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PROBLEM 1 (10p.)

For a linear elastic material the stress response o;; = s;; + %(Ljakk can be
described by the relations

Okl — SKEkk
Sij = 2G€ij
where the total strain is € = ey + %5kl€pp and

E E
G_2(1+u)’ K_3(1—2u)

a) Assume that a strain energy function W (I, .Jy, J5) exists, where

. | -
I = e, Jy = §ez‘j€jia J3 = geikeklelz’
Derive the most general stress strain response from
ow
Uij =
861']‘

b) Based on the result in a) identify the specific format for the strain energy
considered in this example.

c) Assuming that the strain energy is positive, i.e. W > 0, identity the
constraints on E and v.

d) For the linear elastic material derive the material stiffness D;jj; defined
by the relation 0;; = Djjpi€p.

PROBLEM 2 (10p.)

Derive the incremental stress strain relation in elasto-plasticity. Make use of
that the strain can be decomposed as

_ € p

where superscipt e denotes the elastic part and superscipt p the plastic part
of the strains. The Hooke’s law is given as

0ij = Dijuiey (1)
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The evolution laws are defined as

&=\ of

U 8017 ’

k= Ak, A>0

where f(0;;, K) is the yield surface, K = K () is the hardening function and
k = k(o;j, K) is related to the hardening of the material.

a) Assume plastic loading, use the consistency condition to derive

of

= Diipiér — A =0
aa@-j k1 €kl

and identify A.

b) Use the consistency condition in the above relations to derive the strain
driven incremental law

. o ep -
Oij = Dijklekl
Name one situation where the above relation breaks down.

PROBLEM 3 (10p.)

For materials with a special type of tetragonal crystal structure only 7 ma-
terial parameters are needed to describe the linear relation between stresses
and strains.

To derive the constitutive relation for tetragonal symmetry we will con-
sider a rotation of the coordinate system in the x; — x5 plane by 7 /2 which
is described by the transformation matrix

0

[Aij] = | -1

o O =
—_ O O

0
Recall that the transformation of second-order tensors, i.e. stresses and

strains are given by

/ /
05 = AikaklAjl €5 = AikﬁklAjz



The general stress- strain relation is given by

011 Dyi Dy D3 Dy Dis Dy €11
022 Dy1 Dyy Doz Dyy Diys Do €22
033 _ D3y D3y D33 D3y Dszs Dsg €33
012 Dy Dyo Dyz Dy Dys Dy 2619
013 D5y Dsy Ds3 Dsy Dss  Dsg 2€13
| 023 | _D61 Des De3z Dgs  Des D66_ _2623_

a) Derive the transformation of the different stress and strain components
if transformation matrix A;; is used.

b) Use the arguments about elastic symmetry planes and the transformation
matrix stated above show how the D-matrix reduces. Only the two first
stresses o117 and o9y need to be considered.

PROBLEM 4 (10p.)

For uniaxial experimental tests, i.e. uniaxial loading

03] =

S O 9

0
0
0
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on a metal it was found that a good fitting could be obtained by using a
power law format for the stress strain relation, given by

Ee when e < 22
o=
Oyo + koyo(€?)" when € > 22

where o, € and €” are the uniaxial stress, strain and plastic strain, respectively.
Moreover, E' is Young’s modulus and oy, is the initial yield stress, and finally
n and k are material parameters.

Assuming that the material can be described by a kinematic hardening
von Mises model during plastic loading

5 1/2
f= (581‘;‘81‘]‘) — Oyo =0



where 5;; = s;; — «; is the reduced deviatoric stress tensor, o; is a devia-
toric back-stress tensor and s;; = 0;; — %%akk is the deviatoric stress tensor
Associated plasticity is assumed, i.e

=\ of

K 80’@' ’

A>0

For evolution of the back-stress it is assumed that Melan-prager’s evolution
law is valid

dij = Cé%
where c is a positive material parameter that may depend on the load history.

a) Calculations the plastic strain rate for the above model.

b) For a general load case and the choice strain hardening, i.e.

9 1/2
k= €eff = (géfjé%)

identify the rate of internal variable by use of the flow rule for plastic
strain rates.

c) Considering uniaxial loading identify the choice of internal variable (i.e.

K).
d) For uniaxial loading identify the form of é&;;

e) Given that uniaxial loading, given that the experimental data can be
fitted to the power law function, identify c¢(k).

PROBLEM 5 (10p.)

Let failure of a material be defined by the Drucker-Prager criterion

F(Uij):\/3_J2+041—1—ﬁ:O (1)

where ]
Jo = < 8ijSij, Iy = ok, Sij = 0ij — 70ij0kk
2 3

Moreover, o and (3 are material parameters.



a) [lustrate (1) in the deviatoric plane and in the meridian plane, i.e. the
Iy — \/J5 plane. (Note that I; = o3;). A principal sketch is sufficient.

b) Derive the uniaxial tension and uniaxial compression paths in terms of
I; and /J5. Draw the stress paths in the deviatoric plane and in the
meridian plane.

c) Reduce the Drucker-Prager criterion to plane stress conditions, i.e. o3 =
0.

d) Determine the uniaxial tensile strength o;, uniaxial compression strength
0., biaxial tensile strength o;,; and the biaxial compressive strength oy,
in terms of o and S.

e) Draw the shape of the Drucker-Prager criterion in the oy — 09 plane, and
mark the locations of the stresses in problem d).

PROBLEM 6 (10p.)

In a certain experiment it is found that yielding of a material occurs under
the following states of principal stresses

(Ulu 02, 0-3) = (207 07 ‘5)
(017 02, 0_3) = (_17 07 18)

Assuming that the material is isotropic, that the hydrostatic stress does not
affect the yielding and the yield stress is the same in tension and compression.

Plot as many points as you can derive from these observations in the
01 — 09 space, i.e. biaxial loading, where o3 = 0 (plane stress).



