Structural optimization: Solutions to mid-term exam 190220

Division of Solid Mechanics, Lund University

Problem 1

a) See pages 148-149 in the course literature. The length between two points (x1,y1) and (22, y2)
is
i ’ 1/2
Length = J(y) = / (1+y(z) " da.

b) See Exercise 8.2. Calculate J'(y;¢) = 0 and solve to get y(a) with the conditions y(z1) = y1,
Y(22) = ya, p(a1) = p(a2) = 0.

Problem 2

a) The Hessian is not positive (semi)definite and therefore the function is not convex.

b) The function is not twice continuously differentiable. Use the definition of a convex function
on page 37 together with the triangle inequality to prove that the function is in fact convex.

c) See pages 60-61. The gradient is V f(1,2) = (0, 75)T, and therefore we linearize in the inter-
vening variables y; = 1/z1 and y2 = 1/x5. The Hessian of the CONLIN approximation of f is
positive definite since the CONLIN approximation assumes that all design variables are strictly
positive.

Problem 3

The problem is non-convex since the determinant of the Hessian of the objective function is
negative, i.e. det(H) < 0. To solve the optimization problem, we evaluate all KKT points and
investigate which of those minimize the objective function.

The Lagrangian is

L(x1,12,\) = 23 + 235 — 3x129 + N2 + 22 — 6).

The KKT conditions are

oL
pr. =2x1 — 3wz + A2z = 0, (1)
oL
8—1'2 = 2[1]2 — 3.’1]1 + )\QZCQ = O, (2)
At + a3 —6) =0, (3)
x§+x376§0, (4)
A > 0. (5)



The limits z; — +oo are obviously not feasible since they violate the constraint in the fourth
equation above.

Equations (1) and (2) give

3
Tl = 2(1+>\)$23
9
209(1 4+ A — ———) = 0.
(A= gy) =0
This gives that either o = 0 or (1 + A - ﬁ) = 0. Solving the last expression gives two

different A, but only one of them, A\ = 1/2, satisty the KKT conditions.

The three KKT points are (z1,22;\) = (0,0,0) and (z1,72;\) = (£v/3,£v/3,1/2). The last two
points both solve the optimization problem.

Problem 4
9g0(3) . N .
a) From the graph we have 3 ~ 1.25 > 0, i.e. go should be linearized in the variable
x
1
y = —— where U should satisfy ¥ = 3 < U. For instance, choosing U = 4 gives the MMA

U—-=x
1
approximation géw’k(xk — 3) = 1.25 (1 —+ 4—) (Indicate in the graph that go — OO as X ap-
—x
proaches the asymptote U = 4).

090(5
b) From the graph we have 90(5) ~ —1.25 < 0, i.e. go should be linearized in the variable
x
1 _
y = —. The CONLIN approximation is ¢©¥(z* = 5) = go(z* = 5) + aiao—@w
x x x
Problem 5
Fy, 0 1 0] [s1
Fi,| =(0 0 1| |s2| & F=B"s.
Fyy 1 0 0f |ss3
D is a diagonal matrix, i.e.
E .
D = fdlag(Al, AQ, Ag)
The stiffness matrix is also a diagonal matrix
T E .
K=B"DB = leag(Ag,Ag,Al), (6)
hence the inverse of K is
1
1
K'=—|0 — 0
E As )
0 0 N



The displacements are given by u = K~'F. The optimization problem is stated as

. 1 1 1
Adnas 0T AT A, T Ay
P . g1=A1+ Ay + A3 — Vo/(pL) <0,
S"{Aizo, i=1,2,3.

The Hessian of gg is positive definite for A; > 0, i = 1,2,3 and ¢; is a linear, thus a convex
function. The problem is convex. The Lagrangian function is

1 1 1
£(A15A23A33)\) - A_1 + A_2 + A_3 +)\(A1 +A2 +A3 _‘/O/(PL))

The dual problem is given by

5 [ max e(0) =6V = aVo/(pL),
st. A>0,
1pL 1 Vo

which is solved for vV A* = ——. The optimal cross-sectional areas are A7 = -—,7=1,2,3.
3V 3 pL



