
Computational Materials Modeling FHLN05
Computer lab

Motivation
In the basic Finite Element (FE) course, the analysis is restricted to materials where the
relationship between stress and strain is linear. For most many applications this is not the
case and nonlinear and inelastic effects enters the formulation. In this computer lab you will
write a FE program that is capable of dealing with such effects. The structure of a nonlinear
finite element program will be examined. The understanding of the structure of a nonlinear
finite element program is absolutely vital since it is virtually the same irrespectively of the
cause of the nonlinear behaviour. One of the most extensively used algorithms for solving
the global equilibrium equations in FE-analysis is the Newton-Raphson algorithm, which
possesses a quadratic convergence rate. The main purpose of this computer lab is to gain
understanding of the different aspects involved when establishing a nonlinear FE program.
It is emphasized that the same Newton-Raphson algorithm can be used in the written
assignment.

General instructions
Two assignments will be carried out during the course: one nonlinear elastic problem; this
computer lab, and one elasto-plastic problem; the written assignment. Since a similar
program structure will be used in the elasto-plastic problem as in the elastic problem it is
of great importance that the computer lab is properly done before you start solving the
assignment.
This computer lab should be carried out during a computer session and needs to be ap-
proved. You are not required to hand in a formal report but in order to pass the lab
it is required that you complete tasks a-h, given in the section ’Instructions’
herein, and get an approval from your teaching assistant no later than October
5 at 10.00. It is recommended that you work in groups of two but it is allowed to work
alone. Please note that preparations (found on page 4) should be done before the lab.

Problem description
A toy for dogs is constructed from a nonlinear elastic, rubber like material and has the
geometry shown in Fig. 1. The geometry is given in meters and the toy has a thickness
of 3 cm. The dogs pull at different ends of the toy, causing it to deform. The material
used to construct the toy is isotropic nonlinear elastic. The strain energy is assumed to
be independent of the third generic strain invariant, i.e. W = W (Ĩ1, J̃2). The stress strain

1



Figure 1: Dog toy geometry.

relations are derived in chapter 4.9 in the course book and are given by

σkk = 3Kϵkk sij = 2Geij

Here σij and ϵij denotes the stress and strain tensors, respectively. Moreover, sij = σij −
1/3δijσkk and eij = ϵij − 1/3δijϵkk are the deviatoric stress and strain tensors, respectively.
From experimental tests it is concluded that in the small-strain regime, the shear modulus
G of the material varies with the strains according to the relationship

G = A exp (BJ̃2),

where the invariant J̃2 is given by J̃2 = 1/2eij eji. It can be assumed that the bulk modulus
K = E

3(1−2ν)
remains constant. The initial elastic modulus of the material is E = 10 MPa

and the Poisson’s ratio is set to ν = 0.45 as the material shows high resistance to volume
changes. The parameter B is taken as B = 1 · 105 while the value of A needs to be
determined.

2



Instructions
The task is to solve the linear momentum equation for the toy,

σij,j + bi = müi

when 1) a force is applied at the external vertical boundaries and 2) the external vertical
boundaries are given a known displacement. For simplicity static conditions are assumed
and body forces are neglected. In order to solve the problem the CALFEM-toolbox should
be used. In CALFEM, certain general FE-routines are already established however you
need to establish extra routines in order to solve the nonlinear elastic boundary value prob-
lem.

The following steps need to be complete in order to pass this computer lab

a) Generate a mesh with pdetool. Instructions for this are found in appendix B.

b) Derive expressions for the stress σij and the tangent operator Dt
ijkl. Some hints are

found in appendix A.

c) Compare your expression for the tangent with the linear expression in eq. (4.89) in
the course book. The tangents should coincide for zero strain. What is the value of
A? Use this value for the parameter.

d) Write element routines my_stress.m and my_tangent.m that calculate the stress and
tangent. See appended manuals in appendix A for the structure of the functions.

e) Construct a FE-program using a force controlled Newton-Raphson algorithm to solve
the global equilibrium equation.

f) Plot the force-displacement curve, of plot_dof, for force controlled loading. Load
the structure so that the final applied load is approximately 30kPa.

g) Plot the force-displacement curve, of plot_dof, during a load cycle (loading and
unloading) for displacement controlled loading. Load the structure up to 3 mm and
back.

h) Plot the von Mises effective stress field for force controlled and displacement con-
trolled loading. The following code can be made to extract the element effective
stress to nodes to be able to plot them using MATLAB plot command fill:

for node = 1:nnod
[c0,c1] = find(enod==node);
eff_node(node,n) = sum(vMises(c0)/size(c0,1));

end

3



where vMises is the effective element stresses.

Three node triangular elements should be used in the finite element calculations. The
calculations should be done for plane strain condition (for simplicity).
For the global equilibrium loop the Newton-Raphson method should be adopted. An
appropriate amount of Newton-Raphson iterations is around 2-6 in each load step. The
stress and tangent stiffness routines should be contained in separate Matlab functions so
that they can easily be reused later on.
After step c) is completed it is recommended that you consult a teacher assistant before
you proceed to program the element routines.

Preparations
Before the lab you should;

• Read through the lab instructions.

• Read pages 423-445 in the course book.

• Generate a mesh i.e., step a). Instructions for this are found in appendix B. In
order to check that your geometry is correct it should be plotted using the CALFEM
routine eldraw2;
eldraw2(ex,ey,[1 2 0],1:nbr_elem)

• On only a few pages present the derivations of the stress and tangential stiffness ten-
sors as well as the value of the parameter A i.e., b) and c). Present each component
of the tangent stiffness tensor in the following format;

Dt =

 D1111 D1122 D1112

D2211 D2222 D2212

D1211 D1222 D1212


The derivations should be approved by the lab tutor before the computer session.

Implementation
After starting MATLAB, begin with adding CALFEM into your MATLAB library using
the editpath command. Write the two functions my_stress.m and my_tangent.m. All
MATLAB functions begin with the following structure; function [output] = function
name (input). See the manuals for the specific inputs and outputs to use for the the two
routines. Check your element routines by loading the file checkroutines.mat. This file
contain an example of a strain tensor eps and the corresponding stress sigma and tangential
stiffness matrix Dt. Use the strain tensor together with the correct material parameters

4



as input to your routines and check that they agree with the stress and stiffness matrices
supplied by the file.

Main program
When writing the main program use the structure for the Newton-Raphson algorithm
sketched in Tab. 1 and follow the instructions given for the program segments a)-l).

Description of program structure

a) Define your material parameters and an element property vector ep that is needed for
some of the CALFEM routines.
ep = [ptype t] where;
ptype = analyse type (ptype=2 for plane strain) and
t = thickness of the specimen.
Additional quantities, like the size of the tolerance required for the Newton-Rapshon
loop and number of load steps should also be set here.

b) Initiate the following quantities;

a = zeros(nbr_dof,1); %Displacement vector
K = zeros(nbr_dof); %Stiffness matrix
f = zeros(nbr_dof,1); %External force vector
f_int = zeros(nbr_dof,1); %Internal force vector
eps = zeros(nbr_elem,3); %Element strain matrix

c) Calculate an initial tangential stiffness matrix for the zero strain state using my_tangent
together with the the CALFEM routine plante. See hint for assembling the stiffness
matrix in step j).

d) For each load step, apply the incremental load. In the case of force-controlled loading,
add a incremental external force df to the total external force f in each load step.
In case of displacement-controlled loading the load is controlled by the boundary
conditions given in bc.

e) Calculate the residual used for checking convergence of the iterations.

f) Calculate the incremental displacements from the linearised residual using the CALFEM
routine solveq.

g) Update the strains using the CALFEM routine plants.

h) Calculate stresses and tangential stiffness matrix using your own routines my_stress
and my_tangent.

5



i) Calculate internal forces and stiffness matrix for each element using the CALFEM
routines plantf (note the orientation of fe retrieved from plantf) and plante
respectively. Don’t forget to reset the global matrices in each iteration
before assembling them again, otherwise you will just continue adding numbers
in an old matrix/vector.

j) Assemble element matrices to global matrices using CALFEMs assem routine or add
the following lines inside your element-loop;

indx = edof(j,2:end);
K(indx,indx)=K(indx,indx)+Ke; f_int(indx)=f_int(indx)+fe;

k) Update residual, set residual to zero at nodes constrained by Dirichlet bound-
ary conditions.

l) Reset the second column of bc, you only want to move one displacement increment in
each load step.

Finally for plotting the deformed shapes the CALFEM routine eldisp2 is useful.

6



% a) define material parameters and
% b) initiate quantities
% c) calc. initial tangential stiffness matrix and stiffness matrix

% load-loop
for n=1:nbr_step

% d) apply load
% e) calc. the linearised residual

% iteration-loop
while res>TOL

% f) calc. the incremental displacement

for j=1:nbr_elem

% g) update the strains
% h) calc. stresses and tangential stiffness matrix
% i) calc. element internal forces and stiffness matrix
% j) assembly element matrices to global matrices

end

% k) update the residual and set residual to zero at appropriate places
% l) set boundary conditions to zero at appropriate places

end
end

Table 1: Newton-Raphson algorithm.

7



Appendix A

A.1 Hints
The tangential stiffness tensor is found by differentiating the stress tensor with respect to
the strain tensor according to

Dt
ijkl =

∂σij

∂εkl

In performing the calculations the derivative of the second strain invariant might be useful

∂J̃2
∂εij

= eij

Finally, when differentiating symmetric tensors – as σij and εij – with respect to themselves,
symmetry is preserved by differentiating according to

∂εij
∂εkl

=
1

2
(δilδjk + δikδjl) and ∂σij

∂σkl

=
1

2
(δilδjk + δikδjl)

where δij is the Kronecker delta.

8



A.2. MANUALS APPENDIX A.

A.2 Manuals
Function:

my_stress

Purpose:
Compute the stress in a triangular 3 node element in plane strain.

ex

ey

a1

a2

(x1, y1)

a3

a4

(x2, y2)

a5

a6

(x3, y3)

Syntax:
sigma=my_stress(eps,mp)

Description:
my_stress provides the stresses σ11, σ22, σ33 and σ12 for a triangular 3 node element.
The element strains ε11, ε22 and γ12 = 2ε12 are supplied by eps;

eps =

ε11ε22
γ12


The material parameters are defined in a vector mp. Calculate and send out all four
stress components in the following format;

sigma =


σ11

σ22

σ33

σ12



9



A.2. MANUALS APPENDIX A.

Function:
my_tangent

Purpose:
Compute the material tangent matrix D for a triangular 3 node element.

ex

ey

a1

a2

(x1, y1)

a3

a4

(x2, y2)

a5

a6

(x3, y3)

Syntax:
[D]=my_tangent(eps,mp)

Description:
my_tangent computes the material tangent D for a triangular 3 node element. Inputs
to the function are the strains eps and material parameters as defined in my_stress.

Store the following components of the tangential stiffness matrix;

D = Dt =

Dt
1111 Dt

1122 Dt
1112

Dt
2211 Dt

2222 Dt
2212

Dt
1211 Dt

1222 Dt
1212



10



Appendix B

B.1 Generating mesh
In this assignment you should create your own mesh using the built-in PDEtool in MAT-
LAB. PDEtool can be used directly to create simple geometries with little effort. To start
just type pdetool into the MATLAB terminal to open PDEtool user interface. Although
the tool is originally designed for solving partial differential equations only the meshing
aspect are of interest in this assignment. Due to symmetry of the toy one fourth of the
bone is meshed. The segment of the dog bone geometry that should be meshed can be
seen in figure B.1.

Figure B.1: Dog toy geometry.

A step by step tutorial of how to use some of the basic features of PDEtool are provided
here. Before starting to draw it is often convenient to activate grid and change the axis
scales. This is done using <Options> menu. To build our geometry simple geometries are

11



B.1. GENERATING MESH APPENDIX B.

added one by one. The basic shapes used in PDEtool are rectangles, ellipses and polygons.
Basic drawing tools can be found on the toolbar (see figure B.2, note polygons are not
necessary to create the geometry for the lab).

Figure B.2: Basic tools for drawing in PDEtool.

Draw a rectangle: Create a rectangle by using the rectangle tool (see figure B.2) and
simply hold left mouse button and move the mouse cursor to obtain the desired size. To
adjust the size and position double click on the rectangle and a dialog will appear where
coordinates and dimensions can be provided, see figure B.3.

Figure B.3: Rectangle object dialog.

Draw an ellipse: Create a ellipse by using the draw ellipse tool (see figure B.2) and simply
hold left mouse button and move the mouse cursor to obtain the desired size. Double click
to adjust position and size in similar fashion as for rectangles.
Determining combined geometry: In the box below shape-buttons the present features
are presented by name (which may be edited using object dialog). The plus sign indicates
that geometries are added and minus signs indicate that they are cut out. Because of this
the order is important i.e R1+E1-E2 ̸= R1-E2+E1 in general. Below figues showing
drawn features and the resulting body after combining by grouping and changing signs in
the set formula row (see figure B.4, B.6 and B.5). Note that to see the resulting geometry
we need to go to either meshing or boundary view (see toolbar).

12



B.1. GENERATING MESH APPENDIX B.

Figure B.4: Set of combined shapes.

When the necessary features are added go to <Boundary> / <Boundary mode> to see
which are the boundaries of your geometry. The red arrows define the main borders and
the grey contours represent the so called subdomains. For instance, subdomains appear
where features overlap. To get a uniform mesh it is convenient to remove the subdomains.
To do so use <Boundary> / <Remove all Subdomain Borders>.

13



B.1. GENERATING MESH APPENDIX B.

Figure B.5: Resulting geometry seen in boundary mode (ctrl+B) after all subdomains have
been removed.

To obtain the geometry provided in figure B.5 the formula used is given in figure B.6 and
the object names is seen in figure B.4.

Figure B.6: Formula determining active areas.

To generate a mesh simply press mesh tool when the geometry seen in boundary mode
is satisfactory (see figure B.2). To refine the mesh, i.e. create more elements, press re-
fine mesh until enough elements are generated (remember that finer mesh means higher
computational cost but better accuracy). To save time in the lab do not use too many
elements.

14



B.1. GENERATING MESH APPENDIX B.

Figure B.7: Mesh after two refinements.

When you are content with your mesh use <Mesh> / <Export mesh> to save the topol-
ogy matrices associated with the current mesh (note you have to save the work sepa-
rately to keep geometries etc. since <Export mesh> will only save matrices). The
topology matrices are p,e,t (points, edges, triangles). The exported matrices will di-
rectly appear in the active MATLAB workspace. It is strongly advised to save them
directly in a .mat file (mark variables in workspace, right click and save) so it can be
loaded in the scrips you write during the lab. From p,e,t the traditional CALFEM
quantities edof, dof, coord etc can be extracted. On the course web page for the fi-
nite element course, instructions of how this is done may be found in the FAQs, how-
ever to save time a function called TopConstMod.m has been created to extract the rel-
evant quantities for the lab and assignment. The syntax of TopConstMod.m is given by
[bc,df,edof,dof,coord,enod,plot_dof] = TopConstMod(p,t,dtau_x,du,th,control)

15



B.1. GENERATING MESH APPENDIX B.

Variable Description Size
bc Dirichlet boundary conditions
coord Coordinates of nodes [nbr_node×2]
dof Degrees of freedom [nbr_node×2]
edof Element topology matrix [nbr_elem×7]
ex Element x-coordinates [nbr_elem×3]
ey Element y-coordinates [nbr_elem×3]
df External force increment vector [nbr_dof×1]
plot_dof Degree of freedom used for plotting
dtau_x Incremental traction stress in x-dir
du Incremental displacement in x-dir
th Thickness
control 0 = force controlled, 1 = if displacement controlled

Table B.1: Nomenclature.

16


