THE FINITE ELEMENT METHOD 2017 Dept. of Solid Mechanics

EXAMINATION: 2017-05-29

A maximum of 60 points can be achieved in this examination. To pass at least 30 points are required.

Permitted aid: Pocket calculator.

Anonymkod / Anonymous Code (XXX-NNNN)
Kurskod / Course Code (FHLXXX)
Personlig identifierare / Personal Identifier
Hand in the exam!!!!!

Problem 1: (12p)

Consider the four node element used to model an elastic boundary value problem. The nodes 2-3-4 are located along the boundary and the traction along 3-4 is sketcked below. Moreover, in point (30, -4.5) a load F of magnitude 1000N/m is applied. The direction of the load F is $n = 1/\sqrt{2} \begin{bmatrix} 1 & 1 \end{bmatrix}$.

Calculate the contribution from the traction and the load F to the boundary load vector, $\boldsymbol{f}_b = \int_{\mathcal{L}_{2-3-4}} \boldsymbol{N}^T \boldsymbol{t} t d\mathcal{L}$. The thickness of the element is 5mm.

Figure 1: Four node element. All coordinates are in mm.

Problem 2: (6p)

In the element routine plani4e.m the stiffness matrix $\mathbf{k}^e = \int_{A_e} \mathbf{B}^{eT} \mathbf{D} \mathbf{B}^e t dA$ is calculated for an isoparametric plane four node element. One part of the code has been erased. State the code that has been erased !

Figure 2: Part of the routine plani4e.m

Hint: The strain components in a plane analysis is given by are $\boldsymbol{\epsilon}^T = [\boldsymbol{\epsilon}_{xx} \ \boldsymbol{\epsilon}_{yy} \ \gamma_{xy}]$ and $\boldsymbol{\epsilon}_{xx} = \frac{\partial u_x}{\partial x} \ \boldsymbol{\epsilon}_{yy} = \frac{\partial u_y}{\partial y}, \ \gamma_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}$

Problem 3: (8p)

The element displacement vector for the element below is

$$\boldsymbol{a}^{e} = [0.0 \ 0.2 \ 0.0 \ -0.2 \ 0.0 \ 0.2 \ 0.0 \ -0.2]^{T}$$

• Use one integration point to calculate the strain energy, $\int_A t \boldsymbol{\epsilon}^T \boldsymbol{\sigma} dA = \int_A t \boldsymbol{\epsilon}^T \boldsymbol{D} \boldsymbol{\epsilon} dA$ where \boldsymbol{D} is a constant constitutive matrix. Motivate your answer.

Hint: The strain components in a plane analysis is given by are $\boldsymbol{\epsilon}^T = [\boldsymbol{\epsilon}_{xx} \ \boldsymbol{\epsilon}_{yy} \ \gamma_{xy}]$ and $\boldsymbol{\epsilon}_{xx} = \frac{\partial u_x}{\partial x} \ \boldsymbol{\epsilon}_{yy} = \frac{\partial u_y}{\partial y}, \ \gamma_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}.$

The elasticity matrix \boldsymbol{D} is given by $\boldsymbol{D} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1}{2}(1-\nu) \end{bmatrix}$ where E and ν are constant material parameters.

Problem 4: (12p)

The governing equation for heat conduction in a one-dimensional rod subjected to convection along the constant perimeter, P, is given by

$$\frac{d}{dx}\left(Ak\frac{dT}{dx}\right) - \alpha P(T - T_{\infty}) = 0 \quad 0 < x < L$$

The boundary conditions are given by $q(x = 0) = \alpha P L T_{\infty} / A$ and $T(x = L) = T_{\infty}$. The 1D Fourier law reads $q = -k \frac{dT}{dx}$.

- Derive the weak form and finite element formulation for the problem.
- Use two elements of equal size to determine the temperature distribution. The convection coefficient is given by $\alpha = 16kA/(PL^2)$. All geometrical and material parameters are constant along the rod.

Problem 5: (10p)

The finite element formulation for two dimensional linear elastic problem takes the form

 $oldsymbol{K}oldsymbol{a}=oldsymbol{f}_b+oldsymbol{f}_l$

where K is the stiffness matrix and a the vector of unknown node displacements. The right hand side vectors f_b stem from the line load q and f_l from gravitation b which acts on all elements.

The above depicted mesh consists of five linear triangular elements. For the indicated boundary and load conditions mark in the system of equations below with

 \mathbf{x} – components that are known and different from zero

? – components that are unknown and different from zero

all blank positions are interpreted as zero.

Problem 6: (12p) (Only Pi and I (FHLF10))

A beam of length 3L and stiffness EI is supported and loaded according to the figure below. The moment, M, is applied at a distance L from the left support. Determine the slope of the beam at the left support.

Problem 6: (12p) (Only F (FHLF01))

The finite element formulation for heat conduction (div(q) - Q = 0) takes the form:

\

$$\left(\underbrace{\int_{V} \boldsymbol{B}^{T} \boldsymbol{D} \boldsymbol{B} dV}_{\boldsymbol{K}} + \underbrace{\int_{S_{c}} \alpha \boldsymbol{N}^{T} \boldsymbol{N} dS}_{\boldsymbol{\tilde{K}}}\right) \boldsymbol{a} = \underbrace{\int_{S_{c}} \boldsymbol{N}^{T} \alpha T_{\infty} dS}_{\boldsymbol{f}_{c}} \underbrace{- \int_{S_{g}} \boldsymbol{N}^{T} q_{n} dS}_{\boldsymbol{f}_{b}} - \underbrace{\int_{S_{h}} \boldsymbol{N}^{T} h dS}_{\boldsymbol{f}_{b}} + \underbrace{\int_{V} \boldsymbol{N}^{T} Q dV}_{\boldsymbol{f}_{l}}$$

where S_c is the boundary where convection applies, S_h is the boundary where the heat flow is prescribed and S_g is the boundary where the temperature is prescribed.

- a) Show that the matrix $\mathbf{K} + \tilde{\mathbf{K}}$ is positive definite for $\alpha > 0$. The constitutive matrix \mathbf{D} is symmetric and positive definite.
- b) Show that $\mathbf{1}^T \left[-\int_S \mathbf{N}^T q_n dS + \int_V \mathbf{N}^T Q dV \right] = 0$ where V and S represents the total volume and surface, respectively. Moreover, $\mathbf{1}$ is a vector with all entries being equal to one, i.e. the scalar product can be identified as the sum over all components.

Some hints that might be helpful

Hint: Green-Gauss's theorem states:

$$\int_{A} \phi div \boldsymbol{q} dA = \oint_{\mathcal{L}} \phi \boldsymbol{q}^{T} \boldsymbol{n} d\mathcal{L} - \int_{A} (\boldsymbol{\nabla} \phi)^{T} \boldsymbol{q} dA$$

Hint: Some trigonometric relations:

$$\sin(\alpha)^2 + \cos(\alpha)^2 = 1$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta), \quad \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$
$$\sin^{2}(\alpha) = \frac{1 - \cos(2\alpha)}{2}, \quad \cos^{2}(\alpha) = \frac{1 + \cos(2\alpha)}{2}$$
$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha), \quad \tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^{2}(\alpha)}$$

Hint: A quadratic matrix is positive semidefinite if

$$\boldsymbol{a}^T \boldsymbol{K} \boldsymbol{a} \ge 0, \quad \forall \boldsymbol{a}, \text{ and } \boldsymbol{a}^T \boldsymbol{K} \boldsymbol{a} = 0 \text{ for some } \boldsymbol{a} \neq \boldsymbol{0}$$

Hint: The interpolation formula of Lagrange is given by

$$l_k^{n-1} = \frac{(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)}$$

Hint: Fourier's law is given by $\boldsymbol{q} = -\boldsymbol{D}\boldsymbol{\nabla}T$

Hint: The position, ξ_i , of the integration points and weights, H_i , for *n* number of integration points can be found from

where integration from -1 to 1 is assumed.

Hint:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & a & b \\ 1 & c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} (ad - bc) & 0 & 0 \\ -d + b & d & -b \\ c - a & -c & a \end{bmatrix}$$