
Computational Inelasticity FHLN05

Assignment 2017

A non-linear elasto-plastic problem

General instructions

A written report should be submitted to the Division of Solid Mechanics no later
than October 30 at 10.00, both a printed version and a digital version should be
handed in. The digital version is sent via e-mail to marcus.alexandersson@solid.lth.se.

The assignment serves as a part exam, thus help with coding and debugging will
not be provided. A maximum of 5 points can be obtained. The task can be
solved individually or in groups of two. If two students work together they will
obtain the same amount of points.

The report should be clear and well-structured and contain a description of the
problem as well as the solution procedure; including necessary derivations and
the results from the calculations in form of illustrative figures and tables. The
program code should be included as an appendix. It should be sufficient with 15
pages, appendix excluded.

It can be assumed that the reader posses basic knowledge of Solid Mechanics but
it has been a while since he/she dealt with this type of analysis.

After reading the report, the reader should be able to reproduce the results just by

reading through the report, i.e. without using the included program. This implies

that all derivations of necessary quantities such as stiffness tensor etc. should be

presented in some detail.

Note, a report should be handed in even if you’re not able to solve all tasks or if
your program doesn’t work!
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Problem description

Three different geometries are considered for manufacturing of a metal detail.
The purpose of the component is to carry a distributed load exerted at x = 0
and 0.025 ≤ y ≤ 0.05 m in the x-direction. Along the bottom boundary (y = 0,
0 ≤ x ≤ 0.05 m) the detail is fixed from moving in both x- and y-direction. The
first design is seen Figure 1.
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Figure 1: Geometry A considered for a metal profile.

The other two designs (B and C) are given in Figure 2 and Figure 3. All de-
signs have the same thickness th = 2 mm and material volume V which can be
used to calculate the dimensions of geometry B and C based on the area of A.
Furthermore in the development process two different materials are considered.
These are an annealed steel and a precipitation hardened aluminium alloy. The
materials behave linear elastic in the elastic regime and due to the small thickness
plane stress is assumed, i.e, Hooke’s law for plane stress can be used to model
elasticity. The plastic response of the materials can be modelled using von Mises
yield surface with kinematic hardening:

f =

√

3

2
(sij − αd

ij)(sij − αd
ij)− σy0 = 0 (1)

where associated plasticity can be assumed. The evolution of the back-stress αd
ij
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Figure 2: Geometry B considered for a metal profile.
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Figure 3: Geometry C considered for a metal profile.

is assumed to follow a Melan-Prager relation, i.e,

α̇d
ij = cε̇pij (2)
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E [GPa] ν [-] σy0 [MPa] c [GPa]
Steel 210 0.3 250 10
Aluminium 70 0.32 310 30

Table 1: Material data

The task is to calculate the elasto-plastic response of the different designs. The
elasto-plastic response is the solution to the equation of motion (static conditions
may be assumed and body forces may be neglected). To solve the problem the
CALFEM-toolbox should be used. In CALFEM, certain general FE-routines are
already established but you need to establish extra routines in order to solve the
elastic-plastic boundary value problem.

The routine TopConstMod_Assigmnent2017.m may be used to obtain the topol-
ogy matrices and Dirichlet boundary conditions bc as well as the incremental
external force df.

For the global equilibrium loop a Newton-Raphson scheme should be implemented
and for the integration of the elasto-plastic constitutive laws a fully implicit radial
return method should be used (cf. chapter 18 in the course book, note that plane
stress conditions prevail!). Three-node triangle elements are used for the finite
element calculations.

The calculations should carried out using the plane stress assumption, which is
closer to the real physical loading situation than plane strain conditions.

The assignment includes the following

• Derive the FE formulation of the equation of motion.

• Derive the equilibrium iteration procedure by defining and linearizing a
residual, i.e. Newton-Raphson procedure.

• Derive the numerical algorithmic tangent stiffness Dats and the radial re-
turn method for kinematic hardening of von Mises yield surface.

• Investigate the elasto-plastic response of the different designs with different
materials by implementing a FE program using the Newton-Raphson algo-
rithm with a fully implicit radial return method using force control. This
includes:
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– Implementation of the subroutines update_variables.m that checks
for elasto-plastic response and updates accordingly (a manual for the
routines is appended). The routines can be checked with data from
check_update_assignment2017.mat.

– Implementation of the subroutines alg_tan_stiff.m that calculates
the algorithmic tangent stiffness (a manual for this routine is ap-
pended) of the corresponding material. The routines can be checked
with data from check_Dats_assignment2017.mat.

• Use force controlled loading and load the structures well into the plastic
region (twice the load of initial yielding), return to the original position
by unloading and then reverse the load and unload again (i.e, a load cy-
cle). Investigate the stresses at peak load and after the structure has been
unloaded after a the load cycle.

• The following results should be presented in an illustrative way:

– An σ-ε curve for a load-cycle (loaded into the plastic regime) for the
particular model under uniaxial loading, i.e, analytic expressions can
be used. The response for both materials should be presented.

– The development of plastic response regions of the different designs
and materials when the structure is loaded well into the plastic region.

– The effective von Mises stress distribution at maximum load and af-
ter unloading (take maximum load as twice that which cause initial
yielding for the particular design and material).

– The deformation pattern for the different structures at maximum load.

The report should be well structured and contain sufficient details of the deriva-
tions with given assumptions and approximations for the reader to understand.
Furthermore, some useful hints are given in appendix.

Some interesting questions to consider are:

• Which design and what material is preferable and why?

• At what load is plasticity initiated?

• What are the limitations for application of the approach, i.e, what are the
main assumptions?

• Are the results reasonable?
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• How would you suggest to make improvements on the design?

Good luck!
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Appendix A

A.1 Variables

Variable Description
bc Dirichlet boundary conditions
coord Coordinates of nodes
dof Degrees of freedom
edof Element topology matrix
ex Element x-coordinates
ey Element y-coordinates
df Incremental external force vector
pressure Incremental traction stress in x-dir
du Incremental displacement in x-dir
th Thickness
control = 0 force control, = 1 displacement control

A.2 Hints

1) From f = f(σ(2), K(2)) = 0 it is possible to derive a constraint that can be
used to find the increment ∆λ;

3

2
(σt

−α(1))TMTPM(σt
−α(1))− σ2

y0 = 0 (A.1)

Note, the report should contain a derivation of this expression in order to
get maximum number of points on the assignment. Note that M depends
on ∆λ!
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2) In order to simplify the integration of the variables, the von Mises yield
condition can be written as (verify this!);

f =

√

3

2
σ̄TPσ̄ − σy0 = 0 (A.2)

where P is a matrix allowing a matrix representation of the von Mises yield
criterion in the reduced stresses σ̄. Where;

P =
1

3





2 −1 0
−1 2 0
0 0 6



 , σ̄ = σ −α =





σ11

σ22

σ12



−





α11

α22

α12





3) The matrix format of the plastic strain rate and the Melan-Prager evolution
is provided as

ε̇p = λ̇
∂f

∂σ
, α̇ = cλ̇Q

∂f

∂σ
,

where

ε̇p =





ε̇p11
ε̇p22
2ε̇p12



 , Q =





1 0 0
0 1 0
0 0 1/2





4) In order to solve the constraint for ∆λ the command fzero in Matlab could
be used.

5) You could use a modified Newton-Raphson scheme to solve the problem, i.e.
use the elastic tangent stiffness instead of Dats. The convergence will then
be impaired but it could be useful when developing your program. Note
that for a maximum number of points on the assignment you will need to
use the full Newton-Raphson.
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alg_tan_stiff

Purpose: Compute the algorithmic tangent stiffness matrix for a triangular 3
node element under plane stress conditions for a Melan-Prager kinemtatic hard-
ening von Mises material.

Syntax: Dats = alg_tan_stiff(sigma,alphad,Dstar,dlambda,mp)

Description: alg_tan_stiff provides the algorithmic tangent stiffness matrix
Dats for a triangular 3 node element. The in-plane stress is provided by sigma

and alphad is the backstress provided as;

sigma =





σ11

σ22

σ12



 alphad =





α11

α22

α12





Dstar is the linear elastic material tangent for plane stress, dlambda is the in-
crement ∆λ and mp a vector containing the material parameters needed. The
algorithmic tangent stiffness is given as

Dats = Da +
[

c∆λDa ∂2f

∂σ∂σ
Q

∂f

∂σ
−Da ∂f

∂σ

] 1

Aa

( ∂f

∂σ

)T

Da

Da =
(

(D∗)−1 +∆λ
∂2f

∂σ∂σ

)

−1

Aa = c
( ∂f

∂σ

)T

Q
∂f

∂σ
+
( ∂f

∂σ

)T

Da ∂f

∂σ
− c∆λ

( ∂f

∂σ

)T

Da ∂2f

∂σ∂σ
Q

∂f

∂σ

Note that you need to prove this in the report!
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update_variables

Purpose: Check for elasto-plastic response and update variables accordingly
for a triangular 3 node element under plane stress conditions for a Melan-Prager
kinemtatic hardening von Mises material.

Syntax:

[sigma,alphad,dlambda] =

update_variables(sigma_old,alphad_old,Dstar,delta_eps,mp)

Description: update_variables provides updates of the in-plane stress sigma,
the increment in plastic multiplier dlambda and the back-stress alphad. The vari-
ables are calculated from stress and back-stress at the last accepted equilibrium
state sigma_old and alphad_old, respectively and the increment in strains be-
tween the last equilibrium state and the current state; delta_eps.

The increment ∆λ needed to update the stresses and strains are also computed
and could be used as an indicator of plasticity later on in the code and will
therefore also be used as output from this function.

Moreover Dstar denotes the linear elastic material tangent for plane stress and
mp is a vector containing the material parameters needed.
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