the borehole. The internal force present at the drill hole boundary nodes can
then be extracted and saved. Remember that a change of sign is needed for the
pressure to be directed towards the borehole wall.

Problem 2

Using the displacements and forces calculated as described above, we may now set
up the initial state of the drilled geometry (B). By applying the pressure to the
wall nodes, as found from problem 1, and enforcing the prescribed displacements
to the free boundaries (left and top) we can solve yet another linear FEM problem.
Note that the internal stress state now is inferred by the boundary conditions and
the applied force. This means that the element stress should be set to zero in
problem 2. The problem is depicted in Figure 6.
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Figure 6: By setting the stress in each volume element to zero and enforcing
a boundary displacement together with the pressure p the initial state of the
elasto-plastic problem is retrieved.

Remember that the two geometries in Figure 3A and B has different number
of elements and nodes, thus the degrees of freedom and node numbers does not
necessarily refer to the same thing in A as in B. A simple way to transfer a
quantity from one geometry to the other is to loop over the nodes and check if
their coordinates match.
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Hint: Given the p,e and t matrices from Matlabs pdetool, the classical FEM
quantities can be computed as

1 nen=3; % number of nodes per element
2 enod=t(1:nen,:)'; % element nodes matrix
3 nelm=size(enod,1); % number of elements
4 coord=p'; % nodal coordinates
5 dofnode=2; % number of degrees of freedom per node
6 nnod=size(coord,1); % number of nodes
7 dof=[(1:nnod)',(nnod+1:2*nnod)']; % give each dof a number
8 ndof=max(max(dof)); % number of degrees of freedom
9 edof=zeros(nelm,nen*dofnode+1); % allocate space for edof

10

11 % Generate edof from enod and dof
12 for ie=1:nelm
13 edof(ie,:)=[ie dof(enod(ie,1),:), dof(enod(ie,2),:), ...

dof(enod(ie,3),:)];
14 end

If the above procedure has been performed correctly the same stress tensor as
prescribed to the elements in problem 1 should be found in the elements after
solving problem 2. Compute the strains and stresses resulting from the dis-
placements in problem 2 and check that the corresponding stress is the same as
the one you applied in problem 1.

Elasto-plastic drillhole problem.

We are now ready to solve our elasto-plastic problem. Use the displacement
field from problem 2 as the initial state for the configuration. The left and
top boundaries will then have an initial displacement. Thus in the continuing
calculations the displacement boundary condition at the left and top boundaries
should be zero. When the Newton-Raphson equilibrium loop starts, there should
exist already an internal force vector, previous strain, and previous displacement
field, i.e an initial state. The final elasto-plastic boundary value problem to be
solved is depicted in Figure 7.

10



p e1

e2

e3

w = 42m

h = 42m

R0 = 8 m

Figure 7: The final elasto-plastic problem is solved using a Newton-Raphson
iteration scheme. The quantities retrieved from problem 2 are refereed to as
the previous equilibrium state.

The assignment includes the following tasks

• Derive the FE formulation of the equations of motion.

• Derive the equilibrium iteration procedure by defining and linearizing a
residual, i.e. the Newton-Raphson procedure.

• Derive the numerical algorithmic tangent stiffness Dats and the stress cor-
rection formula needed for the presented Drucker-Prager plasticity model.

• Implement the subroutine update_variables.m that checks for elasto-plastic
response and updates accordingly (a manual for the routines is appended).

• Implement of the subroutine alg_tan_stiff.m that calculates the algorith-
mic tangent stiffness (a manual for this routine is appended).

• Unload the internal wall pressure to 30% of the initial pressure, p. A reason-
able step-size is 1% of the initial pressure, p per step. Produce the following
plots:
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1. Plot the load path in I1 −
√

3J2-space for the element experiencing
the greatest (most positive) hydro-static stress state, I1 (closest to
Drucker-Prager cone tip). Include the two lines that traces the initial
and final yield surface for the selected element.

2. Plot the drill hole normalised radius R0/r as a function of wall pres-
sure. Here R0 is the initial radius and r the current radius.

3. Plot the effective von Mises stress field in the body after unloading,
i.e plot

√
3J2.

4. Plot the volumetric stress field in the body after unloading, i.e plot I1.

5. Plot the the deformed structure on top of the original structure, illus-
trating the deformation. Zoom in to the borehole and use magnifica-
tion if needed.

6. Plot the mesh and indicate which elements responded plastic at any
point during unloading. Preferably two different colours are used to
illustrate linear and elasto-plastic elements.

The report should be well structured and contain sufficient details of the deriva-
tions with given assumptions and approximations for the reader to understand.
Furthermore, some useful hints are given in the appendix.

Some interesting questions to consider are:

• Are the results reasonable?

• If the mesh is refined (or made coarser) does it change the results?

• What are the limitations for application of the approach, i.e, what are the
main assumptions?

• What would happen if unloading to 0% or close to 0% of the initial pressure
was performed. Could this be modelled with the current Drucker-Prager
formulation?

• What is the physical interpretation of the angles γi and γf? What does it
mean to change these values?

Good luck!
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Appendix

Hints to derivation of stress correction

Note that you will have to complete the missing steps in the proof below for the
report.

The return method is realised by considering that the elastic strain, ε(e)ij , present
during a single iteration step is computed from the trial strain, ε(tr)ij , by subtract-
ing the plastic increment in strain ∆ε

(p)
ij as

ε
(e)
ij = ε

(tr)
ij −∆ε

(p)
ij (13)

Using the associated plasticity we find

ε
(e)
ij = ε

(tr)
ij −∆λ

∂f (2)

∂σij
= ε

(tr)
ij −∆λ

(
αδij +

3

2

s
(2)
ij√

3J
(2)
2

)
(14)

here superscript (2) indicates that the quantity is evaluated at the new state
being calculated for. Splitting equation (14) into elastic deviatoric strain, e(e)ij ,
and elastic volumetric strain, ε(e)kk , we have

ε
(e)
kk = ε

(tr)
kk − 3∆λα

e
(e)
ij = e

(tr)
ij −∆λ

3

2

s
(2)
ij√

3J
(2)
2

(15)

Hook’s law states that for elastic strain

σkk = 3Kε
(e)
kk , sij = 2Ge

(e)
ij (16)

where G is the shear modulus as previously and K here is the bulk modulus

K =
E

3(1− 2ν)
(17)

(see page 91 in the course book). By multiplying equation (15) with 2G and 3K
it is possible to obtain

I
(2)
1 = I

(tr)
1 − 9K∆λα

s
(2)
ij = s

(tr)
ij − 3G∆λ

s
(2)
ij√

3J
(2)
2

(18)
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Considering (18) and making use of that√
3J

(2)
2 =

√
3

2
s
(2)
ij s

(2)
ji (19)

it is possible to arrive at

s
(tr)
ij√

3J
(tr)
2

=
s
(2)
ij√

3J
(2)
2

(20)

Inserting this in (18) we find that the updated deviatoric stress is

s
(2)
ij = s

(tr)
ij − 3G∆λ

s
(tr)
ij√

3J
(tr)
2

(21)

by addition of the updated hydrostatic stress 1
3
I
(2)
1 δij we finaly arrive at

σ
(2)
ij = s

(tr)
ij − 3G∆λ

s
(tr)
ij√

3J
(tr)
2

+
1

3
(I

(tr)
1 − 9K∆λα)δij (22)

Hints to calculation of increment ∆λ

Note that you will have to complete the missing steps in the proof below for the
report.

To compute ∆λ consider the equation

α = α(εpd) =
εpd
(

tan(γf )− tan(γi)
)

3(εpd + c)
+

1

3
tan(γi) (23)

We may rewrite such that εpd is a function of α:

3αεpd + 3αc = εpd
(

tan(γf )− tan(γi)
)

+ tan(γi)(ε
p
d + c)⇒ (24)

3αεpd + 3αc− εpd
(

tan(γf )− tan(γi)
)
− tan(γi)ε

p
d = tan(γi)c⇒ (25)

εpd(3α−
(

tan(γf )− tan(γi)
)
− tan(γi)) = tan(γi)c− 3αc⇒ (26)

εpd =
tan(γi)c− 3αc

3α− tan(γf )
(27)
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The incremental relation becomes

ε̇pd =
−3α̇c(3α− tan(γf ))− 3α̇(tan(γi)c− 3αc)

(3α− tan(γf ))2
⇒ (28)

ε̇pd =
3c(tan(γf )− tan(γi))

(tan(γf )− 3α)2
α̇ (29)

Integrating this relation between αn and α and using equation (7) can provide

α =
1

3
tan(γf ) +

1

3

[ 1

3αn − tan(γf )
− ∆λ

c(tan(γf )− tan(γi))

]−1

(30)

where αn is the value of α at the previous equilibrium state. Now we use the
two equations in (18) together with (30) to find an equation with ∆λ as the only
unknown. For plastic loading this equation is to be solved under the constraint
of

∆λ ≥ 0; ∆λf(σij) = 0 (31)

i.e we require that the increment satisfies f(σij) = 0. By expressing the yield
function in terms of ∆λ and solving for ∆λ with a numerical solver such as
Matlabs fzero function the increment is found.
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Hints to derivation of Dats

The algorithmic tangent stiffness, Dats, is defined as the derivative at the new
position denoted (2):

dσ(2) = Datsdε
(2) (32)

With a fully implicit scheme, we have the following equations

σ(2) = σt −D∆εp

σt = σ(1) +D∆ε

∆εp = ∆λ
(∂f̂(σ, K)

∂σ

)(2)
∆κ = ∆λ

K(2) = K(κ(2))

f(σ(2), K(2)) = 0

(33)

From these equations the Dats can be derived. Note that the matrix definition
of strain in 3D is given by

∆εp =
[
∆εp11 ∆εp22 ∆εp33 2∆εp12 2∆εp13 2∆εp23

]T
Furthermore, note that ∂f̂/∂σ is a function of both the stress, σ, and the hard-
ening parameter K.
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alg_tan_stiff

Purpose: Compute the algorithmic tangent stiffness matrix for a triangular
3 node element under plane strain conditions for the above presented Drucker-
Prager plasticity model.

Syntax: Dats = alg_tan_stiff(sigma,dlambda,ep_eff,Dstar,mp)

Description: alg_tan_stiff provides the algorithmic tangent stiffness matrix
Dats for a triangular 3 node element. The stress is provided by sigma

sigma =


σ11
σ22
σ33
σ12


Dstar is the linear elastic material tangent for plane strain, dlambda is the in-
crement ∆λ, ep_eff is the effective deviatoric plastic strain εpd and mp a vector
containing the material parameters needed.
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update_variables

Purpose: Check for elasto-plastic response and update variables accordingly
for a triangular 3 node element under plane stress conditions for the presented
Drucker-Prager plasticity model.

Syntax:

[sigma,dlambda,ep_eff] =

update_variables(sigma_old,ep_eff_old,delta_eps,Dstar,mp)

Description: update_variables provides updates of the stress sigma, the in-
crement in plastic multiplier dlambda and the effective plastic deviatoric strain
ep_eff. The variables are calculated from stress and effective plastic strain at the
last accepted equilibrium state sigma_old and ep_eff_old, respectively. The
increment in strains between the last equilibrium state and the current state;
delta_eps.

The increment ∆λ needed to update the stresses and strains are also computed
and could be used as an indicator of plasticity later on in the code and will
therefore also be used as output from this function.

Moreover Dstar denotes the linear elastic material tangent for plane strain and
mp is a vector containing the material parameters needed.
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