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Problem 1

a) See pages 148-149 in the course literature. The length between two points (x1, y1) and (x2, y2)
is

Length = J(y) =

∫ x2

x1

(

1 + y′(x)
)1/2

dx.

b) See Exercise 8.2. Calculate J ′(y;ϕ) = 0 and solve to get y(x) with the conditions y(x1) = y1,
y(x2) = y2, ϕ(x1) = ϕ(x2) = 0.

Problem 2

a) The Hessian is not positive (semi)definite and therefore the function is not convex.

b) The function is not twice continuously differentiable. Use the definition of a convex function
on page 37 together with the triangle inequality to prove that the function is in fact convex.

c) See pages 60-61. The gradient is ∇f(1, 2) =
(

0,−5
)T

, and therefore we linearize in the inter-
vening variables y1 = 1/x1 and y2 = 1/x2. The Hessian of the CONLIN approximation of f is
positive definite since the CONLIN approximation assumes that all design variables are strictly
positive.

Problem 3

The problem is non-convex since the determinant of the Hessian of the objective function is
negative, i.e. det(H) < 0. To solve the optimization problem, we evaluate all KKT points and
investigate which of those minimize the objective function.

The Lagrangian is

L(x1, x2, λ) = x2

1 + x2

2 − 3x1x2 + λ(x2

1 + x2

2 − 6).

The KKT conditions are

∂L
∂x1

= 2x1 − 3x2 + λ2x1 = 0, (1)

∂L
∂x2

= 2x2 − 3x1 + λ2x2 = 0, (2)

λ(x2

1
+ x2

2
− 6) = 0, (3)

x2

1
+ x2

2
− 6 ≤ 0, (4)

λ ≥ 0. (5)
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The limits xi → ±∞ are obviously not feasible since they violate the constraint in the fourth
equation above.

Equations (1) and (2) give

x1 =
3

2(1 + λ)
x2,

2x2

(

1 + λ− 9

4(1 + λ)

)

= 0.

This gives that either x2 = 0 or
(

1 + λ − 9

4(1 + λ)

)

= 0. Solving the last expression gives two

different λ, but only one of them, λ = 1/2, satisty the KKT conditions.

The three KKT points are (x1, x2;λ) = (0, 0, 0) and (x1, x2;λ) = (±
√
3,±

√
3, 1/2). The last two

points both solve the optimization problem.

Problem 4

a) From the graph we have
∂g0(3)

∂x
≈ 1.25 > 0, i.e. g0 should be linearized in the variable

y =
1

U − x
where U should satisfy xk = 3 < U . For instance, choosing U = 4 gives the MMA

approximation gM,k
0

(xk = 3) = 1.25
(

1 +
1

4− x

)

. (Indicate in the graph that g0 → ∞ as x ap-

proaches the asymptote U = 4).

b) From the graph we have
∂g0(5)

∂x
≈ −1.25 < 0, i.e. g0 should be linearized in the variable

y =
1

x
. The CONLIN approximation is gC,k(xk = 5) = g0(x

k = 5) +
∂g0(5)

∂x

5(x− 5)

x
.

Problem 5
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 ⇐⇒ F = B
T
s.

D is a diagonal matrix, i.e.

D =
E

L
diag(A1, A2, A3).

The stiffness matrix is also a diagonal matrix

K = B
T
DB =

E

l
diag(A2, A3, A1), (6)

hence the inverse of K is

K
−1 =

l

E
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The displacements are given by u = K
−1

F. The optimization problem is stated as

P



















min
A1,A2,A3

g0 =
1

A1

+
1

A2

+
1

A3

,

s.t.

{

g1 = A1 +A2 +A3 − V0/(ρL) ≤ 0,

Ai ≥ 0, i = 1, 2, 3.

The Hessian of g0 is positive definite for Ai ≥ 0, i = 1, 2, 3 and g1 is a linear, thus a convex
function. The problem is convex. The Lagrangian function is

L(A1, A2, A3, λ) =
1

A1

+
1

A2

+
1

A3

+ λ
(

A1 +A2 +A3 − V0/(ρL)
)

.

The dual problem is given by

D
{

max
λ

ϕ(λ) = 6
√
λ− λV0/(ρL),

s.t. λ ≥ 0,

which is solved for
√
λ∗ =

1

3

ρL

V0

. The optimal cross-sectional areas are A∗

i =
1

3

V0

ρL
, i = 1, 2, 3.
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