
Computational Inelasticity FHLN05

Assignment 2018

A non-linear elasto-plastic problem

General instructions

A written report should be submitted to the Division of Solid Mechanics no later
than November 5 at 10.00, both a printed version and a digital version should
be handed in.

The digital version is sent via e-mail to marcus.alexandersson@solid.lth.se.

The assignment serves as a part exam, thus help with coding and debugging will
not be provided. A maximum of 5 points can be obtained. The task can be
solved individually or in groups of two. If two students work together they will
obtain the same amount of points.

The report should be clear and well-structured and contain a description of the
problem as well as the solution procedure; including necessary derivations and
the results from the calculations in form of illustrative figures and tables. The
program code should be included as an appendix. It should be sufficient with 15
pages, appendix excluded.

It can be assumed that the reader posses basic knowledge of Solid Mechanics but
it has been a while since he/she dealt with this type of analysis.

After reading the report, the reader should be able to reproduce the results just by

reading through the report, i.e. without using the included program. This implies

that all derivations of necessary quantities such as stiffness tensor etc. should be

presented in some detail.

Note, a report should be handed in even if you are not able to solve all tasks or
if your program does not work!

1



Problem description

An aluminium detail consists of two different parts made from sheet metal of 1
mm thickness. The geometry of the detail is seen in Figure 1.

Figure 1: The geometry of the detail composed of two part with different material
orientations. The holes both have diameter 5 mm. Note that all dimensions are
given in mm.

As a consequence of the cold rolling processes used to obtain the sheet material
the parts are orthotropic with the directions as rolling direction (RD), cross-
rolling direction (CD) and out-of-plane direction (ZD) as the symmetry axis for
the respective sheets. In a later stage of the manufacturing the detail is strained in
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Figure 2: Schematic sketch of the boundary conditions.

uniaxial tension along CD of the outer part (part 1), i.e along e2. The boundary
conditions can be seen in figure 2.

For simplicity is assumed that the elastic properties of the material is isotropic
and only the plasticity is anisotropic. The small thickness of the detail allow for
the simplification of assuming a plane stress state. Thus Hooke’s law for plane
stress can be used to model the elasticity. The plastic response of the material is
modelled using the Hill yield surface with isotropic hardening in order to account
for the orthoropic nature of the material:

f =
√

σ2
y0s

TPs− σy = 0, σeff =
√

σ2
y0s

TPs (1)

where associated plasticity can be assumed. The P -matrix for the Hill yield
surface under plane stress condition is given as

P =









F +G −F −G 0
−F F +H −H 0
−G −H G+H 0
0 0 0 2L









, s =









s11
s22
s33
s12









where F,G,H and L are material constants related to the material data in table
1 (relations given in appendix). The yield stress for the material is given as

σy = σy0 + kσy0(ε
p
eff)

n

3



E [GPa] ν [-] σ
(RD)
y0 [MPa] σ

(CD)
y0 [MPa] σ

(ZD)
y0 [MPa] k [-] n [-]

70 0.32 450 250 250 5 0.45

Table 1: Material data.

The task is to calculate the elasto-plastic response of the detail. The elasto-
plastic response is the solution to the equation of motion (static conditions may be
assumed and body forces may be neglected). To solve the problem the CALFEM-
toolbox should be used. In CALFEM, certain general FE-routines are already
established but you need to establish extra routines in order to solve the elastic-
plastic boundary value problem.

For the global equilibrium loop a Newton-Raphson scheme should be implemented
and for the integration of the elasto-plastic constitutive laws a fully implicit radial
return method should be used (cf. chapter 18 in the course book, note that plane
stress conditions prevail!). Three-node triangle elements are used for the finite
element calculations. The mesh can be generated in Matlab using the pdetool

GUI.

The assignment includes the following

• Derive the FE formulation of the equation of motion.

• Derive the equilibrium iteration procedure by defining and linearizing a
residual, i.e. Newton-Raphson procedure.

• Derive the numerical algorithmic tangent stiffness Dats and the radial re-
turn method for isotropic hardening of the Hill yield surface.

• Use force controlled loading of a simple structure (Figure 3) to obtain the
uniaxial response (loading and unloading) of the material loaded in RD and
CD.
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Figure 3: Simple mesh for unixial tension with traction t.

• Investigate the elasto-plastic response of the detail with part 2 material at
different rotation angle θ by implementing a FE program using the Newton-
Raphson algorithm with a fully implicit radial return method using dis-

placement control. This includes:

– Implementation of the subroutines update_variables.m that checks
for elasto-plastic response and updates accordingly (a manual for the
routines is appended). The routines can be checked with data from
check_update_assignment2018.mat.

– Implementation of the subroutines alg_tan_stiff.m that calculates
the algorithmic tangent stiffness (a manual for this routine is ap-
pended) of the corresponding material. The routines can be checked
with data from check_Dats_assignment2018.mat.

• Use displacement controlled loading and stretch the top boundary 0.2 mm
(correspond to σ(CD) of part 1) then return to the original position. Inves-
tigate the peak stresses and the residual stress as well as the evolution of
the plastic region(s) during this process.

• The following results should be presented in an illustrative way:

– An σ-ε curve for loading and unloading (loaded into the plastic regime)
for the particular model under uniaxial tension, (analytic expressions
may be used for comparison) in RD and CD respectively.

– The development of plastic response regions of the detail during pro-
cedure. Compare the results for the orientation of part 2; θ = 90◦ and
one other orientation of your choice.
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– The Hill effective stress distribution at maximum displacement and
the residual stresses in the detail (the top displaced back to original
position). Compare the data for the orientation of part 2; θ = 0◦

and θ = 90◦ as well as one other case of your choice, e.g. any other
orientation angle or a special case of isotropic material in part 2 (can
be obtained by annealing the material before insertion into part 1).

The report should be well structured and contain sufficient details of the deriva-
tions with given assumptions and approximations for the reader to understand.
Furthermore, some useful hints are given in appendix.

Some interesting questions to consider are:

• Are the results reasonable?

• If the mesh is refined does it change the results?

• What are the limitations for application of the approach, i.e, what are the
main assumptions?

• Is there a significant difference between the peak stresses, residual stresses
and/or the plasticity for various orientation of the material of the insert?

• High residual stresses can typically be problematic in some applications.
Based on your analysis should the manufacturer be more careful with the
orientation of part 2 even though the material cost could increase due to
waste or can it perhaps be used to their advantage?

• Where are the stress concentrations found? How would you suggest to
improve the design?

Good luck!
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Appendix

Material constants

The material constant σy0 is defined as

σy0 =
( 3

2(F +G+H)

)1/2

The material constants F,G,H, L can be calculated from

F =
1

2

[ 1

(σ11
y0)

2
+

1

(σ22
y0)

2
−

1

(σ33
y0)

2

]
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[ 1
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1
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−

1
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1
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[ 1

(σ22
y0)

2
+

1

(σ33
y0)
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2

]

L =
3

2

1

(σy0)2

Hints

1) Note that the Hill yield criterion is only valid if the coordinate system co-
incide with the orthotropic material directions. Thus in order to account
for various orientation an a priori transformation of coordinate system is
required. In Voigt matrix notation the matrix L represent the transfor-
mation to another coordinate system rotated the angle θ counter-clockwise
around the z-axis. The following relation holds

σ
′ = Lσ, σ =





σ11

σ22

σ12





Furthermore it is possible to introduce a matrix that maps stress to its
deviatoric stress as

s = Tσ
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Identify checL and T . Evidently the Hill criterion can be written in as a
function of the rotation as

f =

√

σT P̂ (θ)σ − σy = 0

Identify P̂ (θ). What is the form in the special case of isotropy?

2) From f = f(σ(2), K(2)) = 0 it is possible to derive a constraint that can be
used to find the increment ∆λ;

(σt)TMT
P̂Mσ

t
− σ2

y = 0 (2)

Note, the report should contain a derivation of this expression in order to
get maximum number of points on the assignment. Note that M depends
on ∆λ! In order to solve the constraint for ∆λ the command fzero in
Matlab could be used.

3) You could use a modified Newton-Raphson scheme to solve the problem, i.e.
use the elastic tangent stiffness instead of Dats. The convergence will then
be impaired but it could be useful when developing your program. Note
that for a maximum number of points on the assignment you will need to
use the full Newton-Raphson.

General tips

It is advantageous to start by solving the problem using the simple domain with
isotropy (set σRD

y0 = σCD
y0 = σZD

y0 ) in order to make sure the simplest cases work
before adding more complexity.

If you are familiar with writing in Latex it is recommended to use it when writing
the report since it is fast and easy to write equations. A template is provided on
the course home page for those interested.

Using the correct Dats should yield roughly 4-6 iterations to obtain the correct
solution provided the incremental displacement is not very large (quadratic con-
vergence hold in the neighbourhood of the solution).
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alg_tan_stiff

Purpose: Compute the algorithmic tangent stiffness matrix for a triangular 3
node element under plane stress conditions for a isotropically hardening ortotropic
Hill material.

Syntax: Dats = alg_tan_stiff(sigma,dlambda,ep_eff,Dstar,mp,rotation)

Description: alg_tan_stiff provides the algorithmic tangent stiffness matrix
Dats for a triangular 3 node element. The in-plane stress is provided by sigma

sigma =





σ11

σ22

σ12





Dstar is the linear elastic material tangent for plane stress, dlambda is the incre-
ment ∆λ, ep_eff is the Hill effective plastic strain ε

p
eff and mp a vector containing

the material parameters needed. The parameter rotation provides the counter-
clockwise rotation angle for the RD relative to the global coordinate system. The
algorithmic tangent stiffness is given as

Dats = D
a
−

1

Aa
D

a ∂f

∂σ

( ∂f

∂σ

)T

D
a

D
a =

(

(D∗)−1 +∆λ
∂2f

∂σ∂σ

)

−1

Aa =
( ∂f

∂σ

)T

D
a ∂f

∂σ
−

∂f

∂K
da

da = −

∂K

∂κ

∂f

∂K

Note that you need to prove this in the report!
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update_variables

Purpose: Check for elasto-plastic response and update variables accordingly
for a triangular 3 node element under plane stress conditions for a isotropically
hardening ortotropic Hill material.

Syntax:

[sigma,dlambda,ep_eff] =

update_variables(sigma_old,ep_eff_old,delta_eps,Dstar,mp,rotation)

Description: update_variables provides updates of the in-plane stress sigma,
the increment in plastic multiplier dlambda and the Hill effective plastic strain
ep_eff. The variables are calculated from stress and effective plastic strain at the
last accepted equilibrium state sigma_old and ep_eff_old, respectively. The
increment in strains between the last equilibrium state and the current state;
delta_eps.

The increment ∆λ needed to update the stresses and strains are also computed
and could be used as an indicator of plasticity later on in the code and will
therefore also be used as output from this function.

Moreover Dstar denotes the linear elastic material tangent for plane stress and mp

is a vector containing the material parameters needed. The parameter rotation
provides the counter-clockwise rotation angle for the RD relative to the global
coordinate system.
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