HÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling

TID: 2019-11-01, kl 14.00-19.00

Maximalt 60 poäng kan erhållas på denna tenta. För godkänt krävs 30 poäng.

Tillåtet hjälpmedel: räknare

Uppgift nr	1	2	3	4	5	6
Besvarad						
(sätt x $)$						
Poäng						

Anonymkod:_____

Personlig identifierare:_____

PROBLEM 1 (10p.)

A hyper-elastic model for describing the stress-strain response for arterial tissue has been proposed by Delfino (1997). For small strains the strain energy function can be written as

$$W = W_v + W_d \tag{1}$$

where

$$W_{v} = \frac{1}{2}K\tilde{I}_{1}^{2} \quad W_{d} = \frac{a}{b}\left\{\exp(\frac{b}{2}\tilde{J}_{2}) - 1\right\}$$
(2)

In (2) K is the bulk modulus and the two other material parameters are a = 44.2kPa and b = 16.7 which is a non-dimensional parameter. Moreover, the two invariants given in (2) are defined as

$$\tilde{I}_1 = \epsilon_{kk}$$
 and $\tilde{J}_2 = \frac{1}{2}e_{ij}e_{ij}$

The deviatoric strain tensor is defined from $\epsilon_{ij} = e_{ij} + 1/3\delta_{ij}\epsilon_{kk}$.

a) Derive the stress-strain relation using

$$\sigma_{ij} = \frac{\partial W}{\partial \epsilon_{ij}}$$

b) Establish the secant stiffness D_{ijkl}^s defined from $\sigma_{ij} = D_{ijkl}^s \epsilon_{kl}$, as well as the tangent stiffness D_{ijkl}^t defined from $d\sigma_{ij} = D_{ijkl}^t d\epsilon_{kl}$

PROBLEM 2 (10p.)

The Rousselier (1987) yield criterion for porous material with a void volume fraction denoted by f is given by

$$F = \frac{\sigma_{eff}}{(1-f)\sigma_y(\epsilon_{eff}^p)} + \frac{\sigma_o}{\sigma_y(\epsilon_{eff}^p)}Df \exp\left(\frac{\sigma_{kk}}{(1-f)\sigma_o}\right) - 1 = 0$$

is often used to model porous metallic material. The current yield stress is given by $\sigma_y(\epsilon_{eff}^p)$, where

$$\dot{\epsilon}^p_{eff} = (\frac{2}{3}\dot{\epsilon}^p_{ij}\dot{\epsilon}^p_{ij})^{1/2}$$

is the rate of the effective plastic strain, and ϵ_{ij}^p is the plastic strain.

Moreover D and σ_o are two (constant) material parameters. Furthermore the effective stress is defined as

$$\sigma_{eff} = \sqrt{\frac{3}{2}} s_{ij} s_{ij}$$

a) Assume in-plane pure shear i.e.

$$[\sigma_{ij}] = \begin{bmatrix} 0 & \tau & 0 \\ \tau & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Calculate the stress τ of which yielding starts.

b) Show that if associated plasticity holds i.e.

$$\dot{\epsilon}^p_{ij} = \dot{\lambda} \frac{\partial F}{\partial \sigma_{ij}}$$

the plastic strains in a general loading situation will contribute to the volume change.

PROBLEM 3 (10p.)

Explain how the following models will behave during uniaxial cyclic loading. A graphical explanation (illustration) showing the response in a uniaxial state and its corresponding response in the deviatoric plane is necessary. Explain in words what happens to the elastic region.

- a) Isotropic hardening von Mises model.
- b) Kinematic hardening von Mises model.
- c) Mixed hardening von Mises model.

Consider the three different stress states

$$\boldsymbol{\sigma}_1 = \begin{bmatrix} 2\sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \sigma \end{bmatrix} \quad \boldsymbol{\sigma}_2 = \begin{bmatrix} \sigma & \tau & 0 \\ \tau & \sigma & 0 \\ 0 & 0 & \sigma \end{bmatrix} \quad \boldsymbol{\sigma}_3 = \begin{bmatrix} -2\sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \sigma \end{bmatrix}$$

In the deviatoric plane determine the direction of the loading, i.e. the angle θ given by

$$\cos(3\theta) = \frac{3\sqrt{3}}{2} \frac{J_3}{J_2^{3/2}}$$

where

$$J_2 = \frac{1}{2} s_{ij} s_{ji}, \qquad J_3 = \frac{1}{3} s_{ik} s_{kj} s_{ji}$$

and $s_{ij} = \sigma_{ij} - 1/3\sigma_{kk}\delta_{ij}$ denotes the deviatoric stress tensor and σ_{ij} is the stress tensor.

- d) Calculate the angle corresponding to the three stresses.
- e) Assume the von Mises yield criterion is valid for initial yielding, i.e.

$$F(\sigma_{ij}) = \left(\frac{3}{2}s_{ij}s_{ij}\right)^{1/2} - \sigma_{yo} = 0$$

Calculate the value of τ in σ_2 for which yielding starts.

PROBLEM 4 (10p.)

Let yield and failure of a material be defined by the Drucker-Prager criterion

$$f(\sigma_{ij}) = \sqrt{3J_2} + \alpha I_1 - \beta = 0 \tag{1}$$

where

$$J_2 = \frac{1}{2} s_{ij} s_{ij}, \qquad I_1 = \sigma_{kk}, \qquad s_{ij} = \sigma_{ij} - \frac{1}{3} \delta_{ij} \sigma_{kk}$$

Moreover, β is a material parameters and $\alpha = \alpha(\epsilon_d^p)$, where

$$\dot{\epsilon}_{d}^{p} = (\dot{e}_{ij}^{p} \dot{e}_{ij}^{p})^{1/2}$$

Assume that initial value and the value are failure is given by

$$\alpha_i = \alpha(0), \qquad \alpha_f = \alpha(\epsilon_d^p \to \infty)$$

where $\alpha_i < \alpha_f$

a) Illustrate (1) in the deviatoric plane and in the meridian plane, i.e. the $I_1 - \sqrt{3J_2}$ plane, consider both α_i and α_f . A sketch is sufficient.

- b) Derive the uniaxial tension and uniaxial compression paths in terms of I_1 and $\sqrt{J_2}$. Include both the initial yield surface and the failure surface. Draw the stress paths in the deviatoric plane and in the meridian plane such that it reaches the failure surface.
- c) Reduce the Drucker-Prager criterion to plane stress conditions, i.e. $\sigma_3 = 0$.
- d) Determine the initial: uniaxial tensile strength σ_t , uniaxial compression strength σ_c , biaxial tensile strength σ_{bt} and the biaxial compressive strength σ_{bc} in terms of α and β .
- e) Draw the shape of the Drucker-Prager criterion in the $\sigma_1 \sigma_2$ plane, and mark the locations of the stresses in problem d).

PROBLEM 5 (10p.)

Consider the Tsai-Wu criterion that is commonly used as a fracture criterion for composites, paper and paperboard, i.e.

$$F = \boldsymbol{\sigma}^T \boldsymbol{P} \boldsymbol{\sigma} + \boldsymbol{q}^T \boldsymbol{\sigma} - 1 = 0$$

where

$$oldsymbol{\sigma}^T = egin{bmatrix} \sigma_{11} & \sigma_{22} & \sigma_{33} & \sigma_{12} & \sigma_{13} & \sigma_{23} \end{bmatrix}$$

Moreover, for a coordinate system aligned with the material directions

$$\boldsymbol{P} = \begin{bmatrix} A & -F & -G & 0 & 0 & 0 \\ -F & B & -H & 0 & 0 & 0 \\ -G & -H & C & 0 & 0 & 0 \\ 0 & 0 & 0 & 2L & 0 & 0 \\ 0 & 0 & 0 & 0 & 2M & 0 \\ 0 & 0 & 0 & 0 & 0 & 2N \end{bmatrix}$$

and

 $\boldsymbol{q}^T = \begin{bmatrix} q_1 & q_2 & q_3 & 0 & 0 \end{bmatrix}$

The task is to calibrate the model.

a) Consider different uniaxial loading conditions (both tension as well as compression) show that A, B, C, q_1, q_2 and q_3 can be determined. Derive only an explicit expression for A and q_1 .

b) Show that if a biaxial loading condition is applied, i.e. $\sigma_{11} \neq 0$ and $\sigma_{22} \neq 0$ otherwise $\sigma_{ij} = 0$ that F can be determined.

PROBLEM 6 (10p.)

For materials with a special type of tetragonal crystal structure only 7 material parameters are needed to describe the linear relation between stresses and strains.

To derive the constitutive relation for tetragonal symmetry we will consider a rotation of the coordinate system in the $x_1 - x_2$ plane by $\pi/2$ which is described by the transformation matrix

$$[A_{ij}] = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Recall that the transformation of second-order tensors, i.e. stresses and strains are given by

$$\sigma_{ij}' = A_{ik}\sigma_{kl}A_{jl} \qquad \epsilon_{ij}' = A_{ik}\epsilon_{kl}A_{jl}$$

The general stress- strain relation is given by

σ_{11}		D_{11}	D_{12}	D_{13}	D_{14}	D_{15}	D_{16}	ϵ_{11}
σ_{22}		D_{21}	D_{22}	D_{23}	D_{24}	D_{25}	D_{26}	ϵ_{22}
σ_{33}		D_{31}	D_{32}	D_{33}	D_{34}	D_{35}	D_{36}	ϵ_{33}
σ_{12}	=	D_{41}	D_{42}	D_{43}	D_{44}	D_{45}	D_{46}	$2\epsilon_{12}$
σ_{13}		D_{51}	D_{52}	D_{53}	D_{54}	D_{55}	D_{56}	$2\epsilon_{13}$
σ_{23}		D_{61}	D_{62}	D_{63}	D_{64}	D_{65}	D_{66}	$2\epsilon_{23}$

- a) Derive the transformation of the different stress and strain components if transformation matrix A_{ij} is used.
- b) Use the arguments about elastic symmetry planes and the transformation matrix stated above show how the D-matrix reduces. Only the two stresses σ_{33} and σ_{12} need to be considered.