GENERAL EXPERIMENTAL EVIDENCE

Bauschinger-effect

Div. of Solid Mechanics, Lund University

GENERAL EXPERIMENTAL EVIDENCE

Strain cyclings

Stress cycling

cyclic hardening

cyclic softening

GENERAL EXPERIMENTAL EVIDENCE

Strain cyclings between unsymmetric strain values

Stress cycling between unsymmetric stress values

Div. of Solid Mechanics, Lund University

GENERAL EXPERIMENTAL EVIDENCE, PAPERBOARD

Strain cyclings between unsymmetric strain values

Stress cycling between unsymmetric stress values

GENERAL EXPERIMENTAL EVIDENCE

Triaxial compression of concrete

GENERAL EXPERIMENTAL EVIDENCE

Hydrostatic compression of concrete $\sigma_1 = \sigma_2 = \sigma_3 < 0$

Meridian plane, plastic volume increase

ISOTROPIC HARDENING OF VON MISES MATERIAL

We have

$$\dot{\sigma}_{ij} = D^{ep}_{ijkl} \dot{\epsilon}_{kl}$$

where

$$D_{ijkl}^{ep} = D_{ijkl} - \frac{1}{A} D_{ijst} \frac{\partial g}{\partial \sigma_{st}} \frac{\partial f}{\partial \sigma_{mn}} D_{mnkl}$$

and

$$A = H + \frac{\partial g}{\partial \sigma_{ij}} D_{ijkl} \frac{\partial f}{\partial \sigma_{kl}}$$

von Mises – isotropic hardening

$$g = f = \sqrt{\frac{3}{2}s_{ij}s_{ij}} - \sigma_{yo} = 0$$

where

 $\sigma_y(\kappa) = \sigma_{yo} + K(\kappa)$

Isotropic elasticity

$$D_{ijkl} = 2G[\frac{1}{2}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \frac{\nu}{1 - 2\nu}\delta_{ij}\delta_{kl}]$$

We find

$$D_{ijkl}^{ep} = D_{ijkl} - \frac{9G^2}{A} \frac{s_{ij}s_{kl}}{\sigma_y^2}$$

Div. of Solid Mechanics, Lund University

ISOTROPIC HARDENING OF VON MISES MATERIAL

Unsymmetric loading

unsymmetric stress cycling unsymmetric stress cycling

no ratchetting no

no mean stess relaxation

ISOTROPIC HARDENING OF VON MISES MATERIAL

Nonlinear isotropic hardening

$$H = \frac{d\sigma_y(\epsilon_{eff}^p)}{d\epsilon_{eff}^p}$$

Div. of Solid Mechanics, Lund University

KINEMATIC HARDENING OF VON MISES MATERIAL

$$f(\sigma_{ij}, K^{\alpha}) = F(\bar{J}_2) = 0$$

where

$$\bar{J}_2 = \frac{1}{2}\bar{s}_{ij}\bar{s}_{ij} = \frac{1}{2}(s_{ij} - \alpha^d_{ij})(s_{ij} - \alpha^d_{ij})$$

or

$$f = \sqrt{\frac{3}{2}(s_{ij} - \alpha^{d}_{ij})(s_{ij} - \alpha^{d}_{ij})} - \sigma_{yo} = 0$$

Assume Melan (1938)-Prager (1955) evolution law for back-stress

 $\dot{\alpha}_{ij} = c \dot{\epsilon}_{ij}^p$

Flow rule

$$\dot{\epsilon}_{ij}^{p} = \dot{\lambda} \frac{\partial f}{\partial \sigma_{ij}} = \dot{\lambda} \frac{3(s_{ij} - \alpha_{ij}^{d})}{2\sigma_{yo}}$$

i.e.

$$\dot{\alpha}_{ij} = \dot{\alpha}_{ij}^d$$

purely deviatoric

Generalized plastic modulus

$$H = \frac{3}{2}c$$

Div. of Solid Mechanics, Lund University

KINEMATIC HARDENING OF VON MISES MATERIAL

Illustraition of Melan-Prager's evolution law

KINEMATIC HARDENING OF VON MISES MATERIAL

We have

$$D_{ijkl}^{ep} = D_{ijkl} - \frac{9G^2}{A} \frac{\bar{s}_{ij}\bar{s}_{kl}}{\sigma_y^2}$$

or in matrix format

$$\boldsymbol{D}^{ep} = \frac{E}{1+\nu} \begin{bmatrix} \frac{1-\nu}{1-2\nu} - M\bar{s}_{11}^2 & \frac{\nu}{1-2\nu} - M\bar{s}_{11}\bar{s}_{22} & \frac{\nu}{1-2\nu} - M\bar{s}_{11}\bar{s}_{33} & -M\bar{s}_{11}\bar{s}_{12} & -M\bar{s}_{11}\bar{s}_{13} & -M\bar{s}_{11}\bar{s}_{23} \\ \frac{1-\nu}{1-2\nu} - M\bar{s}_{22}^2 & \frac{\nu}{1-2\nu} - M\bar{s}_{22}\bar{s}_{33} & -M\bar{s}_{22}\bar{s}_{12} & -M\bar{s}_{22}\bar{s}_{13} & -M\bar{s}_{22}\bar{s}_{23} \\ \frac{1-\nu}{1-2\nu} - M\bar{s}_{33}^2 & -M\bar{s}_{33}\bar{s}_{12} & -M\bar{s}_{33}\bar{s}_{13} & -M\bar{s}_{33}\bar{s}_{23} \\ \frac{1}{2} - M\bar{s}_{12}^2 & -M\bar{s}_{12}\bar{s}_{13} & -M\bar{s}_{12}\bar{s}_{23} \\ \frac{1}{2} - M\bar{s}_{13}^2 & -M\bar{s}_{13}\bar{s}_{23} \\ \frac{1}{2} - M\bar{s}_{13}^2 & -M\bar{s}_{13}\bar{s}_{23} \\ \frac{1}{2} - M\bar{s}_{23}^2 \end{bmatrix}$$

$$M = \frac{9G}{2A\sigma_{yo}^2} \qquad A = H + 3G$$

Linear hardening, H=constant, i.e. c=constant

Nonlinear hardening $c = c(\epsilon_{eff}^p)$

KINEMATIC HARDENING OF VON MISES MATERIAL

KINEMATIC HARDENING OF VON MISES MATERIAL

Symmetric cyclic loading

Unsymmetric cyclic loading

Div. of Solid Mechanics, Lund University

MIXED HARDENING OF VON MISES MATERIAL

Linear hardening

MIXED HARDENING OF VON MISES MATERIAL

Symmetric cyclic loading

Unsymmetric cyclic loading

Div. of Solid Mechanics, Lund University

THE MRÓZ MODEL

Multilinear approximation of uniaxial response

Position of von Mises surfaces

THE MRÓZ MODEL

Increasing unaxial loading

Div. of Solid Mechanics, Lund University

THE MRÓZ MODEL

Reversed unaxial loading

BOUNDING SURFACE MODELS

Overshooting effect

Div. of Solid Mechanics, Lund University

ARMSTRONG-FREDRICK'S MODELS

– Mixed hardening –

Prediction of mixed hardening

ARMSTRONG-FREDRICK'S MODELS

Symmetric cyclic loading, pure kinematic hardening

Symmetric cyclic loading, mixed hardening

Div. of Solid Mechanics, Lund University

ARMSTRONG-FREDRICK'S MODELS

Kinematic hardening unsymmetric cyclic loading

ARMSTRONG-FREDRICK'S MODEL

–von Mises, nonlinear kinematic hardening–

Yield function (assuming plasticity)

$$f = \left(\frac{3}{2}\bar{s}_{ij}\bar{s}_{ij}\right)^{1/2} - \sigma_{yo} = 0 \qquad \bar{s}_{ij} = s_{ij} - \alpha_{ij}$$

evolution law of A-F

$$\dot{\alpha}_{ij} = h(\frac{2}{3}\dot{\epsilon}_{ij}^p - \frac{\alpha_{ij}}{\alpha_{\infty}}\dot{\epsilon}_{eff}^p)$$

Flow rule

$$\dot{\epsilon}^{p}_{ij} = \dot{\lambda} \frac{\partial f}{\partial \sigma_{ij}} = \dot{\lambda} \frac{3}{2} \frac{\bar{s}_{ij}}{\sigma_{yo}}$$

Effective plastic strain rate

$$\dot{\epsilon}^p_{eff} = \left(\frac{2}{3}\dot{\epsilon}^p_{ij}\dot{\epsilon}^p_{ij}\right)^{1/2} = \dot{\lambda}$$

Generalized plastic modulus

$$\begin{split} \dot{f} &= 0 \quad \Rightarrow \quad \frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} + \frac{\partial f}{\partial \alpha_{ij}} \dot{\alpha}_{ij} = 0 \\ \frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} + \frac{\partial f}{\partial \alpha_{ij}} h(\frac{2}{3} \dot{\epsilon}^p_{ij} - \frac{\alpha_{ij}}{\alpha_{\infty}} \dot{\epsilon}^p_{eff}) = 0 \\ \frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} + \dot{\lambda} \underbrace{\left[\frac{\partial f}{\partial \alpha_{ij}} h(\frac{\bar{s}_{ij}}{\sigma_{yo}} - \frac{\alpha_{ij}}{\alpha_{\infty}})\right]}_{-H} = 0 \end{split}$$

Div. of Solid Mechanics, Lund University

ARMSTRONG-FREDRICK'S MODEL

-von Mises, nonlinear kinematic hardening-

We found

1

$$H = -\frac{\partial f}{\partial \alpha_{ij}} h(\frac{\bar{s}_{ij}}{\sigma_{yo}} - \frac{\alpha_{ij}}{\alpha_{\infty}})$$

where

$$\frac{\partial f}{\partial \alpha_{ij}} = -\frac{3}{2} \frac{\bar{s}_{ij}}{\sigma_{yo}}$$

i.e.

$$H = h(1 - \frac{3}{2} \frac{\bar{s}_{ij} \alpha_{ij}}{\sigma_{yo} \alpha_{\infty}})$$

Generalized plastic modulus is not constant, different values depending on load direction

Yield function

$$f = f(\sigma_{ij}, K^{\alpha})$$

hardening parameters

Kinematics

 $\epsilon_{ij} = \epsilon^e_{ij} + \epsilon^p_{ij}$

Hooke's law $\sigma_{ij} = D_{ijkl} \epsilon^e_{kl}$, D_{ijkl} is constant, i.e.

 $\dot{\sigma}_{ij} = D_{ijkl} (\dot{\epsilon}_{kl} - \dot{\epsilon}_{kl}^p)$

Flow rule

$$\dot{\epsilon}_{ij} = \dot{\lambda} \frac{\partial g}{\partial \sigma_{ij}} \qquad g = g(\sigma_{ij}, K^{\alpha})$$

i.e.

$$\dot{\sigma}_{ij} = D_{ijkl} \dot{\epsilon}_{kl} - \dot{\lambda} D_{ijst} \frac{\partial g}{\partial \sigma_{st}}$$

Consistency $\dot{f} = 0$ during plastic loading, i.e.

$$\dot{f} = \frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} + \frac{\partial f}{\partial K^{\alpha}} \dot{K}^{\alpha} = 0$$

Div. of Solid Mechanics, Lund University

ELASTO-PLASTIC STIFFNESS TENSOR -CORRESPONDING MATRIX FORMAT-

We found

$$\dot{\sigma}_{ij} = D_{ijkl} \dot{\epsilon}_{kl} - \dot{\lambda} D_{ijst} \frac{\partial g}{\partial \sigma_{st}} \tag{1}$$

and

$$\dot{f} = \frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} + \frac{\partial f}{\partial K^{\alpha}} \dot{K}^{\alpha} = 0$$
⁽²⁾

Moreover

$$K^{\alpha} = K^{\alpha}(\kappa^{\beta}), \quad \text{i.e.} \quad \dot{K}^{\alpha} = \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} \dot{\kappa}^{\beta} \quad (3)$$

internal variables

Evolution law for $\dot{\kappa}$

$$\dot{\kappa}^{\beta} = \dot{\lambda} \underbrace{k^{\beta}(\sigma_{ij}, K^{\alpha})}_{\bullet}$$

evolution function (that we choose

Insertion in (3)

$$\dot{K}^{\alpha} = \dot{\lambda} \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} k^{\beta}$$

into (2)

$$\frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} + \frac{\partial f}{\partial K^{\alpha}} \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} k^{\beta} \dot{\lambda} = 0$$

We found

$$\dot{\sigma}_{ij} = D_{ijkl} \dot{\epsilon}_{kl} - \dot{\lambda} D_{ijst} \frac{\partial g}{\partial \sigma_{st}} \tag{1}$$

and

$$\frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} + \frac{\partial f}{\partial K^{\alpha}} \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} k^{\beta} \dot{\lambda} = 0$$

Define the generalized plastic modulus

$$H = -\frac{\partial f}{\partial K^{\alpha}} \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} k^{\beta}$$

then

$$\frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} - H\dot{\lambda} = 0$$

Using (1) yields

$$\frac{\partial f}{\partial \sigma_{ij}} D_{ijkl} \dot{\epsilon}_{kl} - \dot{\lambda} \left(\frac{\partial f}{\partial \sigma_{ij}} D_{ijst} \frac{\partial g}{\partial \sigma_{st}} + H \right) = 0$$

where

$$A = \frac{\partial f}{\partial \sigma_{ij}} D_{ij\,st} \frac{\partial g}{\partial \sigma_{st}} + H > 0$$

i.e.

$$\dot{\lambda} = \frac{1}{A} \frac{\partial f}{\partial \sigma_{ij}} D_{ijkl} \dot{\epsilon}_{kl}$$

Div. of Solid Mechanics, Lund University

ELASTO-PLASTIC STIFFNESS TENSOR -CORRESPONDING MATRIX FORMAT-

We found

$$\dot{\sigma}_{ij} = D_{ijkl} \dot{\epsilon}_{kl} - \dot{\lambda} D_{ijst} \frac{\partial g}{\partial \sigma_{st}}$$

 $\quad \text{and} \quad$

$$\dot{\lambda} = \frac{1}{A} \frac{\partial f}{\partial \sigma_{ij}} D_{ij\,kl} \dot{\epsilon}_{kl}$$

In conclusion (strain driven format)

$$\dot{\sigma}_{ij} = D^{ep}_{ij\,kl} \dot{\epsilon}_{kl}$$

where

$$D_{ijkl}^{ep} = D_{ijkl} - \frac{1}{A} D_{ijst} \frac{\partial g}{\partial \sigma_{st}} \frac{\partial f}{\partial \sigma_{mn}} D_{mnkl}$$

where

$$A = \frac{\partial f}{\partial \sigma_{ij}} D_{ijst} \frac{\partial g}{\partial \sigma_{st}} + H > 0$$

 and

$$H = -\frac{\partial f}{\partial K^{\alpha}} \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} k^{\beta}$$

General remarks

 $\dot{\sigma}_{ij} = D^{ep}_{ij\,kl} \dot{\epsilon}_{kl}$

where

$$D_{ijkl}^{ep} = D_{ijkl} - \frac{1}{A} D_{ijst} \frac{\partial g}{\partial \sigma_{st}} \frac{\partial f}{\partial \sigma_{mn}} D_{mnkl}$$

where

$$A = \frac{\partial f}{\partial \sigma_{ij}} D_{ij\,st} \frac{\partial g}{\partial \sigma_{st}} + H, \qquad H = -\frac{\partial f}{\partial K^{\alpha}} \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} k^{\beta}$$

Having chosen f and g, it is the quantity H that is of importance

Route 1:

Choose
$$K^{\alpha} = K^{\alpha}(\kappa^{\beta})$$
, i.e. $\dot{K}^{\alpha} = \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} \dot{\kappa}^{\beta}$
Choose $\dot{\kappa}^{\beta} = \dot{\lambda} k^{\beta}$
i.e. $\dot{K}^{\beta} = \dot{\lambda} \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} k^{\beta}$

Route 2:

Choose directly
$$\dot{K}^{\beta} = \dot{\lambda} \frac{\partial K^{\alpha}}{\partial \kappa^{\beta}} k^{\beta} = \dot{\lambda}$$
function

Div. of Solid Mechanics, Lund University

ELASTO-PLASTIC STIFFNESS TENSOR -CORRESPONDING MATRIX FORMAT-

Elasticity

$$\sigma_{ij} = D_{ijkl} \epsilon_{kl}$$

Matrix format

$$\sigma = D\epsilon$$

where

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{23} \end{bmatrix} \quad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ 2\epsilon_{12} \\ 2\epsilon_{13} \\ 2\epsilon_{23} \end{bmatrix} \quad \boldsymbol{D} = \begin{bmatrix} D_{11} & D_{12} & \dots & D_{16} \\ D_{21} & D_{22} & \dots & D_{26} \\ \vdots \\ D_{61} & D_{62} & \dots & D_{66} \end{bmatrix}$$

If the *tensor* equation (elasto-plasticity)

$$\dot{\sigma}_{ij} = D^{ep}_{ijkl} \dot{\epsilon}_{kl}$$

then in a completely similar manner we obtain

$$\dot{oldsymbol{\sigma}} = oldsymbol{D}^{ep} \dot{oldsymbol{\epsilon}}$$

What happens if f and g are not expressed in σ_{ij} but in $\boldsymbol{\sigma}$? (the case with the classical anisotropic von Mises case, $f = \boldsymbol{\sigma}^T \boldsymbol{P} \boldsymbol{\sigma} - 1$)

In tensor notation

$$\dot{\epsilon}^p_{ij} = \dot{\lambda} \frac{\partial f}{\partial \sigma_{ij}}$$

In matrix notation

$$\dot{\boldsymbol{\epsilon}}^p = \dot{\lambda} \frac{\partial f}{\partial \boldsymbol{\sigma}}$$

where *-as* usual-

$$\boldsymbol{\epsilon}^{p} = \begin{bmatrix} \epsilon_{11}^{p} \\ \epsilon_{22}^{p} \\ \epsilon_{33}^{p} \\ 2\epsilon_{12}^{p} \\ 2\epsilon_{13}^{p} \\ 2\epsilon_{23}^{p} \end{bmatrix}$$

What do we mean by $\frac{\partial f}{\partial \sigma}$?

We have that

$$\dot{\epsilon}_{12}^p = \dot{\lambda} \frac{\partial f}{\partial \sigma_{12}}$$
 and $\dot{\epsilon}_{21}^p = \dot{\lambda} \frac{\partial f}{\partial \sigma_{21}}$

Taking advantage of the symmetry properties we find

$$2\dot{\epsilon}_{12}^p = \dot{\lambda}(\frac{\partial f}{\partial \sigma_{12}} + \frac{\partial f}{\partial \sigma_{21}})$$

Div. of Solid Mechanics, Lund University

ELASTO-PLASTIC STIFFNESS TENSOR -CORRESPONDING MATRIX FORMAT-

Using symmetry

$$2\dot{\epsilon}_{12}^p = \dot{\lambda}\left(\frac{\partial f}{\partial \sigma_{12}} + \frac{\partial f}{\partial \sigma_{21}}\right)$$

If advantage is take of the symmetry of the stress tensor, we do not –for instance– differ between σ_{12} and σ_{21} , we treat them as the same quantity, i.e.

$$2\dot{\epsilon}_{12}^p = \dot{\lambda}\frac{\partial\hat{f}}{\partial\sigma_{12}}$$

Let us then define

Example: usual von Mises isotropic hardening

$$f = \left(\frac{3}{2}s_{ij}s_{ij}\right)^{1/2} - \sigma_y$$

Written explicitly

$$f = \left(\frac{3}{2}(s_{11}^2 + s_{22}^2 + s_{33}^2 + s_{12}^2 + s_{21}^2 + s_{13}^2 + s_{31}^2 + s_{23}^2 + s_{32}^2)\right)^{1/2} - \sigma_y$$

for instance

$$\dot{\epsilon}_{12}^p = \dot{\lambda} \frac{\partial f}{\partial \sigma_{12}} = \frac{3s_{12}}{2\sigma_y}$$

If advantage is taken of the symmetry of the stress tensor, then

$$\hat{f} = \left(\frac{3}{2}\left(s_{11}^2 + s_{22}^2 + s_{33}^2 + 2s_{12}^2 + 2s_{13}^2 + 2s_{23}^2\right)\right)^{1/2} - \sigma_y$$

i.e.

$$2\dot{\epsilon}_{12}^p = \dot{\lambda}\frac{\partial\hat{f}}{\partial\sigma_{12}} = \frac{3s_{12}}{\sigma_y}$$

Div. of Solid Mechanics, Lund University

ELASTO-PLASTIC STIFFNESS TENSOR -CORRESPONDING MATRIX FORMAT-

In conclusion, the case

$$\dot{\sigma}_{ij} = D_{ijkl} \dot{\epsilon}_{kl}$$

where

$$D_{ijkl}^{ep} = D_{ijkl} - \frac{1}{A} D_{ijst} \frac{\partial g}{\partial \sigma_{st}} \frac{\partial f}{\partial \sigma_{mn}} D_{mnkl}$$

is equivalent with

$$\dot{\boldsymbol{\sigma}} = \boldsymbol{D}^{ep} \dot{\boldsymbol{\epsilon}}$$

where

$$\boldsymbol{D}^{ep} = \boldsymbol{D} - \frac{1}{A} \boldsymbol{D} \frac{\partial \hat{g}}{\partial \boldsymbol{\sigma}} \left(\frac{\partial \hat{f}}{\partial \boldsymbol{\sigma}} \right)^T \boldsymbol{D}$$

and

$$A = \left(\frac{\partial \hat{f}}{\partial \boldsymbol{\sigma}}\right)^T \boldsymbol{D} \; \frac{\partial \hat{g}}{\partial \boldsymbol{\sigma}} + H$$

WEAK FORM OF EQUATIONS OF MOTION -PRINCIPLE OF VIRTUAL WORK-

Divergence theorem

$$\int_V c_{j,j} dV = \int_S c_j n_j dS$$

Equations of motion

$$\sigma_{ij,j} + b_i = \rho \ddot{u}_i$$

Multiply by arbitrary weight vector v_i and integrate

$$\int_{V} v_i \sigma_{ij,j} dV + \int_{V} v_i b_i dV = \int_{V} \rho \ddot{u}_i dV$$

Note that $v_i \sigma_{ij,j} = (v_i \sigma_{ij})_{,j} - v_{i,j} \sigma_{ij}$

$$\int_{V} v_{i}\sigma_{ij,j} dV = \underbrace{\int_{V} (v_{i}\sigma_{ij})_{j} dV}_{\int_{S} v_{i}} \underbrace{\int_{S} v_{i} \underbrace{\sigma_{ij} n_{j}}_{t_{i}} dS}_{f_{i}}$$

$$\int_{S} v_{i}t_{i}dS - \int_{V} v_{i,j}\sigma_{ij}dV + \int_{V} v_{i}b_{i}dV = \int_{V} \rho v_{i}\ddot{u}_{i}dV$$

Div. of Solid Mechanics, Lund University

WEAK FORM OF EQUATIONS OF MOTION -PRINCIPLE OF VIRTUAL WORK-

$$\int_{V} \rho v_{i} \ddot{u}_{i} dV + \int_{V} v_{i,j} \sigma_{ij} dV = \underbrace{\int_{S} v_{i} t_{i} dS + \int_{V} v_{i} b_{i} dV}_{\text{external "virtual" work}}$$

holds for all materials

Define

$$\epsilon_{ij}^{v} = \frac{1}{2}(v_{i,j} + v_{j,i})$$
$$\Rightarrow \quad v_{i,j}\sigma_{ij} = \epsilon_{ij}^{v}\sigma_{ij}$$

$$\int_{V} \rho v_{i} \ddot{u}_{i} dV \int_{V} \epsilon_{ij} \sigma_{ij} dV = \int_{S} v_{i} t_{i} dS + \int_{V} v_{i} b_{i} dV$$

Define the matrices

$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \quad \boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad \boldsymbol{t} = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad \boldsymbol{\epsilon}^v = \begin{bmatrix} \epsilon_{11}^v \\ \epsilon_{22}^v \\ \epsilon_{33}^v \\ 2\epsilon_{12}^v \\ 2\epsilon_{13}^v \\ 2\epsilon_{23}^v \end{bmatrix} \quad \boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11}^v \\ \sigma_{22}^v \\ \sigma_{33}^v \\ \sigma_{12}^v \\ \sigma_{13}^v \\ \sigma_{23}^v \end{bmatrix}$$
$$\int_V \rho \boldsymbol{v}^T \ddot{\boldsymbol{u}} dV + \int_V (\boldsymbol{\epsilon}^v)^T \boldsymbol{\sigma} dV = \int_S \boldsymbol{v}^T \boldsymbol{t} dS + \int_V \boldsymbol{v}^T \boldsymbol{b} dV$$

FINITE ELEMENT FORMULATION

We found

$$\int_{V} \rho \boldsymbol{v}^{T} \ddot{\boldsymbol{u}} dV + \int_{V} (\boldsymbol{\epsilon}^{\boldsymbol{v}})^{T} \boldsymbol{\sigma} dV = \int_{S} \boldsymbol{v}^{T} \boldsymbol{t} dS + \int_{V} \boldsymbol{v}^{T} \boldsymbol{b} dV$$

FE-approximation

$$\boldsymbol{u}(x_k,t) = \boldsymbol{N}(x_k)\boldsymbol{a}(t) \Rightarrow \boldsymbol{\epsilon} = \boldsymbol{B}\boldsymbol{a}$$

Galerkin approach

$$v = Nc \qquad \Rightarrow \qquad \epsilon^v = Bc$$

where c is arbitrary and does not depend on position

$$\left[\int_{V} \rho \boldsymbol{N}^{T} \ddot{\boldsymbol{u}} dV + \int_{V} \boldsymbol{B}^{T} \boldsymbol{\sigma} dV - \int_{S} \boldsymbol{N}^{T} \boldsymbol{t} dS - \int_{V} \boldsymbol{N}^{T} \boldsymbol{b} dV\right] = 0$$

trary

$$\int_{V} \rho \boldsymbol{N}^{T} \ddot{\boldsymbol{u}} dV + \int_{V} \boldsymbol{B}^{T} \boldsymbol{\sigma} dV = \int_{S} \boldsymbol{N}^{T} \boldsymbol{t} dS + \int_{V} \boldsymbol{N}^{T} \boldsymbol{b} dV$$

Inertia term

= f ext. forces

$$\ddot{\boldsymbol{u}} = \boldsymbol{N}\ddot{\boldsymbol{a}} \Rightarrow \underbrace{\int_{V} \rho \boldsymbol{N}^{T} \boldsymbol{N} dV}_{V} \ddot{\boldsymbol{a}} = \boldsymbol{M}\ddot{\boldsymbol{a}}$$

mass matrix

$$M\ddot{a} + \int_{V} B^{T} \sigma dV = f$$

holds for all materials

Div. of Solid Mechanics, Lund University

FINITE ELEMENT FORMULATION

We found

$$oldsymbol{M}\ddot{oldsymbol{a}}+\int_Voldsymbol{B}^Toldsymbol{\sigma}dV=oldsymbol{f}$$

where

$$\boldsymbol{M} = \int_{V} \rho \boldsymbol{N}^{T} \boldsymbol{N} dV$$
 $\boldsymbol{f} = \int_{S} \boldsymbol{N}^{T} \boldsymbol{t} dS + \int_{V} \boldsymbol{N}^{T} \boldsymbol{b} dV$

Static problems $\ddot{a} = 0$

$$\boldsymbol{\psi} = 0$$
 equilibrium equations
where
 $\boldsymbol{\psi} = \int_{V} \boldsymbol{B}^{T} \boldsymbol{\sigma} dV - \boldsymbol{f}$

This is a global problem

Integration along load path of

$$\dot{\boldsymbol{\sigma}} = \boldsymbol{D}^{ep} \dot{\boldsymbol{\epsilon}}$$

This is a local problem (should be solved at each material point irrespective of what happens in neighbouring points)

FULL NEWTON-RAPHSON SCHEME

· Initiation of quantities

 $oldsymbol{a}_0\ ; \quad oldsymbol{\epsilon}_0\ ; \quad oldsymbol{\sigma}_0\ ; \quad oldsymbol{f}_0\ ; \quad oldsymbol{f}_{int}$

For load step $n = 0, 1, 2, \dots N_{max}$

- \cdot Determine new load level $oldsymbol{f}_{n+1}$
- · Initiation of iteration quantities $a^0 := a_n$
- · Iterate $i = 1, 2, ... until | \boldsymbol{\psi} |_{norm} = | \boldsymbol{f}_{n+1} \boldsymbol{f}_{int} |_{norm} < tol$
 - $Calculate \quad \boldsymbol{K}_t = \int_V \boldsymbol{B}^T \boldsymbol{D}_t^i \boldsymbol{B} dV$
 - · Calculate \boldsymbol{a}^i from $\boldsymbol{K}_t(\boldsymbol{a}^i-\boldsymbol{a}^{i-1})=\boldsymbol{f}_{n+1}-\boldsymbol{f}_{int}$
 - $\cdot Calculate \ \boldsymbol{\epsilon}^i := \boldsymbol{B} \boldsymbol{a}^i$
 - Determine σ^i by integration of the constitutive equations (see next chapter)

· Calculate internal forces
$$\boldsymbol{f}_{int} = \int_{V} \boldsymbol{B}^{T} \boldsymbol{\sigma}^{i} dV$$

- \cdot End iteration loop
- \cdot Accept quantities

$$\boldsymbol{a}_{n+1} := \boldsymbol{a}^i \; ; \; \boldsymbol{\epsilon}_{n+1} := \boldsymbol{\epsilon}^i \; ; \; \boldsymbol{\sigma}_{n+1} := \boldsymbol{\sigma}^i \; ; \; \boldsymbol{f}_{int}$$

 \cdot End load step loop

Div. of Solid Mechanics, Lund University

DYNAMIC CONSIDERATIONS -discretization in time-

FE discretization, equations of motion

$$M\ddot{a} + \psi(a) = 0$$

where

$$oldsymbol{M} = \int_V
ho oldsymbol{N}^T oldsymbol{N} dV \qquad oldsymbol{psi}(oldsymbol{a}) = \int_V oldsymbol{B}^T oldsymbol{\sigma} dV - oldsymbol{f}$$

Task: Nonlinear diff. eqns. \Rightarrow nonlinear algebraic eqns.

Newmark time integration scheme

$$\begin{aligned} \boldsymbol{a}_{n+1} &= \boldsymbol{a}_n + \Delta t \dot{\boldsymbol{a}}_n + \frac{\Delta t^2}{2} [(1 - 2\beta) \ddot{\boldsymbol{a}}_n + 2\beta \ddot{\boldsymbol{a}}_{n+1}] \\ \dot{\boldsymbol{a}}_{n+1} &= \dot{\boldsymbol{a}}_n + \Delta t [(1 - \gamma) \ddot{\boldsymbol{a}}_n + \gamma \ddot{\boldsymbol{a}}_{n+1}] \end{aligned}$$

very general approximation, e.g.

 $\begin{array}{ll} \beta = \frac{1}{4}, \ \gamma = \frac{1}{2} & \Rightarrow & \text{trapezoidal rule} \\ \beta = 0, \ \gamma = \frac{1}{2} & \Rightarrow & \text{central diff. approximation} \\ & & (\text{constant}) \text{ average acceleration method} \\ \beta = \frac{1}{6}, \ \gamma = \frac{1}{2} & \Rightarrow & \text{linear acceleration method} \\ \beta = \frac{1}{12}, \ \gamma = \frac{1}{2} & \Rightarrow & \text{Fox-Godwin method} \end{array}$

royal road method

etc.

DYNAMIC CONSIDERATIONS -Explicit scheme-

Assume that

$$\beta = 0, \qquad \gamma = \frac{1}{2}$$

From the Newmark scheme

$$egin{aligned} oldsymbol{a}_{n+1} &= oldsymbol{a}_n + \Delta t \dot{oldsymbol{a}}_n + rac{\Delta t^2}{2} \ddot{oldsymbol{a}}_n \ \dot{oldsymbol{a}}_{n+1} &= \dot{oldsymbol{a}}_n + rac{\Delta t}{2} (\ddot{oldsymbol{a}}_n + \ddot{oldsymbol{a}}_{n+1}) \end{aligned}$$

Solving for \ddot{a}_n yields

$$\ddot{\boldsymbol{a}}_n = \frac{1}{\Delta t^2} (\boldsymbol{a}_{n+1} - 2\boldsymbol{a}_n + \boldsymbol{a}_{n-1})$$

central difference approx. to $\ddot{\boldsymbol{a}}_n$

Equations of motion at the current time t_n

$$M\ddot{a}_n + \psi(a_n) = \mathbf{0}$$

or

$$\boldsymbol{M}\boldsymbol{a}_{n+1} = \boldsymbol{M}(2\boldsymbol{a}_n - \boldsymbol{a}_{n-1}) + \Delta t^2(\boldsymbol{f}_n - \int_V \boldsymbol{B}^T \boldsymbol{\sigma}_n dV)$$

Div. of Solid Mechanics, Lund University

DYNAMIC CONSIDERATIONS -Explicit scheme-

We found

$$\boldsymbol{M}\boldsymbol{a}_{n+1} = \boldsymbol{M}(2\boldsymbol{a}_n - \boldsymbol{a}_{n-1}) + \Delta t^2 (\boldsymbol{f}_n - \int_V \boldsymbol{B}^T \boldsymbol{\sigma}_n dV)$$

Used in <u>all</u> explicit FE-codes. LS-DYNA, Abaqus etc.

Assume that the mass matrix M is lumped, i.e.

$$oldsymbol{M} = \left[egin{array}{ccc} m_1 & & & \ & m_2 & & \ & & & m_{ndof} \end{array}
ight] ext{ \Rightarrow diagonal}$$

No inversion of M is needed, the FE-system can be solve in a row by row fashion

Price to pay we must require that

$$\Delta t \leq \frac{T_s}{\pi} \Rightarrow$$
 Stability

DYNAMIC CONSIDERATIONS –Implicit scheme–

From the Newmark scheme (assume $\beta \neq 0$)

$$\ddot{\boldsymbol{a}}_{n+1} = \frac{1}{\beta \Delta t^2} (\boldsymbol{a}_{n+1} - \boldsymbol{a}_n) - \frac{1}{\beta \Delta t} \dot{\boldsymbol{a}}_n - \frac{1 - 2\beta}{2\beta} \ddot{\boldsymbol{a}}_n$$

Equations of motions at time t_{n+1}

$$M\ddot{a}_{n+1} + \psi(a_{n+1}) = \mathbf{0}$$

or

$$\underbrace{M[\frac{1}{\beta\Delta t^2}(\boldsymbol{a}_{n+1}-\boldsymbol{a}_n)-\frac{1}{\beta\Delta t}\dot{\boldsymbol{a}}_n-\frac{1-2\beta}{2\beta}\ddot{\boldsymbol{a}}_n]+\psi(\boldsymbol{a}_{n+1})}_{\boldsymbol{v}(\boldsymbol{a}_{n+1})=\boldsymbol{0}}=\boldsymbol{0}$$

Transfor to standard iteration format

Iteration scheme

$$a_{n+1}^i = F(a_{n+1}^{i-1})$$

Div. of Solid Mechanics, Lund University

DYNAMIC CONSIDERATIONS –Implicit scheme–

We obtained

$$egin{aligned} m{a}_{n+1}^i &= m{a}_{n+1}^{i-1} - (m{A}(m{a}_{n+1}^{i-1}))^{-1}m{v}(m{a}_{n+1}^{i-1}) \ &m{v}(m{a}_{n+1}^{i-1}) &= &m{M}[rac{1}{eta\Delta t^2}(m{a}_{n+1}^{i-1} - m{a}_n) - rac{1}{eta\Delta t}\dot{m{a}}_n - rac{1-2eta}{2eta}\ddot{m{a}}_n] \ &+ m{\psi}(m{a}_{n+1}^{i-1}) \end{aligned}$$

The Newton Raphson scheme

$$\boldsymbol{A}^{i-1} = (\frac{1}{\beta \Delta t^2} \boldsymbol{M} + \boldsymbol{K}^{ep})^{i-1}$$

Choice of parameters

$$\gamma \ge 0, \ \beta \ge \frac{1}{4}(\gamma + \frac{1}{2}) \implies \text{unconditional stability}$$

DYNAMIC CONSIDERATIONS

Newmark (1959) time integration scheme

$$\boldsymbol{a}_{n+1} = \boldsymbol{a}_n + \Delta t \dot{\boldsymbol{a}}_n + \frac{\Delta t^2}{2} [(1 - 2\beta)\ddot{\boldsymbol{a}}_n + 2\beta \ddot{\boldsymbol{a}}_{n+1}]$$
$$\dot{\boldsymbol{a}}_{n+1} = \dot{\boldsymbol{a}}_n + \Delta t [(1 - \gamma)\ddot{\boldsymbol{a}}_n + \gamma \ddot{\boldsymbol{a}}_{n+1}]$$
Assume $\beta = \frac{1}{4}$ $\gamma = \frac{1}{2}$
$$\boldsymbol{a}_{n+1} = \boldsymbol{a}_n + \Delta t \dot{\boldsymbol{a}}_n + \frac{\Delta t^2}{2} [\frac{1}{2} \ddot{\boldsymbol{a}}_n + \frac{1}{2} \beta \ddot{\boldsymbol{a}}_{n+1}]$$

$$\dot{\boldsymbol{a}}_{n+1} = \dot{\boldsymbol{a}}_n + \Delta t \boldsymbol{a}_n + \frac{1}{2} [\frac{1}{2} \boldsymbol{a}_n + \frac{1}{2} \beta \boldsymbol{a}_{n+1} \\ \dot{\boldsymbol{a}}_{n+1} = \dot{\boldsymbol{a}}_n + \frac{\Delta t}{2} [\ddot{\boldsymbol{a}}_n + \ddot{\boldsymbol{a}}_{n+1}]$$

Consider a different route, use the trapezoidal rule with $\theta = \frac{1}{2}$

$$a_{n+1} = a_n + \int_n^{n+1} \dot{a} dt = a_n + (\dot{a})^* \Delta t$$
$$(\dot{a})^* = (1 - \theta) \dot{a}_n + \theta \dot{a}_{n+1} = \frac{1}{2} (\dot{a}_n + \dot{a}_{n+1})$$

i.e.

$$\boldsymbol{a}_{n+1} = \boldsymbol{a}_n + rac{\Delta t}{2} (\dot{\boldsymbol{a}}_n + \dot{\boldsymbol{a}}_{n+1})$$

Likewise

$$\dot{\boldsymbol{a}}_{n+1} = \dot{\boldsymbol{a}}_n + \frac{\Delta t}{2} (\ddot{\boldsymbol{a}}_n + \ddot{\boldsymbol{a}}_{n+1})$$

use of a_{n+1}

$$\boldsymbol{a}_{n+1} = \boldsymbol{a}_n + \Delta t \dot{\boldsymbol{a}}_n + \frac{\Delta t^2}{2} [\frac{1}{2} \ddot{\boldsymbol{a}}_n + \frac{1}{2} \beta \ddot{\boldsymbol{a}}_{n+1}]$$

Div. of Solid Mechanics, Lund University

FULL NEWTON-RAPHSON SCHEME

· Initiation of quantities

$$oldsymbol{a}_0 \ ; \ \ \dot{oldsymbol{a}}_0 \ ; \ \ \dot{oldsymbol{a}}_0 \ ; \ \ oldsymbol{\sigma}_0 \ ; \ \ oldsymbol{f}_0 \ ; \ \ oldsymbol{f}_{int}$$

- · For load step $n = 0, 1, 2, \dots N_{max}$
 - · Determine new load level \boldsymbol{f}_{n+1}
 - · Initiation of iteration quantities $\boldsymbol{a}^0 := \boldsymbol{a}_n \; ; \quad \dot{\boldsymbol{a}}^0 := \dot{\boldsymbol{a}}_n \; ; \quad \ddot{\boldsymbol{a}}^0 := \ddot{\boldsymbol{a}}_n$
 - · Iterate $i = 1, 2, ... until | \boldsymbol{v} |_{norm} < tol$
 - $\cdot Calculate \quad oldsymbol{A} = rac{1}{eta\Delta t^2}oldsymbol{M} + oldsymbol{K}_t$
 - Calculate \boldsymbol{a}^i from $\boldsymbol{A}(\boldsymbol{a}^i \boldsymbol{a}^{i-1}) = -\boldsymbol{v}$
 - · Calculate $\boldsymbol{\epsilon}^i := \boldsymbol{B} \boldsymbol{a}^i$
 - \cdot Determine σ^i
 - · Calculate $\boldsymbol{\psi} = \boldsymbol{f}_{int} \boldsymbol{f}_{n+1} = \int_{V} \boldsymbol{B}^{T} \boldsymbol{\sigma}^{i} dV \boldsymbol{f}_{n+1}$
 - \cdot Calculate

$$oldsymbol{v} = oldsymbol{M} [rac{1}{eta \Delta t^2} (oldsymbol{a} - oldsymbol{a}_n) - rac{1}{eta \Delta t} \dot{oldsymbol{a}}_n - rac{1-2eta}{2eta} \ddot{oldsymbol{a}}_n] + oldsymbol{\psi}$$

- \cdot End iteration loop
- $\begin{array}{l} \cdot \ Accept \ quantities \\ \boldsymbol{a}_{n+1} := \boldsymbol{a}^i \ ; \dot{\boldsymbol{a}}_{n+1} := \dot{\boldsymbol{a}}^i \ ; \ddot{\boldsymbol{a}}_{n+1} := \ddot{\boldsymbol{a}}^i \\ \boldsymbol{\epsilon}_{n+1} := \boldsymbol{\epsilon}^i \ ; \ \boldsymbol{\sigma}_{n+1} := \boldsymbol{\sigma}^i \ ; \ \boldsymbol{f}_{int} \end{array}$
- \cdot End load step loop

FUNDAMENTAL ASSUMPTIONS

Kinematics

$$\dot{\epsilon}_{ij} = \dot{\epsilon}^e_{ij} + \dot{\epsilon}^p_i$$

Hooke $\sigma_{ij} = D_{ijkl}(\epsilon_{kl} - \epsilon_{kl}^p) \ (D_{ijkl} \text{ constant})$ or

$$\dot{\sigma}_{ij} = D_{ijkl}(\dot{\epsilon}_{kl} - \dot{\epsilon}_{kl})$$

Yield Function

$$f(\sigma_{ij}, K^{lpha}) = 0$$
 at plastic loading $f(\sigma_{ij}, K^{lpha}) < 0$ elastic response

Flow rule

$$\dot{\epsilon}_{ij} = \dot{\lambda} \frac{\partial g}{\partial \sigma_{ij}}$$
 $\dot{\lambda} \ge 0$ $g = g(\sigma_{ij}, K^{\alpha})$

Consistency

$$\dot{f} = \frac{\partial f}{\partial \sigma_{ij}} \dot{\sigma}_{ij} + \frac{\partial f}{\partial K^{\alpha}} \dot{K}^{\alpha} = 0$$

Evolution laws

$$\begin{split} K^{\alpha} &= K^{\alpha}(\kappa^{\beta}) \implies \\ \dot{\kappa}^{\beta} &= \dot{\lambda}k^{\beta}(\sigma_{ij}, K^{\alpha}) \end{split}$$

Div. of Solid Mechanics, Lund University

FULL NEWTON-RAPHSON SCHEME

- $\begin{array}{ll} \text{Initiation of quantities} \\ \mathbf{a}_{0} \; ; \; \; \mathbf{\epsilon}_{0} \; ; \; \; \mathbf{\sigma}_{0} \; ; \; \; \mathbf{f}_{0} \; ; \; \; \mathbf{f}_{int} \\ \text{For load step } n = 0, 1, 2, \dots N_{max} \\ \text{Optermine new load level } \mathbf{f}_{n+1} \\ \text{Optermine new load level } \mathbf{f}_{n+1} \\ \text{Optermine of iteration quantities} \\ \mathbf{a}^{0} := \mathbf{a}_{n} \\ \text{Optermine } i = 1, 2, \dots \; until \; |\psi|_{norm} = |\mathbf{f}_{n+1} \mathbf{f}_{int}|_{norm} < tol \\ \text{Optermine } \mathbf{K}_{t} = \int_{V} \mathbf{B}^{T} \mathbf{D}_{t}^{i} \mathbf{B} dV \\ \text{Optermine } \mathbf{k}_{t} (\mathbf{a}^{i} \mathbf{a}^{i-1}) = \mathbf{f}_{n+1} \mathbf{f}_{int} \\ \text{Optermine } \mathbf{\sigma}^{i} \; by \; integration \; of \; the \\ \text{constitutive equations (this chapter)} \\ \text{Optermine } \mathbf{f}_{int} = \int_{V} \mathbf{B}^{T} \mathbf{\sigma}^{i} dV$
 - \cdot End iteration loop
 - \cdot Accept quantities

$$\boldsymbol{a}_{n+1} := \boldsymbol{a}^i ; \ \boldsymbol{\epsilon}_{n+1} := \boldsymbol{\epsilon}^i ; \ \boldsymbol{\sigma}_{n+1} := \boldsymbol{\sigma}^i ; \ \boldsymbol{f}_{int}$$

 $\cdot \ End \ load \ step \ loop$

TASK OF THE CONSTITUTIVE DRIVER

GIVEN: A FINITE STRAIN INCREMENT FIND: THE STRESS INCREMENT

Note that we assume a strain driven formulation

Div. of Solid Mechanics, Lund University

ELASTO-PLASTICITY

Elasto-plastic incremental relation

$$\dot{\sigma}_{ij} = D_{ijkl}^{ep} \dot{\epsilon}_{kl}$$

Integrate from 1 to 2, i.e.

$$\sigma_{ij}^{(2)} - \sigma_{ij}^{(1)} = \int_1^2 D_{ijkl}^{ep} d\epsilon_{kl}$$

Numerical integration is required

Does the loading imply elasto-plasticity?

DOES THE STEP IMPLY PLASTICITY

state 1: known $(\sigma_{ij}, K^{\alpha(1)}, \epsilon_{ij}^{p(1)}, \epsilon_{ij}^{(1)})$ state 2: to be determined $(\sigma_{ij}^{(2)}, K^{\alpha(2)}, \epsilon_{ij}^{p(2)}, \epsilon_{ij}^{(2)})$ known

Strain increment

$$\Delta \epsilon_{ij} = \epsilon_{ij}^{(2)} - \epsilon_{ij}^{(1)}$$
 known

From Hooke's law $\dot{\epsilon}_{ij} = D_{ijkl}(\dot{\epsilon}_{kl} - \dot{\epsilon}_{kl})$ follows

$$\sigma_{ij}^{(2)} - \sigma_{ij}^{(1)} = \underbrace{D_{ijkl} \Delta \epsilon_{kl}}_{\Delta \sigma_{ij}^e} - D_{ijkl} \int_{\epsilon_{mn}^{p(1)}}^{\epsilon_{mn}^{p(2)}} d\epsilon_{kl}^p$$

Define trial stresses

$$\sigma_{ij}^t = \sigma_{ij}^{(1)} + \Delta \sigma_{ij}^e \quad \Rightarrow \quad \sigma_{ij}^{(2)} = \sigma_{ij}^t - D_{ijkl} \int_{(1)}^{(2)} d\epsilon_{kl}^p$$

a)

Yield surface at state 1

Δσ

Div. of Solid Mechanics, Lund University

LOADING AND UNLOADING CRITERIA

loading or unloading $f^t = f(\sigma^t_{ij}, K^{\alpha(1)})$ If $f^t > 0 \Rightarrow$ plastic $f^t \leq 0 \Rightarrow \text{elastic}$

Program code

· Calculate trial stresses $\sigma_{ij}^t = \sigma_{ij}^{(1)} + D_{ijkl} \Delta \epsilon_{kl}$ $\cdot If f(\sigma^t, K^{\alpha(1)}) < 0$

Elastic response

$$\sigma_{ij}^{(2)} = \sigma_{ij}^t$$

 $\cdot Else$

Elasto-plastic response

$$\sigma_{ij}^{(2)} = \sigma_{ij}^t - D_{ijkl} \int_1^2 d\epsilon_{kl}^p$$

CONTACT STRESSES

Denote σ_{ij}^c as the contact stresses

Assuming linear interpolation of the strains

$$\epsilon_{ij}^c = (1 - \gamma)\epsilon_{ij}^{(1)} + \gamma\epsilon_{ij}^{(2)}$$

gives linear interpolation of stresses (if D_{ijkl} constant), i.e.

$$\sigma_{ij}^c = (1 - \gamma)\sigma_{ij}^{(1)} + \gamma\sigma_{ij}^{(2)}$$

Contact stresses must satisfy yield criterion

$$f^c = f(\sigma_{ij}^c, K^{\alpha(1)}) = 0$$

i.e.

$$f[(1-\gamma)\sigma_{ij}^{(1)}+\gamma\sigma_{ij}^t,K^{\alpha(1)}]=0$$
 One non-linear equation, one unknown γ

STRESS CALCULATION

Indirect consideration to the consistency condition

numerically $\dot{f} = 0$ is enforced

- Direct consideration to the consistency condition

numerically f = 0 is enforced

Div. of Solid Mechanics, Lund University

DIRECT CONSIDERATION TO CONSISTENCY -RETURN METHODS-

Incr. form of Hooke's law $\dot{\sigma}_{ij} = D_{ijkl}(\dot{\epsilon}_{kl} - \dot{\epsilon}_{kl}^p)$, integration

$$\sigma_{ij}^{(2)} - \sigma_{ij}^{(1)} = \underbrace{D_{ijkl}\Delta\epsilon_{kl}}_{\Delta\sigma_{ij}^e} - D_{ijkl}\int_1^2 d\epsilon_{kl}^p$$

Definition

$$\sigma_{ij}^t = \sigma_{ij}^{(1)} + \Delta \sigma_{ij}^e \qquad \text{known}$$

Flow rule

$$d\epsilon^p_{kl} = d\lambda \frac{\partial g}{\partial \sigma_{kl}}$$

i.e.

$$\sigma_{ij}^{(2)} = \sigma_{ij}^t - \sigma_{ij}^r \quad ext{where} \quad \sigma_{ij}^r = D_{ijkl} \int_c^2 rac{\partial g}{\partial \sigma_{kl}} d\lambda$$

Div. of Solid Mechanics, Lund University

DIRECT CONSIDERATION TO CONSISTENCY -RETURN METHODS-

We found

$$\sigma_{ij}^{(2)} = \sigma_{ij}^t - \sigma_{ij}^r \quad \text{where} \quad \sigma_{ij}^r = D_{ijkl} \int_c^2 \frac{\partial g}{\partial \sigma_{kl}} d\lambda$$

Approximate

$$\Delta \epsilon_{kl}^p = \int_c^2 \frac{\partial g}{\partial \sigma_{kl}} d\lambda \approx \left(\frac{\partial g}{\partial \sigma_{kl}}\right)^* \Delta \lambda$$

i.e.

$$\sigma_{ij}^{(2)} = \sigma_{ij}^t - D_{ijkl} \left(\frac{\partial g}{\partial \sigma_{kl}}\right)^* \Delta \lambda$$

Evolution laws

$$\dot{\kappa}^{\alpha} = \dot{\lambda}k^{\alpha}(\sigma_{kl}, K^{\beta})$$

Approximate

$$\int_{1}^{2} d\kappa^{\alpha} = \int_{c}^{2} k^{\alpha} d\lambda \approx k^{\alpha(*)} \Delta \lambda$$

i.e.

$$\kappa^{\alpha(2)} = \kappa^{\alpha(1)} + k^{\alpha(*)} \Delta \lambda \qquad \qquad K^{\alpha(2)} = K^{\alpha}(\kappa^{\beta(2)})$$

Consistency

$$f(\sigma_{ij}^{(2)}, K^{\alpha(2)}) = 0$$

DIRECT CONSIDERATION TO CONSISTENCY -APPROXIMATIONS-

Illustration of generalized trapezoidal rule

Illustration of generalized mid-point rule

Div. of Solid Mechanics, Lund University

DIRECT CONSIDERATION TO CONSISTENCY -Generalized mid-point rule-

Assume associated plasticity

$$\int_{c}^{2} \frac{\partial f}{\partial \sigma_{ij}} d\lambda \approx \Delta \lambda \left(\frac{\partial f}{\partial \sigma_{ij}} \right)^{*} = \Delta \lambda \left. \frac{\partial f}{\partial \sigma_{ij}} \right|_{(\sigma_{ij}^{*}, K^{\alpha(*)})}$$

where

$$\sigma_{ij}^* = (1 - \theta)\sigma_{ij}^c + \theta\sigma_{ij}^{(2)}$$
$$K^* = (1 - \theta)K^{(1)} + \theta K^{(2)}$$

Stress space

DIRECT CONSIDERATION TO CONSISTENCY -Generalized trapezoidal rule-

Assume associated plasticity

$$\begin{split} \int_{c}^{2} \frac{\partial f}{\partial \sigma_{ij}} d\lambda &\approx \Delta \lambda \left(\frac{\partial f}{\partial \sigma_{ij}} \right)^{*} \\ &= \Delta \lambda \left\{ (1-\theta) \left. \frac{\partial f}{\partial \sigma_{ij}} \right|_{(\sigma_{ij}^{c}, K^{\alpha(1)})} + \theta \left. \frac{\partial f}{\partial \sigma_{ij}} \right|_{(\sigma_{ij}^{(2)}, K^{\alpha(2)})} \right\} \end{split}$$

Stress space

Div. of Solid Mechanics, Lund University

DIRECT CONSIDERATION TO CONSISTENCY

-Stress calculation, general situation-

Program code

- \cdot Calculate contact stresses and strains
- · Solve σ_{ij} , K^{α} and $\Delta \lambda$ from

$$\sigma_{ij} = \sigma_{ij}^t - \Delta \lambda D_{ijkl} \left(\frac{\partial g}{\partial \sigma_{kl}}\right)^* \tag{1}$$

$$K^{\alpha} = K^{\alpha} (\kappa^{\beta} + \Delta \lambda k^{\beta(*)})$$
 (2)

subjected to the constraint

$$f(\sigma_{ij}, K^{\alpha}) = 0 \tag{3}$$

Usual approach, from (1) and (2) derive analytically

$$\sigma_{ij} = \sigma_{ij}(\Delta \lambda)$$
$$K^{\alpha} = K^{\alpha}(\Delta \lambda)$$

Insert into the yield criteria (3), i.e.

 $f(\sigma_{ij}(\Delta\lambda), K^{\alpha}(\Delta\lambda)) = f(\Delta\lambda) = 0$

non-linear equation in $\Delta\lambda$

DIRECT CONSIDERATION TO CONSISTENCY

-Isotropic hardening von Mises model-

Kinematics

$$\dot{\epsilon}_{ij} = \dot{\epsilon}_{ij}^e + \dot{\epsilon}_{ij}^p$$

Hooke's law (incr. form)

 $\dot{\sigma}_{ij} = D_{ij\,kl} (\dot{\epsilon}_{ij} - \dot{\epsilon}_{ij}^p)$

Isotropic material

$$D_{ijkl} = 2G\{\frac{1}{2}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \frac{\nu}{1 - 2\nu}\delta_{ij}\delta_{kl}\}$$

Yield function

 $f = \sigma_{eff} - \sigma_y$

where

$$\sigma_{eff} = \left(\frac{3}{2}s_{ij}s_{ij}\right)^{1/2} \qquad \sigma_y = \sigma_{yo} + K(\kappa)$$

Flow rule (associated plasticity)

$$\dot{\epsilon}^p_{ij} = \dot{\lambda} \frac{\partial f}{\partial \sigma_{ij}}$$

Evolution law (strain hardening), i.e. $\kappa = \epsilon_{eff}^p$

$$\dot{\kappa}=\dot{\epsilon}^p_{eff}=\left(\frac{2}{3}\dot{\epsilon}^p_{ij}\dot{\epsilon}^p_{ij}\right)^{1/2}=\dot{\lambda}$$

Div. of Solid Mechanics, Lund University

ISOTROPIC HARDENING VON MISES MODEL –Integration $\theta = 1$, fully implicit–

Flow rule

$$\dot{\epsilon}_{ij}^p = \dot{\lambda} \frac{3}{2} \frac{s_{ij}}{\sigma_{eff}}$$

Approximation (integration)

$$\Delta \epsilon_{ij}^p = \int_1^2 \frac{3}{2} \frac{s_{ij}}{\sigma_{eff}} d\lambda \approx \frac{3}{2} \frac{s_{ij}^{(2)}}{\sigma_{eff}^{(2)}} \Delta \lambda \tag{1}$$

From Hooke's law

$$\sigma_{ij}^{(2)} = \sigma_{ij}^t - D_{ijkl} \Delta \epsilon_{kl}^p \tag{2}$$

where the trial stress is defined as

$$\sigma_{ij}^t = \sigma_{ij}^{(1)} + D_{ij\,kl} \Delta \epsilon_{kl}$$

Using (1) in (2) yields

$$\sigma_{ij}^{(2)} = \sigma_{ij}^t - 3G \frac{s_{ij}^{(2)}}{\sigma_{eff}^{(2)}} \Delta \lambda$$

i.e.

$$\sigma_{kk}^{(2)} = \sigma_{kk}^t$$
$$s_{ij}^{(2)} = \frac{s_{ij}^t}{1 + 3G\frac{\Delta\lambda}{\sigma_{eff}^{(2)}}}$$

ISOTROPIC HARDENING VON MISES MODEL –Integration $\theta = 1$, fully implicit–

We found

$$s_{ij}^{(2)} = \frac{s_{ij}^t}{1 + 3G\frac{\Delta\lambda}{\sigma_{eff}^{(2)}}} \quad \text{where} \quad \sigma_{eff}^{(2)} = \left(\frac{3}{2}s_{ij}^{(2)}s_{ij}^{(2)}\right)^{1/2}$$

Multiply each side with its self and 3/2 then take the square root

$$\sigma_{eff}^{(2)} = \left[\frac{3}{2} \frac{s_{ij}^t}{1 + 3G \frac{\Delta \lambda}{\sigma_{eff}^{(2)}}} \frac{s_{ij}^t}{1 + 3G \frac{\Delta \lambda}{\sigma_{eff}^{(2)}}}\right]^{1/2}$$

or

$$\begin{split} \sigma_{eff}^{(2)} &= \sigma_{eff}^t - 3G\Delta\lambda \quad \text{where} \quad \sigma_{eff}^t = \left(\frac{3}{2}s_{ij}^t s_{ij}^t\right)^{1/2} \\ \text{Internal variable } d\kappa &= d\epsilon_{eff}^p = d\lambda \\ \epsilon_{eff}^{p(2)} &= \epsilon_{eff}^{p(1)} + \Delta\lambda \end{split}$$

Yield criterion

Yield criterion fulfilled at state 2

i.e.

$$\sigma_{eff}^{(2)} - \sigma_y^{(2)} = 0$$
 where $\sigma_y^{(2)} = \sigma_y(\epsilon_{eff}^{p(2)})$

or

$$\sigma_{eff}^t - 3G\Delta\lambda - \sigma_y(\epsilon_{eff}^{p(1)} + \Delta\lambda) = 0$$

ISOTROPIC HARDENING VON MISES MODEL –Integration $\theta = 1$, fully implicit–

We found

$$s_{ij}^{(2)} = \frac{s_{ij}^t}{1 + 3G\frac{\Delta\lambda}{\sigma_{eff}^{(2)}}} \quad \text{where} \quad \sigma_{eff}^{(2)} = \left(\frac{3}{2}s_{ij}^{(2)}s_{ij}^{(2)}\right)^{1/2}$$

and

$$\sigma_{eff}^t - 3G\Delta\lambda - \sigma_y(\epsilon_{eff}^{p(1)} + \Delta\lambda) = 0$$

i.e

$$\Delta \lambda = \frac{1}{3G} (\sigma_{eff}^t - \sigma_y^{(2)})$$

Noting that $\sigma_{eff}^{(2)} = \sigma_y^{(2)}$ we find

$$s_{ij}^{(2)} = \frac{\sigma_y^{(2)}}{\sigma_{eff}^t} s_{ij}^t$$

i.e. a "scaling" of s_{ij}^t .

Div. of Solid Mechanics, Lund University

ISOTROPIC HARDENING VON MISES MODEL –Integration $\theta = 1$, fully implicit, radial return–

· Given:
$$\epsilon_{ij}^{(1)}$$
, $\epsilon_{ij}^{p(1)}$, $\epsilon_{eff}^{p(1)}$, $\sigma_{ij}^{(1)}$, and $\Delta \epsilon_{ij}$
· Calculate

$$\sigma_{ij}^t = \sigma_{ij}^{(1)} + D_{ijkl}\Delta\epsilon_{kl}$$
$$\sigma_{eff}^t = (\frac{3}{2}s_{ij}^t s_{ij}^t)^{1/2}$$

· Determine
$$\Delta \lambda$$
 from $\sigma_{eff}^t - 3G\Delta \lambda - \sigma_y(\epsilon_{eff}^{p(1)} + \Delta \lambda) = 0$

 $\cdot \ Calculate$

$$\begin{split} \epsilon_{eff}^{p(2)} &= \epsilon_{eff}^{p(1)} + \Delta \lambda \\ \sigma_{y}^{(2)} &= \sigma_{y} (\epsilon_{eff}^{p(2)}) \\ \sigma_{ij}^{(2)} &= s_{ij}^{(2)} + \frac{1}{3} \sigma_{kk}^{(2)} \delta_{ij} \quad where \quad s_{ij}^{(2)} &= \frac{\sigma_{y}^{(2)}}{\sigma_{eff}^{t}} s_{ij}^{t} ; \quad \sigma_{kk}^{(2)} &= \sigma_{kk}^{t} \\ \epsilon_{ij}^{p(2)} &= \epsilon_{ij}^{p(1)} + \Delta \epsilon_{ij}^{p} \qquad where \quad \Delta \epsilon_{ij}^{p} &= \frac{3}{2} \frac{\Delta \lambda}{\sigma_{eff}^{t}} s_{ij}^{t} \end{split}$$