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Abstract

Structural optimization is a rather new branch in solid mechanics that have
become increasingly important during the last decades.

The SIMP method is a simple and fast method frequently used to obtain
optimized structures. The SIMP method has in a finite element setting a
well known defect in that it lacks a unique solution which appears as a mesh
dependency.

To circumvent this mesh dependency a structural optimization method allow-
ing for perimeter control is presented. The procedure is based on a functional
in terms of the material density distribution and the displacement field. The
optimum of the functional is found by using the KKT conditions and Cahn-
Hilliards equation. To solve the problem use is made of the finite element
method. To properly resolve the interfaces of the optimized structure an
adaptive space discretization is implemented.

To test the method and verify that the formulation returns feasible structures,
simulations are performed on a simple optimization problem. The results
from these simulations are reasonable and we conclude that the method is
working for the simple optimization problems that are tested.
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Chapter 1

Introduction



1.1 Introduction

Many processes when constructing new products can be modeled as schemes
similar to the one illustrated in Figure 1.1.
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L

Development
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Vauation 7

=

Constructing
the Product

Figure 1.1: Model of a product development

To get a better understanding of this process each step is described beneath

1 Analysis: In this step an analyze is made regarding what demands
the product needs to fulfill and what the limitations for constructing it
might be.

2 Design: At this step a guess is made on how the product should be
constructed. Here it is almost always preferable to use engineers that
have had a lot of experience with similar products before since they
make the best guesses.



3 Development: The construction following the Design step is not per-
fect and therefore improvements are performed in this step.

4 Testing and Valuation: The product is tested to confirm that it
fulfills the demands specified in the Analysis step and also if it does
so in the best possible way. At this point it is common to realize that
the product still needs improvement and if this is the case a "jump” is
made back to the Design step. When this cycle has been performed a
couple of times or, which sometimes is the case, a lot of times one will
hopefully be satisfied with the product and move on to the last step.

5 Constructing the product: This is when the product is constructed

The process of performing these 5 steps is very time consuming and there-
fore also consumes a lot of money. These issues of time and money are
two of the main reasons why structural optimization theory have become
increasingly important during the last decades. The theory behind struc-
tural optimization is a rather new branch in solid mechanics but has already
delivered models that in many cases can advance the product development
better than the model described by Figure 1.1. Some of these models still
have room for improvement and this is what motivated this thesis.

1.1.1 Example

To show the effect of an optimization, while simultaneously describing dif-
ferent models of performing an optimization, a simple example is given.
Example 1:

Assume that there lies a need of a structure that can withstand an external
force P. Assume also that the amount of material available for the construc-
tion is limited and that the structure is to be placed within the area A. For
clarity the problem is illustrated in Figure 1.2.

The need for a structure that can withstand an external force P motivates
the search of a structure that is as stiff as possible. Maximizing the stiffness
of the structure is equivalent to minimizing the compliance of the structure.
Since minimizing the compliance is an easier problem to handle the compli-
ance is going to be used as an objective of the optimization.
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Figure 1.2: Illustration of the customers demands

To performing this optimization it is convenient to define an objective func-
tion go = C where C denotes the compliance and then minimize gy. Since the
structure is limited by the amount of material available a volume constraint
g1 must be imposed to the optimization.

When dealing with optimization problems it is found useful to rewrite the
problem into a mathematical problem. Let P denote a general mathematical
optimization problem and define it by:

min,erm go(p, 1)

Okll + bk =0
P = (1.1)
st ;<0 for i=1..n}

pe € X ={pe €R™: p"" < p, < pler}

where u denotes the displacement vector, g; denotes the constraints and p. €
x is called a box constraint. When solving P use will be made of the finite
element method which means that the structure is discretized into a number
of elements e .The concentration p. is for each of these elements element e
assumed to be constant over the whole element. Due to the manufacturing
process it is in many cases desirable to end up with a distinct design i.e.
pe € {0,1} V e, where p. = 1 means there is material and p. = 0 means
no material. Furthermore is the equilibrium equation o;; + by = 0 included
in (1.1) to impose that the local form of the static equilibrium is to be fulfilled.
Here is o4, the Cauchy stress tensor and b, the body force vector.

In Part A of this thesis the SIMP method is discussed. This method takes
the three demands in Example 1 in mind. However, it is well known that
the SIMP method results in a mesh dependent solution and therefore does
not have a unique solution.

In Part B another method based on adding two penalization functions is de-
rived. The resulting equations will be solved using the Cahn-Hilliard equation
and the space-discretization is based on an adaptive three node mesh.



Before these Parts are presented two sections are included describing the
finite element formulation of the two dimensional elasticity and some prop-
erties regarding minimization of the compliance



1.2 Finite element formulation of two-dimensional
elasticity

Let the local form of the static equilibrium define the strong form of elasticity
as

04,5 + bz =0 (12)

Multiplying equation (1.2) with a weight function 7, and integrating over the
domain €2 gives

/T_)lO'ijJ'dQ—'—/’l_JbidQ = 0. (13)
Q Q
Applying the product rule

’li}lO'ijvj = (@lo-ij),j — T)l,jo-ij (14)

to substitute the term 7;0,; ; results in

/(ﬁlaij)JdQ—/ﬁl,jaidejL/ﬂlbl-dQ:O (15)
Q Q Q

Which after making use of divergence theorem of Gauss

\% S

to equation (1.5) the weak form of elasticity follows

/ Dyt dOSY — / 0,042 + / ybidQ = 0. (1.7)
o0 Q Q

In equation (1.7) use have been made of Cauchy’s formula which states

t; = oiyn; (1.8)
where t; denotes the traction vector.
Inserting the following FE-approximations

u=N,u e =B,u (1.9)
v, = N,,v U; =B,V (1.10)



into the weak form (1.7) defines the finite element formulation of the two-
dimensional elasticity as

Ku=P (1.11)
K:/BY,;LDBmdQ (1.12)
Q
P:/ Ngtdaﬁ+/N§bdQ (1.13)
[2[9] Q

where D denotes the element stiffness tensor which here is defined by
D = fD° (1.14)

Here f is a function of the local concentration p, and D° is the stiffness
tensor defined by hookes law i.e.

f=F(pe) (1.15)

0
0 . (1.16)

Different choices of f will be discussed in this thesis. Note that this definition
of the stiffness tensor allow the global stiffness matrix K(p) to be separated
as

K(p) = 3 (oK’ (1.17)

Making use of equation (1.11) the mathematical problem P is rewritten into

min,erm go(p, 1)

K =P
b (p)u(p) (1.18)
st ¢, <0 for i =1..n}

pe € X
cf. (1.1)
The matrices in equations (1.11) - (1.13) are defined in Section 3.2



1.3 Minimizing the compliance

To simplify the derivation of the optimization methods this section will
present some properties associated with optimization of the compliance.

The compliance is defined as

o Q

Using the compliance as an objective function results in a problem that
contains the two design parameters u; and p.. These variables are coupled
via equilibrium which is a property that can be eluded through

u(p) =K '(p)P. (1.20)
of. (1.11)

Using the coupling (1.20) the nested mathematical problem P, originated
from P is obtained. P, is defined as

min,egm go(pP)
Py = 9 <0 for t=1..n (1.21)
S.t 4
pe € X ={pe €R™: p"™ < p. < prr}

Rewriting equation (1.19) with Cauchy’s formula (1.8) and the local form of
the static equilibrium equations (1.2) results in

C = / crijnjuida(l - / uioij,de. (122)
o0 Q
Which after applying the product rule
(ui0ij) j = Wij0ij + Ui0ij 5 (1.23)

and Gauss theorem (1.6) enables the second integral in (1.22) to be rewritten
as

/uiaimdQ:/ uial-jnjdﬁﬂ—/umaide (124)
Q o0 Q

Since o0;; = 0j; the displacement gradient u; ; can be replaced by the strain
tensor ¢;;. Making this change in equation (1.24) the following is obtained

C:/Eijazde:/€ijDijkl€kldQ. (125)
Q Q

9



Note that equation (1.25) states that the compliance is proportional to the
strain energy integrated over the domain () since the strain energy w is

defined as .
w = igijDijklgkl- (126)

Inserting the FE-approximations (cf. Section 1.2) into equation (1.25) gives
C =u"Ku (1.27)
Combining equations (1.11) and (1.27) results in
C =P'u (1.28)

where use have been made of the fact that K is symmetric

To further motivate equation (1.28) consider Figure 1.3 where a beam is
being exposed to an external force P.

/

/
/ p "

Figure 1.3: Beam exposed to an external force P

From Figure 1.3 one can interpret that a stiff beam would make the deflec-
tion u smaller than a beam that is not stiff i.e maximizing the stiffness is
equivalent with minimizing P7u.

10



Chapter 2

Part A

2.1 Topology-Optimization using SIMP

Solid Isotropic Material with Penalization, SIMP, is a simple and fast method
used to obtain an optimized structure. The SIMP-method is based on the
optimal criteria method, OC-method, and both these methods are briefly
presented so that the reader understands the motivation for this report.

When deriving these methods it is convenient to first present the mathemat-
ical problem P associated with the two methods cf. (1.21).

Using the compliance as the objective of the optimization the objective func-
tion gq is for these methods defined by

go(p) = P"u(p). (2.1)
cf. (1.28)
The volume constraint ¢g; that is imposed in the SIMP method is defined by

g1<p) = Zaepeth - Vmam- (22)
e=1

where t; denotes the maximum thickness of the structure, and a. the area
of element e. Finally the box constraints which limits the values of the
concentration p, is defined as

pe € X = {pe €R™: pI"" < p. < p**} (2.3)
where p™" = 4,/eps and p"** = 1.

e

11



where eps denotes the machine precision taken as eps = 2.2204 - 10716,

min

Elements where p, = p*" should be interpreted as elements with no material,

the reason why p™" = ( is to avoid singularities.

Inserting equations (2.1)- (2.3) into (1.21) gives
min, go(p) = P u(p)
Pus = L alp)= >t aepetn — Vinaz <0 (2.5)
s. ‘
pe € X = {pe € R™ : p""" < pe < p*"}

To solve problem (2.5) use is being made of convex approximations. To
understand the motivation behind this the concept convexity is presented.

2.1.1 Convex Problem

A problem is said to be convex if the objective function and all the con-
straints, including the box constraint, are convex. The definitions of a convex
set and a convex function are stated as:

A set S C R™is conver if for all x1, 2 € S and all A € [0,1], it holds that
Ary+ (1 =Nz €S (2.6)

Note that this implies that every box constraint on the form z,,,. > * > Zin
is a convex set.

A function f:S — R is convez if for all 1,25 € S with z1 # x5 and all A €
(0,1), it holds that

fOz1+ (1= A)za) < Af(z1) + (1= A) f(22) (2.7)

From these definitions the following lemmas can be shown

If f and g are convex functions, then the sum h = f + ¢ is also convex

If f is on an affine form f = ax 4 b, then f is convex

If f is on the form f = x=* where « is a positive integer and x > 0, f
is convex.

ofisconvexon[@%ZOVazE[

12



What the definitions above means is that a set is convex if all points on a
line connecting two points in the set also belongs to the set. A function is
convex if the set above the graph of the function is convex. This implies that
if a stationarity point is found to a convex function then this is also a global
minimum of the function.

13



e

Figure 2.1: Tllustrations of a) a set that is not convex b) a set that is convex

Figure 2.2: Tllustrations of a) a function that is convex b) a function that is
not convex

2.1.2 Convex approximation
OC-Method
As a first step in deriving the convex approximation ¢®¢ a Taylor expansion

of function ¢ is performed. The Taylor expansion is performed with respect
to y. which is an intervening variable chosen as

Ye=p. " a€Zy. (2.8)

14



After the Taylor expansion ¢©¢ takes the form

50 = 5060 + S 2P sy — ot 2.9)

e

where p* is a known state and

dg(p) _ 09(p)Op. _9dg(p) 1 p0y(p) (2.10)
9Ye Ope Oy Ope de’) a  Ope '
Pe

All the functions applied to the OC convex approximation in this thesis will
have the following property

)
9(p) - . (2.11)
dpe
Having this property implies that
82gOC
>0V pe € 2.12
g 207 reEX (2.12)

which means that g©¢ is a convex function cf. Section 2.1.1

Applying the OC convex approximation to the objective function gy defined
in equation (2.1) the convex approximation g§¢ is retrieved

ago(P) _ PTau(p) — (K(p)u(p))Tau(p) _ u(p)TK(p) 8u(p) (2_13)

0pe

0pe

0pe 0pe

where use have been made of the fact that K(p) is symmetric and the stiffness
tensor is defined by

f(pe) = pe (2.14)
of. (1.14).
The derivative of K(p)u(p) = P with respect to p. states
K (p) du(p) _ 0P
K = = 2.1
e u(p) + K(p) oo o 0= (2.15)
Ou -
8Pl i (p)Kup). (2,10
De
Inserting (2.16) into (2.13) results in
00P) _ _ (yhyrKOuE. (2.17)



Since K! is positive definite equation (2.17) implice that

dgo (P)
dpe

<0. (2.18)

Inserting (2.17) into equation (2.9) together with equation (2.10) finally de-
fines the convex approximation of gy as

9§ p) =€+ bhp” (2.19)
e=1
1
where b = L ((u!)Ku) (oh) 1+, (2.20)
[0

where £ = g2¢(0) is constant and of no interest when seeking a minimum to
g§¢. Since the constraint g; is linear an OC-approximation would have no
affect, i.e g9¢ = g,.

SIMP-Method

Performing an optimization with the stiffness tensor defined by equations (1.14)
and (2.14) would return a structure where element e have the thickness p.t,,
pe € {pm" < po < pme®} of. (2.5). This means that a structure with inter-
mediate concentrations is retrieved and such a structure might be difficult
to construct. One way to elude this problem is to introduce a penalization
for intermediate concentrations. This is easily done by changing f(p.) from
f(pe) = pe to f(pe) = p? where ¢ € N,.. This change will effect the stiffness
of each element and can be interpreted as changing Young’s modulus from E
to plE. The effect of changing Young’s modulus is illustrated in Figure 2.3.
In this figure it is seen that the concentrations p. = 1 and p. = 0 give a
one to one relation with the stiffness while the concentrations 0 < p, < 1
does not stiffen the structure as much as they would if ¢ = 1. Note that

this penalization has the disadvantage of making the the continous problem
Pl s non unique. From a practical point of view this disadvantage appears
as a mesh dependency where a finer mesh implies thinner members in the
structure.

16
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Figure 2.3: Influence of the inserted penalization term pZ.

Replacing Young’s modulus F with p? E' results in that the stiffness tensor and
the global stiffness matrix needs to be replaced. The new stiffness stiffness
matrix takes the form

K(p) =) rfK. (2:21)

The convex approximation ¢°'™7” used in the SIMP method is derived in
the same way as ¢°¢ is derived in the OC method. This means that equa-
tions (2.9) and (2.10) are still valid but due to the changed stiffness matrix
does the derivative of gy change from equation (2.17) to

0
P) _ T g KO, (2.22)
0pe
This implies that the convex approximation g5’ is defined by:
g MP(p) =€+ brpe (2.23)
e=1
1
where b} = —((uf)"q(p)" " Koug)(pf)" . (2.24)
a
where ¢ = ¢5™P(0) once again is constant and of no interest during our
optimization.

2.1.3 Calculating the optimal construction

Finding the optimal structure the SIMP method makes use of the KKT
method which is a well known mathematical optimization method.

17



Karush-Kuhn-Tucker (KKT)

An important cornerstone when defining the KK'T method is the Lagrangian,
L, which is defined by

L(z,\) = go(r) + Z Aigi(z) (2.25)

where )\; denotes the Lagrangian multipliers. The KKT method states that
a stationarity point to the Lagrangian is found when the following conditions
are fulfilled

OL(x,A) 9go(x) 9g:()
gi(z) < 0 (2.28)
N >0 (2.29)

forall j=1,...nandi=1,....] were | is the number of constraint functions
and n is the number of variables z;. Combining equations (2.25) and (2.27)
it is clear that if this stationary point minimizes £ it will also minimize the
objective function go.

An important lemma, that is used to derive the SIMP method, and that
follows from these conditions is defined as

Lemma 1 Let P be a convex problem, and let (x*,\*) be a KKT point of P.
Then x* is a global minimum of P.

From the KKT method another optimization method has been developed
which uses the Lagrangian Duality to obtain an optimal solution. This
method states that

l
min mex £(z, ) = min Igg{go(x) + Z; A@-g@-(:c)} (2.30)

and gives an optimal solution that fulfill the KKT conditions on a convex
problem. The dual problem D corresponding to the primal problem P is
obtained by.

_ maXASO()‘)
]D_{ st 0< A (2.31)

18



where the dual objective function ¢ is defined as

©(A) = min L(x, \). (2.32)

x€R™
For more information about the KKT method see [7].

For the current problem stated in (2.5) the Lagrangian, £, becomes

L(p,A) = g5 (p) + Ag?™F (p) =D b+ A <Z acpetn — AV) .
e=1 e=1
(2.33)

From this the dual objective function is defined as the minimum of the La-
grangian 1.e.

N=  min  L(p,\) =) min[b*p % + Aacpetn] — AV, (2.34
PN = min L(p,)) ; [, pet] (2.34)
1
where bf = —(uf)"gpl " Kluf (pf)"** (2:35)
«

cf.[1]

Clearly the minimum of the £ occurs simultaneously with £, = b’; Pe “+Aaepe
having its minimum. This minimum occurs either when p, = p™", when
pe = P or in the interval p™" < p, < p™%. Assuming that this occurs
within the interval p™" < p, < p™* is p, found through

oL,
dpe

— —abf o 4 Aaut _ (ot Y 2.36
B et = Pe =\ Nacts (2.36)

where n = h%g Through this an iteration scheme for finding the optimum
structure is constructed as

KTy 001 KOuk | "
p]eﬁ'l = min{max [plz <<ue) qpe eue> ,pmm] apmaa:} (237)

)\aeth

n

0
a—f = Zaepeth -V =0 (2.38)
e=1

This scheme is then repeated until the optimized state is reached.

For a more theory about the SIMP method see[1].

19



2.1.4 Results from using the SIMP method

In this section the outcome of a SIMP simulation is shown. During the
simulations the following parameter values were used

penalization constant ¢ | intervening variable constant « | initial density p?

3 3 03 Ve

and if nothing else is mentioned a grid of 60x40 4-node isoparametric elements
were used i.e. 2400 elements.

To start the analysis the changes in the distribution of material over the
iterations will be discussed. In Figure 2.4(a) the solution after 5 iterations
and 200 iterations are shown.

Density distribution Density distribution

T

\\\\\

0 01 02 03 04 as 06 a7 0&
m

i HH
01 0z 03 04 05 06 a7 08

(a) 5 iterations (b) 200 iterations

Figure 2.4: Distribution of material after 5 iterations and after 200 iterations

In Figure 2.4 one clearly see how the penalization force the densities to
pe € {0, 1}.

The evolution of the compliance over the number of iterations is illustrated
in Figure 2.5

Figure 2.5 is zoomed in on the first 20 iterations since it turned out to be
here the main changes occurred in the compliance. From this figure it is clear
that the structure becomes stiffer as the optimization proceeds.

Finally the influence of using different meshes is considered. In Figure 2.6a.
simulations has been performed on a space discretization of 25X24 four node
elements i.e. 600 elements and in Figure 2.6b. on 60X40 four node elements.

20
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Figure 2.5: Evolution of the compliance over the number of iterations

After using different meshes during the simulations it can be concluded that
the solutions converged towards the same "main” shape but still differ signif-
icantly. This is an effect of mesh dependency present in the SIMP method.
Referring to Figure 2.6 one can conclude that a finer mesh results in a struc-
ture with very thin threads. This property will be enhanced when finer
meshes are used. This is an example of that the SIMP method has no unique
solution. In the next part, Part B, a new method is derived for which this
mesh dependency is circumvented.

21



Density distribution Density distribution

(a) Coarse mesh (b) Fine mesh

Figure 2.6: Influence of using different space discretization
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Chapter 3

Part B

3.1 Topology optimization based on Cahn-Hilliard
equation

The SIMP method is, as recently mentioned, associated with a defect in the
sense that it generates a solution that is mesh dependent. In this section a
method that introduce a length scale into the problem is derived. This intro-
duced length scale will have the effect of eliminating the mesh dependency.

The derivation of this new method starts with the defining of the objective
functional and the constraints so that the optimization problem P? can be
formed.

3.1.1 Defining the optimization problem P”

The objective functional of this method is denoted E and derived with a
base consisting of the strain energy denoted w. The expression of the strain
energy was stated in equation (1.26) and is stated once more
1

w = igijDijklgkl- (31)
To avoid non physical concentrations such as, p ¢ [0, 1], and also add a
penalization of intermediate concentrations a penalization function F(p) is
added to E, where F(p) is illustrated in Figure 3.1 and defined as

F(p) = (p*(1 = p)*e™ 579" 4 p*(1 = p)*10) (3.2)

23
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Figure 3.1: Tllustration of F(p).

A consequence of introducing the penalization function F(p) is that the
method becomes mesh dependent. To resolve this issue another penaliza-
tion function with the aim of penalizing all gradients p; is introduced. This
second penalization function is denoted S and defined by

S(p) = / papad (3.3)

Collecting equations (3.1), (3.2) and (3.3) the objective functional E(p, p,;, u)
is defined

~
B(pupss) = [ (Fo)+ Japdi e [ w(pesan 64
where 7 is a weight inserted to even the relation between the different parts
of the functional. The parameter, ~, is introduced to define a length scale
into the problem. The effect of changing v can be described as:

Smaller 7 = slim interface between material and no material

Bigger v = wider interface between material and no material

Since F(p) > 0, p.p; > 0 and w(p,g;;) > 0 it can be concluded that
E(p, pi,u) is bounded by the lower limit E(p, p;,u) > & where £ > 0. Note
that the objective functional E is not a convex functional, this is easily seen
by looking at the first term F'(p) illustrated in Figure 3.1. This means that it
can not be guaranteed that a stationary point occurs in the global minimum
but merely that it is placed in a local minimum.

Connecting to phase-field models an interpretation of E(p, p;,u) is that it
represents the total energy of the structure and that the main goal is to lower
this energy as much as possible. With this interpretation F'(p) defines the
bulk energy or the cost of intermediate material densities and 3p;p; defines
the surface energy or the cost of creating surfaces.

In the next section equilibrium and volume constraints is discussed since
these must be enforced when minimizing E(p, p;, u)

24



Constraints

The amount of material available for the design is given by Vj which implies
a volyme constraint g; given by

g1 = / petndQ — Vo <0 (3.5)
Q

recall that ¢;, denotes the maximum thickness of the structure.

To fulfill the local form of the static equilibrium equations the constraints g,
are imposed
Ja :Ukl,l+bk :O a:2,3,4 (36)

With the objective function (3.4) and the constraints (3.5), (3.6) the new
optimization problem denoted P? is formulated as

2 _ [ min, E(p,p;,u)
P _{ R (3.7)

The idea is now to define a Lagrangian, £, and then seek a stationarity
point. The Lagrangian, £, for the current problem is defined by inserting
the objective function (3.4) and the constraints (3.5), (3.6) into the definition
of the Lagrangian (2.25) which results in

L(p, p.i, 0, N* X) = E(p, pi,u) + / N gidY + Mgy (3.8)
Q

where \¥ and \¢ denotes the Lagrangian multipliers. Note that \° is constant
over the hole domain €2, this is a property that will be useful further down
in this thesis.

In the next section is the present stiffness tensor defined.

Stiffness tensor

As previously mentioned in Section 1.2 is the stiffness tensor defined by

where f is a function depending on p and D?jkl is an isotropic fourth order
tensor defined by

1 v
Dzojkl =2G 5(51'195]'1 + 5il5jk) + E(Sz‘jékl (3.10)
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For the SIMP method was f defined as f(p) = p? which led to a penaliza-
tion of intermediate concentrations. Since the intermediate concentrations
already are penalized by F'(p) is a linear relation between concentration and
element stiffness sought. Setting f (p) = p would however lead to singularities
and to avoid these f is instead defined as

PP

where ¢ should be seen as the residual stiffness and has during implementa-
tion been set to £ = 0.01 An illustration of f is shown in Figure 3.2
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Residual /

D T

Figure 3.2: Illustration of the residual stiffness function f

From this figure it is clear that

fp)>0Vp (3.12)

which is a property of f that will lead to that singularities are avoided, this
will be discussed more later.
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3.1.2 Deriving the stationarity point

The Lagrangian, £, associated with the problem was previously defined as
L(p, P4, )\k, )\C) = E(p, Pis u) + / )\fgzdﬂ + )\cgl. (313)
Q

wich after inserting definitions (3.4), (3.5) and (3.6) reads

N |2

[ Au+vgans [ xpnan—xv. (1)
Q Q

Using Green-Gauss’s theorem on the third integral and using the boundary
condition p ;n; = 0 along 02 results in

Elp.pau Xo) = [ (o) + pa0+ 0 [ wip.e)ins

/ b dQ + / t6AFdOQ — / 00N ;A + / NptpdQ — Vo, (3.15)
Q o0 Q Q

To be able to find a stationary point of the functional £ use is made of
calculus of variation which states that the stationarity point is defined by its
variations being equal to zero i.e.

oL oL oL oL
—0p+ —0p; = — U, =
op Pt dp.i pi=0 Ot te =0 ONE

S\ =0 %w =0 (3.16)

Applying this to the Lagrangian functional (3.15) results in

oL oL
—0 —0p; =0
5,00 5,00
= / (F,0p +7pi0p,i — f;D?jkleklAﬁjép + Atpdp 4+ nw!,0p)d<2 (3.17)
Q
0L ) ' bewdQ SemAr dQ
5—ue Ue =T QUJ’&M Ekl — QDijkl Ekl i =0. (318)
0L SAF = / SN d + / teOAFdOQ — / Oa0N,dQ =0 (3.19)
ONE Q a0 Q ’
oL
ON = ptpdQ — Vo ) 6N =0 (3.20)
oA Q
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For the interested reader we recommend reading [5] or [4].

Rearranging (3.18) results in

/Q (nw',,, — Diju;;) SerdQ =0 (3.21)
From this relation it is concluded that the choice
', = Digu\i; = A = nCinw,, (3.22)
results in that or
8—%5% =0 (3.23)

Note that the compliance tensor Cjji = Di_j,lgl was introduced. Inserting
expression (3.22) for the Lagrange multiplier )\ﬁj into (3.17) results in

/(E'pép +vp.idp; — f;ijklsleijpnnw;pnép + Xtpdp + 'r]wfpép)dﬂ =0
0

(3.24)
Two of the terms from Equation (3.24) are now rewritten as
~ £
foDiipierCijpnnu’.,, = 777562‘1“’:5“ (3.25)
pi0pi = (pidp)i — pidp (3.26)

Applying Green-Gauss’s theorem together with these reformulated terms
gives
£

/ (F,0p = 7p.iidp — 'fz%%w;iﬁp + Xtpdp +nuwl,op)dQ2 =0 (3.27)
Q

JF/
w', = ZLw (3.28)
f
wfeijeij = 2w (329)

This means that the objective function, see Equation (3.4), will have a local
optimum when

. oF .
p= =Xty = 5o =P = ng(p, ue) (3.30)
Ji
where g is defined by
£r
~ p
S



Note that \° is a constant which means that our local minimum occurs at a
state where p is constant over the whole domain 2. During the simulations
this is used to see if the solution has converged. Also note that comparing
equations (2.29) and (3.30) it is seen that ;4 < 0 when an optimum is found.
In equation (3.31) the possible singularities discussed in Section 3.1.1 are
observed.

An extrema that fulfill (3.30) shall now be sought using the Cahn-Hilliard
equation which describes the diffusion of material over time.

30



3.1.3 Cahn-Hilliards Equation Three node elements

The Cahn-Hilliard equation is defined by:
p+J;=0 (3.32)
along with the boundary conditions
pin; = pin; =0 along 00 (3.33)
where the flux vector J; is defined as
Jj = —M(p)p; (3.34)

and M denotes the mobility.

A property that follows from using the Cahn-Hilliard equation appears after
inserting equation (3.32) into (3.5) which results in

Q 0N

where use have been made of equation (3.32), Gauss theorem as well as
the boundary condition (3.33). Equation (3.35) tells us is that using Cahn-
Hilliards equation results in that the method conserves the amount of mate-
rial.

To motivate why use is being made of Cahn-Hilliard equation the rate of the

functional ¥ = %—f is derived, i.e.

OF - . d . [d
V= / (5 = Vs = N Ty Dl +mg) o d2 4 X / Lt
Q Q

dp
ow d{fkl d)\k d\©
— = A D) ——dS i b)) —=dS thdQ) —
g = D) Sl an+ | (o4 00 G+ ([ i =V
(3.36)

Rewriting equation (3.36), together with (3.35), (3.22) and imposing the
pressent constraints (3.5), (3.6) gives

OF f dp
U = — — vy — L0 Ci2 g)——dS) 3.37
/Q(ap VP =N 2w +1g) (3.37)
where use have been made of the relation
ow
— =2 3.38
Ekl D w ( )
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Equation (3.31) states that g = f?éw which rewrites equation (3.37) into

oF dp dp
v= [ (E p ) Pao = [ 1Pac .
/Q ( op WP ng) = /Q o (3.39)

which after making use of the product rule and Gauss theorem results in

Q Q o0

Finally using the boundary condition j;n. = 0 on 0 defines the rate of the
functional ¥ as

Q

From equation (3.41) it is concluded that if the mobility is chosen as M (p) >
0 the method will guide the solution to a state that minimizes the Lagrangian
and therefore also minimizing the functional E, cf. (3.4).

Making use of Cahn-Hilliard equations imposes that a discretization in time
is needed for a numerical implementation. The discretization in time is in
this thesis chosen as

P— Pn
At

p A~ (3.42)

where the p, represents the old state value and At the time increment be-
tween the old state and the current state
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3.1.4 Finite element formulation

In Section 3.1.2 equation (3.30) was derived which needed to be fulfilled in
order for E(p, p;,u) to have a stationarity point. To reach this stationar-
ity point and also making sure that it is a local minimum Cahn-Hilliards
equation (3.32) is used. These two equations are now together the local
equilibrium equations (3.6) going to define three strong forms from which
the residuals f;, f; and f5 are derived. The residual originated from the local
equilibrium equations has already been derived in Section 1.2 and is now
denoted f3 i.e.

fy = / B/ DB,,dQu — P (3.43)
Q

of. (1.11)- (1.13)

Strong forms

The other two strong forms defined by equations (3.30) and (3.32) are stated
as

p+J;=0 (3.44)

OF
w5 — 0(pyue) — = 0, 3.45
o, ~ 1P~ i) (3.45)

Weak forms

Multiplying equations (3.44) and (3.45) with the weight functions ¢; and [,
and integration over the domain €2 the following is obtained

/golp'dQ + / @1 ;dQ =0 (3.46)
Q Q

oF _ _
/ iy ~dS = / [y piidS — / [ gd<Y — / fiipdQ =0 (3.47)
Q p Q Q Q

Which after making use of the boundary condition p jn; = 0, the product
rule

Chain rule (¢,J;),; = @u;J; + @i djj (3.48)
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and Gauss theorem (1.6) results in
/golde — / QOl,ijdQ‘F/ @lenjdaﬁ =0 (349)
0 0 o0
_OF _ o _
g ~dQ + / fir,iypdS2 — / fimgdSY — / fiipdQ2 = 0. (3.50)
Q P Q Q Q

Insertion of the boundary condition J;n; = 0 and the time discretization
defined in equation (3.42) rewrittes equation (3.49) into

/ @l(p — pn)dQ — At/ (ﬁl,ijdQ = 0. (351)
Q Q

which together with equation (3.50) defines the two weak forms of the resid-
uals f; and f5.

Finite element formulation

Deriving the finite element formulations that originates from these weak
forms the field variables are approximated as

p=Np Vp=Bp, (3.52)
p=Np Vi =Bpu, (3.53)
u=N,,u, e = B,,u, (3.54)

where using Galerkins method when choosing the weight functions results in
o =Ng Vo =By (3.55)
fu =Np Vi=Bj (3.56)

Inserting these approximations into equations (3.50) and (3.51) defines the
residuals as

f, = / N (p —p,)dQ + At/ B MV pudQ (3.57)
Q Q
TaF 1 T T~ T
f,= | N'——=dQ+e [ B'VpdQ—n [ NT§gdQ2— | NTudQ. (3.58)
Q dp € Q Q Q

where use have been made of the definition of the flux vector J; = —M(p)u

The shape functions used in the approximations of the field variables are
defined by the theory based on triangular coordinates.
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3.1.5 Three-Node Triangles

This section will describe the interpolation of a three-node triangle element.
There are many ways to do this but here the interpolation is based on the
triangular coordinates L1, L, and L3. The coordinate L; is best described as
a straight line opposite the i'* corner in the triangle, see Figure 3.3a,b.

Figure 3.3: Illustration of natural coordinates a) Ls b) Ls.

The triangular coordinates Ly, Lo and L3 are related to the Cartesian system
trough

xr = Lll‘l + LQI‘Q + L3{L‘3 (359)
= Ly + Loya + L3ys (3.60)
1 = L1+ Lo+ Ls (3.61)

Solving this system of equations for x and y gives the triangular coordinates
Ly, Ly and L3 expressed in the Cartesian coordinates x and y as
a; +bix + ¢y
Li=———F-—>= 3.62
2Ae ( )
Where A, denotes the element area and the variables a;, b; and ¢; are de-
scribed by

ay = T2Yz — T3Ys2 (363)
bl = Y2 — Y3 (364)
Ci = X3 — T2 (365)

etc. with cyclic rotation of indices 1,2 and 3. When using triangular elements
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with only three nodes the shape functions are conveniently defined as

N, =L, i=1.3 (3.66)
(N, 0 Ny 0 N; 0
Nom = ( 0 N, 0 N, 0 N, ) (3.68)

Referring to (3.62) B = VN and B,, = V' N,, are defined by

1 by by b
B =VN = .
v 24, ( oo oo (3.69)
1 bl 0 b2 0 b3 0

B,, =V'N,, = 0 ¢ 0 ¢ 0 «c3 (3.70)
24,
bl C1 bg Co bg C3
where V is defined in Section 3.2.

Note that this means that B and B,, are constant which will turn out to be
a useful property. For discussion related to the triangular coordinates see [2]

Numerical integration is needed to be able to solve the integrations present
in the finite element formulation.

Numerical Integration

The numerical integration of a function f over a triangle with the area A, is
formed in the following way

/ fdAe = Aeiwif(LhL%L?)) (371)
Ae i=1

where n is the number of integration points, in our case we have through
test runs come to the conclusion that n = 9 integration points are sufficient.
The 9 integration points are together with their weights w; found in Table 1
cf. [3]. Figure 3.4 illustrates the placement of the integration points.
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Figure 3.4: Placement of the nine Gauss points
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Linearization

The construction of the global stiffness matrix used in the numerical imple-
mentation of the method will now be derived from the linearization of the
residuals derived in Section 3.1.4. Linearization of f;, f; and f5 results in

M

df, = / (NT +AtBTVp,e%—)dde+At / BT MV dud
P Q

df, = / NT P )dde+fy / B VdpdQ—

n / NTHded() — / N7 dpd

Q Q
dfy = / B! f'D%dpdQ + / B! DB,,d2du
Q Q
where

99

H =
852‘]’

To simplify the notation the following definitions are introduced

dfy =K1dp + Ki2dp
dfy; =Ks1dp + Kardp + Kasdu
df3 :Kgldp + K33du

Which gives the following equation

Ki K 0 dp f,
Ky Ki Ko dp = - f,
K31 0 K33 du f3
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(3.72)

(3.73)

(3.74)

(3.75)

(3.76)
(3.77)
(3.78)

(3.79)



where K;; i = 1,2,3 7 = 1,2, 3 are defined by:

M
K :/NTNdQ+At/BTVp,a N)dQ
0 dp
K, =At / BY MBdQ
Ky = / NT )NdQJrv / B Bd
dp Q

Ky = — / NTNdQ
Q
Koys=—1 / NTHB! a0
Q
K = / B! f'D’eNdQ
Q

Kss = / B/ DB,,d
Q

(3.80)
(3.81)
(3.82)
(3.83)
(3.84)
(3.85)

(3.86)

As a next step in deriving the new method Newton-Raphson iterations will
be implemented to prevent errors from accumulating at each time step.
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3.1.6 Newton Raphson

Let R(Y) denote the global residual at the current state Y where

p f;
Y= p RY)=|( £ |~o0 (3.87)
u f3

The goal is then to find a state Y such that R(Y) = 0.

A taylor expansion around a known residual R(Y) gives
R(Y) =R(0) + 0R(Y) +...=0 (3.88)
where the dots indicate higher order terms and dR(Y) is defined as

SR(Y) = —g—zw = —K(Y)5§Y (3.89)

Here
JOR

= a—Y
defines the global stiffness matrix. Combining equations (3.88) and (3.89)
results in

K(Y) (3.90)

§Y =K 'R(Y) (3.91)
Y =Y+ 6Y (3.92)

where the i in (3.92) stands for the iteration index. This scheme will then
be used repeatedly until a state Y that satisfies R(Y) ~ 0 is found.
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3.1.7 Adaptive Mesh

In this section the local errors due to the space discretization will be reduced
through a mesh refinement. The procedure of refining the mesh starts with
an error estimation for each element, the errors are then compared to a given
tolerance. For those elements with an error that do not satisfy the tolerance
an adaptive scheme will be applied which will appear as a refinement of the
space discretization.

Estimation of the local errors

In Section 3.1.4 two residuals f; and f; were derived from equations (3.30)
and (3.32) which for completeness are stated again.
dp

o~ Au=0 (3.93)

S(Fy = 1= 0= (o) =0 (391)
where A denotes the Laplacian which is defined by A = VV. When deriving
f; and f; approximations of the field variables p, © and u were made. Inserting
these approximations into equations (3.93) and (3.94) introduces an error to
the equations. When calculating the residuals these errors are compensated
by the multiplication of the weight functions and integration over the domain
2 cf.[6]. These errors will however still influence the solution on local level
for each element e. The error estimated for element e is denoted R! and
calculated as the residual that comes from inserting the approximations of
the field variables directly into equations (3.93) and (3.94).

For example would R! define the residual that comes from inserting the
approximations into equation (3.93) i.e.

NG (3.95)

Where use have been made of

RN (3.96)
vV =A (3.97)
ANp = VBu (3.98)
VB =0 (3.99)
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and |, means that the field variable is calculated in element e.

When estimating the local error in the space discretization the residual R
does not constitute the whole error. The error is also influenced by the
difference in the field variables between two neighboring element. This con-
tribution to the local error is for two elements connected trough 7 defined
as

JX(t) = (Bple — Bple2) Ty (3.100)
JHt) = (Bt|er — Bpt|ez)Tmy (3.101)
(3.102)

where 7 denotes the sides of element e and with the exception that if the
current element has one ore more side 7 connected to the outer boundary
the following definition will be used instead.

J:(t) = 2(Bpl.)"n (3.103)
JHt) = 2(Bpl.)'n (3.104)
(3.105)

Here n; denotes the unit normal vector to 7 pointing from element e; to
element e; and n denotes the unit normal vector to 7 pointing away from

the body €.

The local error estimators n!(t) and n2(t) are for each element defined as

. . 1 ; .
M) = hell Rl + D2 (Ghell ), =12 (3.106)

TEDe

where h, denotes the element area, h, denotes the length of 7 and ||.X|| 12
is defined as.

X2 = (| XX, (3.107)
he

Finally the local error is estimated as

nelt) = (1 (1)* + %(ﬁ(t))ﬂ)w (3.108)

Re-meshing
After 7.(t) has been calculated for each element they are compared to a the
tolerance LET ”local error tolerance” and depending on the results of these

comparisons the following decisions are made
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e ifn.(t) > LET split the element into two new elements, (this procedure
is called refinement)

e if n.(t) < LET/+/3 coarsen the element

If an element is about to be refined this is done by inserting a new node
on the longest side 7 of the element and draw a line between this node and
the node opposite the longest side. The refinement process is sketched in
Figure 3.5.

Figure 3.5: Illustration of the splitting process

If the longest side is connected to another element this element has to be
split as well since no element should contain a loose node. Sometimes the
neighboring element has not been refined as many times as the element that
is supposed to by refined and in these cases the neighboring element has to
be refined before the new node is added. For better understanding of this
procedure Figure 3.6- 3.9 are shown.

Imagine that element 10 in the mesh shown in Figure 3.6 is supposed to
be refined. Since splitting element 10 leaves element 9 with a loose node

element 9 has to be split as well cf. Figure 3.7. Now imagine that the new
element 19 needs to be refined. Splitting element 19 would leave element 11

with a loose node but since element 11 has not been refined as many times

as element 19 a problem occurs. To resolve this problem element 11 must be
refined before the new node is inserted

After element 11 has been refined the last loose node can be connected in a
correct way cf. Figure 3.9.
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2 4 6
1 3 5
8 10 12
7 9 11
14 16 18
13 15 17
Figure 3.6: Original mesh
2 4 6
1 3 5
8 10 12
19
9/ 20
7 11
14 16 18
13 15 17

Figure 3.7: Original mesh refined one time
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If an element is about to be coarsened the line 7 that was inserted during
a previous refinement is supposed to be removed. However this 7 can not
be removed before checking if all the neighboring elements that share the
same nodes as 7 also are about to be coarsened. If any of these neighboring




2 4 6
1 3 5
8 10 12
19
=
9/ 20
7 11
14 16 18
13 15 17

Figure 3.8: Displaying the loose node

2 4 6
1 3 5
8 10 12
19121
22 | 23
9/ 20
7 11
14 16 18
13 15 17
Figure 3.9:

elements is not set to be coarsened the element in question have to stay
untouched during this re-meshing.
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3.1.8 Results from Part B

To demonstrate the presented scheme the procedure is applied to Example
1, cf. 1.1.1. The structure considered consists of a cantilever beam loaded
with a point load F, cf. Fig.3.10a. The initial material distribution is shown
in Figure.3.10b.

<Y

)

ANNNNNN\\N

(e}
Do

Figure 3.10: a) Illustration of the design space, b) Initial material distribution

The initial spatial discretization is constructed with 442 triangular elements
and is illustrated in Figur 3.11

Figure 3.11: Initial spatial discretization

The effect of changing ~

The optimized density distribution for v = 6 - 107*/m? is shown in Fig-
ure 3.12a, for v = 2 - 107*/m? in Figure 3.12b and for v = 4 - 1073 /m? in
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Figure 3.12c. From these figures it is confirmed that the density distributions
come close to p € {0, 1} with the exception of the thin interfaces between re-
gions where p = 1 and p = 0. A minor deviation from p € {0, 1} can also be
seen in the point where the load is applied, here the density is slightly above
1. When comparing the optimized structures illustrated in Figure 3.12a,b
and c the effect of changing v becomes clear i.e a smaller v returns thinner
interfaces. The effect of changing v is also seen in that a smaller v allow
more regions of interfaces which in Figure 3.12a,b and c appears as a smaller
~ returns a structure with more holes in it.

Mesh

In the space discretization performed in this thesis focus were put on resolving
the interface. For this reason all the parts except from J? are neglected in the
error estimation cf. 3.1.7. In Figure.3.13a,b,c the space discretization after
optimization for each  are illustrated. Since some data can be hard to read
from these figures Table I containing additional data for each mesh is also
included.

Table I
v /m? | Total number of | Number of elements used
elements to resolve the interface
6-1074 18178 17
2-1074 61215 17
4-107° 251793 21

Table I: Data from space discretization shown in Figure 3.13

Since the interface is hard to define the number of elements used to resolve
these are only approximate numbers.

According to Table I roughly the same number of elements are used to
resolve the interfaces for different v but the total number of elements used
in each space discretization differs widely. This is partly an effect of that a
smaller v allow more gradients but also an effect of that the interface of a
smaller gamma is resolved with smaller elements which results in that more
elements are needed to connect these interface elements with the rest of the
elements. From these figures one clearly sees the importance of using an
adaptive space discretization.
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Illustration of the optimization path

In Figure 3.14 the process of optimizing the structure shown in Figure 3.10b
is illustrated. This optimization is performed using v = 2 - 107*/m? and in
the figure every 50th step is shown.

Discussion of p

Figure 3.15 are included to show that, for all three 7, the solutions converged
to a state where p is constant over the whole domain. This is a property
of the method that was derived in Section 3.1.2 and also used as a check to
terminate the simulations.

Effect of changing LET ”local error tolerance”

In Figure 3.16 two optimization simulations are performed on the same struc-
ture using the same v = 6 - 107*/m?. What differs these two simulations is
that they are run with two different local error tolerances LET (cf. Sec-
tion 3.1.7). The difference in LET will appear as a change in the space
discretization and the two simulations are compared to emphasize that the
mesh dependency is no longer present.

In Figure 3.16 it is shown that the two simulations run with different LET
returns basically the same structure. The number of elements needed for the
space discretization of the optimized structures are presented in the Table

II1.
Table I1
LET | Total number of | Number of elements used
elements to resolve the interface
21072 18178 33
4-1073 73834 80
Energies

Commenting on the evolution of the energies in functional F (cf. Section 3.1)
is difficult since the functional depends on the spatial discretization. In Fig-
ure 3.17a the first two seconds of a simulation performed with v = 4-1075 /m?
is shown, in this figure a ”jump” in the energies can be observed. This "jump”,
is the result of a changed space discretization. From Figure 3.17a it is clear
that the total energy is decreasing for each space discretization. Comparing
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Figure 3.17b with Figure 3.14 the same phenomena is observed, namely that
the main changes in the structure occurs in the beginning of the optimization.
The energies that are shown in Figure 3.17 are defined by equations (1.26)
, (3.2) , (3.3) and (3.4) which state that

1

w = §€ijDijkl€kl (3109)
Fpe) = (p2(1 — pe)?e® @570 + p2(1 — p,)?10) (3.110)
S(p) = / pe,ipe,idQ (3111)
Q
y
E(p,p;u) = /Q(F(pe) + §pe,ipe,i)dQ+77/Aw(pea€ij)d9 (3.112)
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Figure 3.12: Optimized structures for a) v = 6-10""/m* b) v = 2-10~*/m?

c)y=4-1075/m? 50



Figure 3.13: Final space discretizatif()){l fora) vy = 6-107"/m? b) v = 2

1074/m? ¢) v =4-1075/m?



t=100

Figure 3.14: Illustration of the optimization process
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Figure 3.15: Distribution of u for a) = 6-107*/m? b) v =2-10"*/m? ¢)
— ~5 /02 5
vy=4-10""/m



Figure 3.16: Optimized structures for v = 6-10"*/m? and a) LET = 2-1072
b) LET = 41073
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Figure 3.17: a)Energy history after 2 seconds b)Energy history after 10 sec-
onds
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3.2 Appendixl

3.2.1 The matrices in equations (1.11) - (1.13)

tx o ba:
() we () -
(N 0O N, 0 N3 O
Nm_( 0 Ny 0 Ny O Ng) (3.114)
ON7 ONo ON:
e [BELE LB
B,=V'N,=| 0 St 0 %2 0 = (3.115)
ONi 9Ny ON» 0Ny ONs ONs
Oy Ox Oy Ox dy oz
d
e !
v=| 0 £ (3.116)
o 9
dy Oz
3.2.2 Derivatives offi
The derivatives of f; are calculated as
2y a(2pke” k0 4 b4 e72he)
(f3), = ETE0E (3.117)
< 4ake 2% (kpb — pke=2kr — b — e=2r)
(f3)p =— Er=0E (3.118)

where the derivatives of fl and fg are considered trivial and for that reason
not written down.

3.2.3 Derivatives of g

0a -

a—i =(f3)p€ij Dijrcki

0% ~

a—pg =(f3), €ij Dijricni

ol . 2(f3)!
—2( ). DO = 2Py

asij <f3)p zyklgkl f3 Oij
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