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PROBLEM 1 (10p.)

For a linear elastic material the stress response σij = sij + 1
3
δijσkk can be

described by the relations

σkk = 3Kεkk

sij = 2Geij

where the total strain is εkl = ekl + 1
3
δklεpp and

G =
E

2(1 + ν)
, K =

E

3(1 − 2ν)

a) Assume that a strain energy function W (Ĩ1, J̃2, J̃3) exists, where

Ĩ1 = εkk, J̃2 =
1

2
eijeji, J̃3 =

1

3
eikekleli

Derive the most general stress strain response from

σij =
∂W

∂εij

b) Based on the result in a) identify the specific format for the strain energy
considered in this example.

c) Assuming that the strain energy is positive, i.e. W > 0, identity the
constraints on E and ν.

d) For the linear elastic material derive the material stiffness Dijkl defined
by the relation σij = Dijklεkl.

PROBLEM 2 (10p.)

Derive the incremental stress strain relation in elasto-plasticity. Make use of
that the strain can be decomposed as

εij = εe
ij + εp

ij

where superscipt e denotes the elastic part and superscipt p the plastic part
of the strains. The Hooke’s law is given as

σij = Dijklε
e
kl (1)
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The evolution laws are defined as

ε̇p
ij = λ̇

∂f

∂σij

, κ̇ = λ̇k, λ̇ ≥ 0

where f(σij , K) is the yield surface, K = K(κ) is the hardening function and
k = k(σij , K) is related to the hardening of the material.

a) Assume plastic loading, use the consistency condition to derive

∂f

∂σij

Dijklε̇kl − λ̇A = 0

and identify A.

b) Use the consistency condition in the above relations to derive the strain
driven incremental law

σ̇ij = Dep
ijklε̇kl

Name one situation where the above relation breaks down.

PROBLEM 3 (10p.)

For materials with a special type of tetragonal crystal structure only 7 ma-
terial parameters are needed to describe the linear relation between stresses
and strains.

To derive the constitutive relation for tetragonal symmetry we will con-
sider a rotation of the coordinate system in the x1 − x2 plane by π/2 which
is described by the transformation matrix

[Aij ] =




0 1 0
−1 0 0
0 0 1





Recall that the transformation of second-order tensors, i.e. stresses and
strains are given by

σ′
ij = AikσklAjl ε′ij = AikεklAjl
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The general stress- strain relation is given by
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a) Derive the transformation of the different stress and strain components
if transformation matrix Aij is used.

b) Use the arguments about elastic symmetry planes and the transformation
matrix stated above show how the D-matrix reduces. Only the two first
stresses σ11 and σ22 need to be considered.

PROBLEM 4 (10p.)

For uniaxial experimental tests, i.e. uniaxial loading

[σij ] =




σ 0 0
0 0 0
0 0 0





on a metal it was found that a good fitting could be obtained by using a
power law format for the stress strain relation, given by

σ =

{
Eε when ε ≤ σyo

E

σyo + kσyo(ε
p)n when ε ≥ σyo

E

where σ, ε and εp are the uniaxial stress, strain and plastic strain, respectively.
Moreover, E is Young’s modulus and σyo is the initial yield stress, and finally
n and k are material parameters.

Assuming that the material can be described by a kinematic hardening
von Mises model during plastic loading

f =

(
3

2
s̄ij s̄ij

)1/2

− σyo = 0
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where s̄ij = sij − αij is the reduced deviatoric stress tensor, αij is a devia-
toric back-stress tensor and sij = σij − 1

3
δijσkk is the deviatoric stress tensor

Associated plasticity is assumed, i.e

ε̇p
ij = λ̇

∂f

∂σij

, λ̇ ≥ 0

For evolution of the back-stress it is assumed that Melan-prager’s evolution
law is valid

α̇ij = cε̇p
ij

where c is a positive material parameter that may depend on the load history.

a) Calculations the plastic strain rate for the above model.

b) For a general load case and the choice strain hardening, i.e.

κ̇ = ε̇eff =

(
2

3
ε̇p
ij ε̇

p
ij

)1/2

identify the rate of internal variable by use of the flow rule for plastic
strain rates.

c) Considering uniaxial loading identify the choice of internal variable (i.e.
κ).

d) For uniaxial loading identify the form of α̇ij

e) Given that uniaxial loading, given that the experimental data can be
fitted to the power law function, identify c(κ).

PROBLEM 5 (10p.)

Let failure of a material be defined by the Drucker-Prager criterion

F (σij) =
√

3J2 + αI1 − β = 0 (1)

where

J2 =
1

2
sijsij , I1 = σkk, sij = σij −

1

3
δijσkk

Moreover, α and β are material parameters.
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a) Illustrate (1) in the deviatoric plane and in the meridian plane, i.e. the
I1 −

√
J2 plane. (Note that I1 = σkk). A principal sketch is sufficient.

b) Derive the uniaxial tension and uniaxial compression paths in terms of
I1 and

√
J2. Draw the stress paths in the deviatoric plane and in the

meridian plane.

c) Reduce the Drucker-Prager criterion to plane stress conditions, i.e. σ3 =
0.

d) Determine the uniaxial tensile strength σt, uniaxial compression strength
σc, biaxial tensile strength σbt and the biaxial compressive strength σbc

in terms of α and β.

e) Draw the shape of the Drucker-Prager criterion in the σ1 − σ2 plane, and
mark the locations of the stresses in problem d).

PROBLEM 6 (10p.)

In a certain experiment it is found that yielding of a material occurs under
the following states of principal stresses

(σ1, σ2, σ3) = (20, 0, 5)

(σ1, σ2, σ3) = (−1, 0, 18)

Assuming that the material is isotropic, that the hydrostatic stress does not
affect the yielding and the yield stress is the same in tension and compression.

Plot as many points as you can derive from these observations in the
σ1 − σ2 space, i.e. biaxial loading, where σ3 = 0 (plane stress).
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