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Abstra
tStru
tural optimization is a rather new bran
h in solid me
hani
s that havebe
ome in
reasingly important during the last de
ades.The SIMP method is a simple and fast method frequently used to obtainoptimized stru
tures. The SIMP method has in a �nite element setting awell known defe
t in that it la
ks a unique solution whi
h appears as a meshdependen
y.To 
ir
umvent this mesh dependen
y a stru
tural optimization method allow-ing for perimeter 
ontrol is presented. The pro
edure is based on a fun
tionalin terms of the material density distribution and the displa
ement �eld. Theoptimum of the fun
tional is found by using the KKT 
onditions and Cahn-Hilliards equation. To solve the problem use is made of the �nite elementmethod. To properly resolve the interfa
es of the optimized stru
ture anadaptive spa
e dis
retization is implemented.To test the method and verify that the formulation returns feasible stru
tures,simulations are performed on a simple optimization problem. The resultsfrom these simulations are reasonable and we 
on
lude that the method isworking for the simple optimization problems that are tested.
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Chapter 1Introdu
tion
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1.1 Introdu
tionMany pro
esses when 
onstru
ting new produ
ts 
an be modeled as s
hemessimilar to the one illustrated in Figure 1.1.
Analysis

Design

Development

Testing and
Valuation

Not OK

OK

Constructing
the ProductFigure 1.1: Model of a produ
t developmentTo get a better understanding of this pro
ess ea
h step is des
ribed beneath1 Analysis: In this step an analyze is made regarding what demandsthe produ
t needs to ful�ll and what the limitations for 
onstru
ting itmight be.2 Design: At this step a guess is made on how the produ
t should be
onstru
ted. Here it is almost always preferable to use engineers thathave had a lot of experien
e with similar produ
ts before sin
e theymake the best guesses. 3



3 Development: The 
onstru
tion following the Design step is not per-fe
t and therefore improvements are performed in this step.4 Testing and Valuation: The produ
t is tested to 
on�rm that itful�lls the demands spe
i�ed in the Analysis step and also if it doesso in the best possible way. At this point it is 
ommon to realize thatthe produ
t still needs improvement and if this is the 
ase a �jump� ismade ba
k to the Design step. When this 
y
le has been performed a
ouple of times or, whi
h sometimes is the 
ase, a lot of times one willhopefully be satis�ed with the produ
t and move on to the last step.5 Constru
ting the produ
t: This is when the produ
t is 
onstru
tedThe pro
ess of performing these 5 steps is very time 
onsuming and there-fore also 
onsumes a lot of money. These issues of time and money aretwo of the main reasons why stru
tural optimization theory have be
omein
reasingly important during the last de
ades. The theory behind stru
-tural optimization is a rather new bran
h in solid me
hani
s but has alreadydelivered models that in many 
ases 
an advan
e the produ
t developmentbetter than the model des
ribed by Figure 1.1. Some of these models stillhave room for improvement and this is what motivated this thesis.1.1.1 ExampleTo show the e�e
t of an optimization, while simultaneously des
ribing dif-ferent models of performing an optimization, a simple example is given.Example 1:Assume that there lies a need of a stru
ture that 
an withstand an externalfor
e P . Assume also that the amount of material available for the 
onstru
-tion is limited and that the stru
ture is to be pla
ed within the area A. For
larity the problem is illustrated in Figure 1.2.
The need for a stru
ture that 
an withstand an external for
e P motivatesthe sear
h of a stru
ture that is as sti� as possible. Maximizing the sti�nessof the stru
ture is equivalent to minimizing the 
omplian
e of the stru
ture.Sin
e minimizing the 
omplian
e is an easier problem to handle the 
ompli-an
e is going to be used as an obje
tive of the optimization.4



P

A

Figure 1.2: Illustration of the 
ustomers demandsTo performing this optimization it is 
onvenient to de�ne an obje
tive fun
-tion g0 = C where C denotes the 
omplian
e and then minimize g0. Sin
e thestru
ture is limited by the amount of material available a volume 
onstraint
g1 must be imposed to the optimization.When dealing with optimization problems it is found useful to rewrite theproblem into a mathemati
al problem. Let P denote a general mathemati
aloptimization problem and de�ne it by:

P =























minρ∈Rm g0(ρ,u)
s.t











σkl,l + bk = 0

gi ≤ 0 for i = 1...n}
ρe ∈ χ = {ρe ∈ R

m : ρmin
e ≤ ρe ≤ ρmax

e }

(1.1)where u denotes the displa
ement ve
tor, gi denotes the 
onstraints and ρe ∈
χ is 
alled a box 
onstraint. When solving P use will be made of the �niteelement method whi
h means that the stru
ture is dis
retized into a numberof elements e .The 
on
entration ρe is for ea
h of these elements element eassumed to be 
onstant over the whole element. Due to the manufa
turingpro
ess it is in many 
ases desirable to end up with a distin
t design i.e.
ρe ∈ {0, 1} ∀ e, where ρe = 1 means there is material and ρe = 0 meansno material. Furthermore is the equilibrium equation σkl,l + bk = 0 in
ludedin (1.1) to impose that the lo
al form of the stati
 equilibrium is to be ful�lled.Here is σkl the Cau
hy stress tensor and bk the body for
e ve
tor.In Part A of this thesis the SIMP method is dis
ussed. This method takesthe three demands in Example 1 in mind. However, it is well known thatthe SIMP method results in a mesh dependent solution and therefore doesnot have a unique solution.In Part B another method based on adding two penalization fun
tions is de-rived. The resulting equations will be solved using the Cahn-Hilliard equationand the spa
e-dis
retization is based on an adaptive three node mesh.5



Before these Parts are presented two se
tions are in
luded des
ribing the�nite element formulation of the two dimensional elasti
ity and some prop-erties regarding minimization of the 
omplian
e
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1.2 Finite element formulation of two-dimensionalelasti
ityLet the lo
al form of the stati
 equilibrium de�ne the strong form of elasti
ityas
σij,j + bi = 0 (1.2)Multiplying equation (1.2) with a weight fun
tion v̄l and integrating over thedomain Ω gives

∫

Ω

v̄lσij,jdΩ+

∫

Ω

v̄bidΩ = 0. (1.3)Applying the produ
t rulē
vlσij,j = (v̄lσij),j − v̄l,jσij (1.4)to substitute the term v̄lσij,j results in

∫

Ω

(v̄lσij),jdΩ−
∫

Ω

v̄l,jσijdΩ +

∫

Ω

v̄lbidΩ = 0 (1.5)Whi
h after making use of divergen
e theorem of Gauss
∫

V

qi,idV =

∫

S

qinidS. (1.6)to equation (1.5) the weak form of elasti
ity follows
∫

∂Ω

v̄ltid∂Ω−
∫

Ω

v̄l,jσijdΩ+

∫

Ω

v̄lbidΩ = 0. (1.7)In equation (1.7) use have been made of Cau
hy's formula whi
h states
ti = σijnj (1.8)where ti denotes the tra
tion ve
tor.Inserting the following FE-approximationsu = Nmū ε = Bmū (1.9)

v̄l = Nmv̄ v̄l,j = Bmv̄ (1.10)7



into the weak form (1.7) de�nes the �nite element formulation of the two-dimensional elasti
ity asKu = P (1.11)K =

∫

Ω

BT
mDBmdΩ (1.12)P =

∫

∂Ω

NT
mtd∂Ω +

∫

Ω

NT
mbdΩ (1.13)where D denotes the element sti�ness tensor whi
h here is de�ned byD = f̃D0 (1.14)Here f̃ is a fun
tion of the lo
al 
on
entration ρe and D0 is the sti�nesstensor de�ned by hookes law i.e.

f̃ = f̃(ρe) (1.15)D0 =
E

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 . (1.16)Di�erent 
hoi
es of f̃ will be dis
ussed in this thesis. Note that this de�nitionof the sti�ness tensor allow the global sti�ness matrix K(ρ) to be separatedas K(ρ) =
n
∑

e=1

f̃(ρe)K0
e (1.17)Making use of equation (1.11) the mathemati
al problem P is rewritten into

P =























minρ∈Rm g0(ρ,u)s.t




K(ρ)u(ρ) = P
gi ≤ 0 for i = 1...n}
ρe ∈ χ

(1.18)
f. (1.1)The matri
es in equations (1.11) - (1.13) are de�ned in Se
tion 3.2
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1.3 Minimizing the 
omplian
eTo simplify the derivation of the optimization methods this se
tion willpresent some properties asso
iated with optimization of the 
omplian
e.The 
omplian
e is de�ned as
C =

∫

∂Ω

tiuid∂Ω +

∫

Ω

biuidΩ. (1.19)Using the 
omplian
e as an obje
tive fun
tion results in a problem that
ontains the two design parameters ui and ρe. These variables are 
oupledvia equilibrium whi
h is a property that 
an be eluded throughu(ρ) = K−1(ρ)P. (1.20)
f. (1.11)Using the 
oupling (1.20) the nested mathemati
al problem Pnf originatedfrom P is obtained. Pnf is de�ned as
Pnf =















minρ∈Rm g0(ρ)s.t{ gi ≤ 0 for i = 1...n

ρe ∈ χ = {ρe ∈ R
m : ρmin ≤ ρe ≤ ρmax}

(1.21)Rewriting equation (1.19) with Cau
hy's formula (1.8) and the lo
al form ofthe stati
 equilibrium equations (1.2) results in
C =

∫

∂Ω

σijnjuid∂Ω−
∫

Ω

uiσij,jdΩ. (1.22)Whi
h after applying the produ
t rule
(uiσij),j = ui,jσij + uiσij,j (1.23)and Gauss theorem (1.6) enables the se
ond integral in (1.22) to be rewrittenas

∫

Ω

uiσij,jdΩ =

∫

∂Ω

uiσijnjd∂Ω −
∫

Ω

ui,jσijdΩ (1.24)Sin
e σij = σji the displa
ement gradient ui,j 
an be repla
ed by the straintensor εij . Making this 
hange in equation (1.24) the following is obtained
C =

∫

Ω

εijσijdΩ =

∫

Ω

εijDijklεkldΩ. (1.25)9



Note that equation (1.25) states that the 
omplian
e is proportional to thestrain energy integrated over the domain Ω sin
e the strain energy w isde�ned as
w =

1

2
εijDijklεkl. (1.26)Inserting the FE-approximations (
f. Se
tion 1.2) into equation (1.25) gives

C = uTKu (1.27)Combining equations (1.11) and (1.27) results in
C = PTu (1.28)where use have been made of the fa
t that K is symmetri
To further motivate equation (1.28) 
onsider Figure 1.3 where a beam isbeing exposed to an external for
e P .

P
uFigure 1.3: Beam exposed to an external for
e PFrom Figure 1.3 one 
an interpret that a sti� beam would make the de�e
-tion u smaller than a beam that is not sti� i.e maximizing the sti�ness isequivalent with minimizing PTu.
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Chapter 2Part A
2.1 Topology-Optimization using SIMPSolid Isotropi
 Material with Penalization, SIMP, is a simple and fast methodused to obtain an optimized stru
ture. The SIMP-method is based on theoptimal 
riteria method, OC-method, and both these methods are brie�ypresented so that the reader understands the motivation for this report.When deriving these methods it is 
onvenient to �rst present the mathemat-i
al problem P asso
iated with the two methods 
f. (1.21).Using the 
omplian
e as the obje
tive of the optimization the obje
tive fun
-tion g0 is for these methods de�ned by

g0(ρ) = PTu(ρ). (2.1)
f. (1.28)The volume 
onstraint g1 that is imposed in the SIMP method is de�ned by
g1(ρ) =

n
∑

e=1

aeρeth − Vmax. (2.2)where th denotes the maximum thi
kness of the stru
ture, and ae the areaof element e. Finally the box 
onstraints whi
h limits the values of the
on
entration ρe is de�ned as
ρe ∈ χ = {ρe ∈ R

m : ρmin
e ≤ ρe ≤ ρmax

e } (2.3)where ρmin
e = 4

√
eps and ρmax

e = 1. (2.4)11



where eps denotes the ma
hine pre
ision taken as eps = 2.2204 · 10−16.Elements where ρe = ρmin
e should be interpreted as elements with no material,the reason why ρmin

e 6= 0 is to avoid singularities.Inserting equations (2.1)- (2.3) into (1.21) gives
P1

nf =















minρ g0(ρ) = PTu(ρ)
s.t

{

g1(ρ) =
∑n

e aeρeth − Vmax ≤ 0

ρe ∈ χ = {ρe ∈ R
m : ρmin

e ≤ ρe ≤ ρmax
e }

(2.5)To solve problem (2.5) use is being made of 
onvex approximations. Tounderstand the motivation behind this the 
on
ept 
onvexity is presented.2.1.1 Convex ProblemA problem is said to be 
onvex if the obje
tive fun
tion and all the 
on-straints, in
luding the box 
onstraint, are 
onvex. The de�nitions of a 
onvexset and a 
onvex fun
tion are stated as:A set S ⊂ R
n is 
onvex if for all x1, x2 ∈ S and all λ ∈ [0,1℄, it holds that

λx1 + (1− λ)x2 ∈ S (2.6)Note that this implies that every box 
onstraint on the form xmax > x > xminis a 
onvex set.A fun
tion f : S → R is 
onvex if for all x1, x2 ∈ S with x1 6= x2 and all λ ∈(0,1), it holds that
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2.7)From these de�nitions the following lemmas 
an be shown

• If f and g are 
onvex fun
tions, then the sum h = f + g is also 
onvex
• If f is on an a�ne form f = ax+ b, then f is 
onvex
• If f is on the form f = x−α where α is a positive integer and x > 0, fis 
onvex.
• f is 
onvex on I ⇐⇒ ∂2f

∂x2 ≥ 0 ∀ x ∈ I12



What the de�nitions above means is that a set is 
onvex if all points on aline 
onne
ting two points in the set also belongs to the set. A fun
tion is
onvex if the set above the graph of the fun
tion is 
onvex. This implies thatif a stationarity point is found to a 
onvex fun
tion then this is also a globalminimum of the fun
tion.

13



b

b

b

b

a) b)
Figure 2.1: Illustrations of a) a set that is not 
onvex b) a set that is 
onvex

0 1
1a)

0 1
b)

Figure 2.2: Illustrations of a) a fun
tion that is 
onvex b) a fun
tion that isnot 
onvex
2.1.2 Convex approximationOC-MethodAs a �rst step in deriving the 
onvex approximation gOC a Taylor expansionof fun
tion g is performed. The Taylor expansion is performed with respe
tto ye whi
h is an intervening variable 
hosen as

ye = ρ−α
e α ∈ Z+. (2.8)14



After the Taylor expansion gOC takes the form
gOC(ρ) ≈ g(ρk) +

n
∑

e=1

∂g(ρ)

∂ye
|ρ=ρk(ye − yke ) (2.9)where ρk is a known state and

∂g(ρ)

∂ye
=

∂g(ρ)

∂ρe

∂ρe
∂ye

=
∂g(ρ)

∂ρe

1
d(ρ−α

e )
dρe

= −ρ1+α
e

α

∂g(ρ)

∂ρe
(2.10)All the fun
tions applied to the OC 
onvex approximation in this thesis willhave the following property

∂g(ρ)

∂ρe
≥ 0. (2.11)Having this property implies that

∂2gOC

∂ρ2e
≥ 0 ∀ ρe ∈ χ (2.12)whi
h means that gOC is a 
onvex fun
tion 
f. Se
tion 2.1.1Applying the OC 
onvex approximation to the obje
tive fun
tion g0 de�nedin equation (2.1) the 
onvex approximation gOC

0 is retrieved
∂g0(ρ)

∂ρe
= PT ∂u(ρ)

∂ρe
= (K(ρ)u(ρ))T ∂u(ρ)

∂ρe
= u(ρ)TK(ρ)

∂u(ρ)
∂ρe

(2.13)where use have been made of the fa
t thatK(ρ) is symmetri
 and the sti�nesstensor is de�ned by
f̃(ρe) = ρe (2.14)
f. (1.14).The derivative of K(ρ)u(ρ) = P with respe
t to ρe states

∂K(ρ)

∂ρe
u(ρ) +K(ρ)

∂u(ρ)
∂ρe

=
∂P
∂ρe

= 0⇒ (2.15)
∂u(ρ)
∂ρe

= −K−1(ρ)K0
eu(ρ). (2.16)Inserting (2.16) into (2.13) results in

∂g0(ρ)

∂ρe
= −(uk

e)
TK0

euk
e . (2.17)15



Sin
e K0
e is positive de�nite equation (2.17) impli
e that

∂g0(ρ)

∂ρe
≤ 0. (2.18)Inserting (2.17) into equation (2.9) together with equation (2.10) �nally de-�nes the 
onvex approximation of g0 as

gOC
0 (ρ) = ξ +

n
∑

e=1

bkeρ
−α
e (2.19)where bke =

1

α
((uk

e)
TK0

euk
e)(ρ

k
e)

1+α. (2.20)where ξ = gOC(0) is 
onstant and of no interest when seeking a minimum to
gOC
0 . Sin
e the 
onstraint g1 is linear an OC-approximation would have noa�e
t, i.e gOC

1 = g1.SIMP-MethodPerforming an optimization with the sti�ness tensor de�ned by equations (1.14)and (2.14) would return a stru
ture where element e have the thi
kness ρeth,
ρe ∈ {ρmin

e ≤ ρe ≤ ρmax
e } 
f. (2.5). This means that a stru
ture with inter-mediate 
on
entrations is retrieved and su
h a stru
ture might be di�
ultto 
onstru
t. One way to elude this problem is to introdu
e a penalizationfor intermediate 
on
entrations. This is easily done by 
hanging f̃(ρe) from

f̃(ρe) = ρe to f̃(ρe) = ρqe where q ∈ N+. This 
hange will e�e
t the sti�nessof ea
h element and 
an be interpreted as 
hanging Young's modulus from Eto ρqeE. The e�e
t of 
hanging Young's modulus is illustrated in Figure 2.3.In this �gure it is seen that the 
on
entrations ρe = 1 and ρe = 0 give aone to one relation with the sti�ness while the 
on
entrations 0 < ρe < 1does not sti�en the stru
ture as mu
h as they would if q = 1. Note that
this penalization has the disadvantage of making the the 
ontinous problem
P1

nf non unique. From a pra
ti
al point of view this disadvantage appearsas a mesh dependen
y where a �ner mesh implies thinner members in thestru
ture. 16



0 1
0

1

ρe

ρqe

ρe

Figure 2.3: In�uen
e of the inserted penalization term ρqe.Repla
ing Young's modulusE with ρqeE results in that the sti�ness tensor andthe global sti�ness matrix needs to be repla
ed. The new sti�ness sti�nessmatrix takes the form K(ρ) =
n
∑

e=1

ρqeK0
e. (2.21)The 
onvex approximation gSIMP used in the SIMP method is derived inthe same way as gOC is derived in the OC method. This means that equa-tions (2.9) and (2.10) are still valid but due to the 
hanged sti�ness matrixdoes the derivative of g0 
hange from equation (2.17) to

∂g0(ρ)

∂ρe
= −uT

e qρ
q−1
e K0

eue (2.22)This implies that the 
onvex approximation gSIMP
0 is de�ned by:

gSIMP
0 (ρ) = ξ +

n
∑

e=1

bkeρ
−α
e (2.23)where bke =

1

α
((uk

e)
T q(ρke)

q−1K0
euk

e)(ρ
k
e)

1+α. (2.24)where ξ = gSIMP
0 (0) on
e again is 
onstant and of no interest during ouroptimization.2.1.3 Cal
ulating the optimal 
onstru
tionFinding the optimal stru
ture the SIMP method makes use of the KKTmethod whi
h is a well known mathemati
al optimization method.

17



Karush-Kuhn-Tu
ker (KKT)An important 
ornerstone when de�ning the KKT method is the Lagrangian,
L, whi
h is de�ned by

L(x, λ) = g0(x) +
l
∑

i=1

λigi(x) (2.25)where λi denotes the Lagrangian multipliers. The KKT method states thata stationarity point to the Lagrangian is found when the following 
onditionsare ful�lled
∂L(x, λ)

∂xj
=

∂g0(x)

∂xj
+

l
∑

i=1

λi
∂gi(x)

∂xj
= 0 (2.26)

λigi(x) = 0 (2.27)
gi(x) ≤ 0 (2.28)

λi ≥ 0 (2.29)for all j = 1, ..., n and i = 1, ..., l were l is the number of 
onstraint fun
tionsand n is the number of variables xj . Combining equations (2.25) and (2.27)it is 
lear that if this stationary point minimizes L it will also minimize theobje
tive fun
tion g0.An important lemma, that is used to derive the SIMP method, and thatfollows from these 
onditions is de�ned asLemma 1 Let P be a 
onvex problem, and let (x∗, λ∗) be a KKT point of P.Then x∗ is a global minimum of P.From the KKT method another optimization method has been developedwhi
h uses the Lagrangian Duality to obtain an optimal solution. Thismethod states that
min
x∈Rm

max
0≤λ

L(x, λ) = min
x∈Rm

max
0≤λ

{

g0(x) +
l
∑

i=1

λigi(x)

} (2.30)and gives an optimal solution that ful�ll the KKT 
onditions on a 
onvexproblem. The dual problem D 
orresponding to the primal problem P isobtained by.
D =

{

maxλ ϕ(λ)
s.t 0 ≤ λ

(2.31)18



where the dual obje
tive fun
tion ϕ is de�ned as
ϕ(λ) = minx∈Rm

L(x, λ). (2.32)For more information about the KKT method see [7℄.For the 
urrent problem stated in (2.5) the Lagrangian, L, be
omes
L(ρ, λ) = gSIMP

0 (ρ) + λgSIMP
1 (ρ) =

n
∑

e=1

bkeρ
−α
e + λ

(

n
∑

e=1

aeρeth − λV

)

.(2.33)From this the dual obje
tive fun
tion is de�ned as the minimum of the La-grangian i.e.
ϕ(λ) = min

ρmin≤ρe≤ρmax

L(ρ, λ) =
n
∑

e=1

min[bkeρ
−α
e + λaeρeth]− λV. (2.34)where bke =

1

α
(uk

e)
T qρq−1

e K0
euk

e(ρ
k
e)

1+α (2.35)
f.[1℄Clearly the minimum of the L o

urs simultaneously with Lα = bkeρ
−α
e +λaeρehaving its minimum. This minimum o

urs either when ρe = ρmin, when

ρe = ρmax or in the interval ρmin ≤ ρe ≤ ρmax. Assuming that this o

urswithin the interval ρmin ≤ ρe ≤ ρmax is ρe found through
∂Lα

∂ρe
= −αbkeρ

−α−1
e + λaeth ⇒ ρe =

(

αbke
λaeth

)η (2.36)where η = 1
1+α

. Through this an iteration s
heme for �nding the optimumstru
ture is 
onstru
ted as
ρk+1
e = min

{

max

[

ρke

(

(uk
e)

T qρq−1
e K0

euk
e

λaeth

)η

, ρmin

]

, ρmax

} (2.37)
∂ϕ

∂λ
=

n
∑

e=1

aeρeth − V = 0 (2.38)This s
heme is then repeated until the optimized state is rea
hed.For a more theory about the SIMP method see[1℄.19



2.1.4 Results from using the SIMP methodIn this se
tion the out
ome of a SIMP simulation is shown. During thesimulations the following parameter values were usedpenalization 
onstant q intervening variable 
onstant α initial density ρ0e3 3 0.3 ∀ eand if nothing else is mentioned a grid of 60x40 4-node isoparametri
 elementswere used i.e. 2400 elements.To start the analysis the 
hanges in the distribution of material over theiterations will be dis
ussed. In Figure 2.4(a) the solution after 5 iterationsand 200 iterations are shown.
(a) 5 iterations (b) 200 iterationsFigure 2.4: Distribution of material after 5 iterations and after 200 iterationsIn Figure 2.4 one 
learly see how the penalization for
e the densities to

ρe ∈ {0, 1}.The evolution of the 
omplian
e over the number of iterations is illustratedin Figure 2.5Figure 2.5 is zoomed in on the �rst 20 iterations sin
e it turned out to behere the main 
hanges o

urred in the 
omplian
e. From this �gure it is 
learthat the stru
ture be
omes sti�er as the optimization pro
eeds.Finally the in�uen
e of using di�erent meshes is 
onsidered. In Figure 2.6a.simulations has been performed on a spa
e dis
retization of 25X24 four nodeelements i.e. 600 elements and in Figure 2.6b. on 60X40 four node elements.20



Figure 2.5: Evolution of the 
omplian
e over the number of iterationsAfter using di�erent meshes during the simulations it 
an be 
on
luded thatthe solutions 
onverged towards the same �main� shape but still di�er signif-i
antly. This is an e�e
t of mesh dependen
y present in the SIMP method.Referring to Figure 2.6 one 
an 
on
lude that a �ner mesh results in a stru
-ture with very thin threads. This property will be enhan
ed when �nermeshes are used. This is an example of that the SIMP method has no uniquesolution. In the next part, Part B, a new method is derived for whi
h thismesh dependen
y is 
ir
umvented.
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(a) Coarse mesh (b) Fine meshFigure 2.6: In�uen
e of using di�erent spa
e dis
retization

22



Chapter 3Part B
3.1 Topology optimization based on Cahn-HilliardequationThe SIMP method is, as re
ently mentioned, asso
iated with a defe
t in thesense that it generates a solution that is mesh dependent. In this se
tion amethod that introdu
e a length s
ale into the problem is derived. This intro-du
ed length s
ale will have the e�e
t of eliminating the mesh dependen
y.The derivation of this new method starts with the de�ning of the obje
tivefun
tional and the 
onstraints so that the optimization problem PB 
an beformed.3.1.1 De�ning the optimization problem PBThe obje
tive fun
tional of this method is denoted E and derived with abase 
onsisting of the strain energy denoted w. The expression of the strainenergy was stated in equation (1.26) and is stated on
e more

w =
1

2
εijDijklεkl. (3.1)To avoid non physi
al 
on
entrations su
h as, ρ /∈ [0, 1], and also add apenalization of intermediate 
on
entrations a penalization fun
tion F (ρ) isadded to E, where F (ρ) is illustrated in Figure 3.1 and de�ned as

F (ρ) = (ρ2(1− ρ)2e15(0.5−ρ)2 + ρ2(1− ρ)210) (3.2)23



0 1
0

1

ρ

F (ρ)

Figure 3.1: Illustration of F (ρ).A 
onsequen
e of introdu
ing the penalization fun
tion F (ρ) is that themethod be
omes mesh dependent. To resolve this issue another penaliza-tion fun
tion with the aim of penalizing all gradients ρ,i is introdu
ed. Thisse
ond penalization fun
tion is denoted S and de�ned by
S(ρ) =

∫

Ω

ρ,iρ,idΩ (3.3)Colle
ting equations (3.1), (3.2) and (3.3) the obje
tive fun
tional E(ρ, ρ,i,u)is de�ned
E(ρ, ρ,i,u) = ∫

Ω

(F (ρ) +
γ

2
ρ,iρ,i)dΩ+ η

∫

Ω

w(ρ, ǫij)dΩ (3.4)where η is a weight inserted to even the relation between the di�erent partsof the fun
tional. The parameter, γ, is introdu
ed to de�ne a length s
aleinto the problem. The e�e
t of 
hanging γ 
an be des
ribed as:
Smaller γ ⇒ slim interface between material and no material

Bigger γ ⇒ wider interface between material and no materialSin
e F (ρ) ≥ 0, ρ,iρ,i ≥ 0 and w(ρ, εij) ≥ 0 it 
an be 
on
luded that
E(ρ, ρ,i,u) is bounded by the lower limit E(ρ, ρ,i,u) > ξ where ξ > 0. Notethat the obje
tive fun
tional E is not a 
onvex fun
tional, this is easily seenby looking at the �rst term F (ρ) illustrated in Figure 3.1. This means that it
an not be guaranteed that a stationary point o

urs in the global minimumbut merely that it is pla
ed in a lo
al minimum.Conne
ting to phase-�eld models an interpretation of E(ρ, ρ,i,u) is that itrepresents the total energy of the stru
ture and that the main goal is to lowerthis energy as mu
h as possible. With this interpretation F (ρ) de�nes thebulk energy or the 
ost of intermediate material densities and γ

2
ρ,iρ,i de�nesthe surfa
e energy or the 
ost of 
reating surfa
es.In the next se
tion equilibrium and volume 
onstraints is dis
ussed sin
ethese must be enfor
ed when minimizing E(ρ, ρ,i,u)24



ConstraintsThe amount of material available for the design is given by V0 whi
h impliesa volyme 
onstraint g1 given by
g1 =

∫

Ω

ρethdΩ− V0 ≤ 0 (3.5)re
all that th denotes the maximum thi
kness of the stru
ture.To ful�ll the lo
al form of the stati
 equilibrium equations the 
onstraints gαare imposed
gα = σkl,l + bk = 0 α = 2, 3, 4 (3.6)With the obje
tive fun
tion (3.4) and the 
onstraints (3.5), (3.6) the newoptimization problem denoted PB is formulated as
P2 =

{

minρE(ρ, ρ,i,u)s.t gi ≤ 0
(3.7)The idea is now to de�ne a Lagrangian, L, and then seek a stationaritypoint. The Lagrangian, L, for the 
urrent problem is de�ned by insertingthe obje
tive fun
tion (3.4) and the 
onstraints (3.5), (3.6) into the de�nitionof the Lagrangian (2.25) whi
h results in

L(ρ, ρ,i,u,λk, λc) = E(ρ, ρ,i,u) + ∫
Ω

λi
kgidΩ + λcg1. (3.8)where λk

i and λc denotes the Lagrangian multipliers. Note that λc is 
onstantover the hole domain Ω, this is a property that will be useful further downin this thesis.In the next se
tion is the present sti�ness tensor de�ned.Sti�ness tensorAs previously mentioned in Se
tion 1.2 is the sti�ness tensor de�ned by
Dijkl = f̃D0

ijkl (3.9)where f̃ is a fun
tion depending on ρ and D0
ijkl is an isotropi
 fourth ordertensor de�ned by

D0
ijkl = 2G

[

1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

] (3.10)25



For the SIMP method was f̃ de�ned as f̃(ρ) = ρq whi
h led to a penaliza-tion of intermediate 
on
entrations. Sin
e the intermediate 
on
entrationsalready are penalized by F (ρ) is a linear relation between 
on
entration andelement sti�ness sought. Setting f̃(ρ) = ρ would however lead to singularitiesand to avoid these f̃ is instead de�ned as
f̃ =

ρ

1 + e−40ρ
+ ξ (3.11)where ξ should be seen as the residual sti�ness and has during implementa-tion been set to ξ = 0.01 An illustration of f̃ is shown in Figure 3.2
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0 1
1

ρ

f̃(ρ)Residual Linear
Figure 3.2: Illustration of the residual sti�ness fun
tion f̃From this �gure it is 
lear that

f̃(ρ) > 0 ∀ ρ (3.12)whi
h is a property of f̃ that will lead to that singularities are avoided, thiswill be dis
ussed more later.
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3.1.2 Deriving the stationarity pointThe Lagrangian, L, asso
iated with the problem was previously de�ned as
L(ρ, ρ,i,u,λk, λc) = E(ρ, ρ,i,u) + ∫

Ω

λk
i gidΩ + λcg1. (3.13)wi
h after inserting de�nitions (3.4), (3.5) and (3.6) reads

L(ρ, ρ,i,u,λk, λc) =

∫

Ω

(F (ρ) +
γ

2
(ρ,i)

2)dΩ + η

∫

Ω

w(ρ, ǫij)dΩ+
∫

Ω

λk
i (σil,l + bi)dΩ+

∫

Ω

λcρthdΩ− λcV0. (3.14)Using Green-Gauss's theorem on the third integral and using the boundary
ondition ρ,jnj = 0 along ∂Ω results in
L(ρ, ρ,i,u,λk, λc) =

∫

Ω

(F (ρ) +
γ

2
(ρ,i)

2)dΩ+ η

∫

Ω

w(ρ, ǫij)dΩ+
∫

Ω

λk
i bidΩ+

∫

∂Ω

tiδλ
k
i d∂Ω−

∫

Ω

σijδλ
k
i,jdΩ+

∫

Ω

λcρthdΩ− λcV0. (3.15)To be able to �nd a stationary point of the fun
tional L use is made of
al
ulus of variation whi
h states that the stationarity point is de�ned by itsvariations being equal to zero i.e.
δL
δρ

δρ+
δL
δρ,i

δρ,i = 0
δL
δue

δue = 0
δL
δλk

e

δλk
e = 0

δL
δλc

δλc = 0 (3.16)Applying this to the Lagrangian fun
tional (3.15) results in
δL
δρ

δρ+
δL
δρ,i

δρ,i = 0

=

∫

Ω

(F ′
,ρδρ+ γρ,iδρ,i − f̃ ′

ρD
0
ijklεklλ

k
i,jδρ+ λcthδρ+ ηw′

,ρδρ)dΩ (3.17)
δL
δue

δue = η

∫

Ω

w′
,εkl

δεkldΩ−
∫

Ω

Dijklδεklλ
k
i,jdΩ = 0. (3.18)

δL
δλk

e

δλk
e =

∫

Ω

δλk
ebedΩ+

∫

∂Ω

teδλ
k
ed∂Ω−

∫

Ω

σelδλ
k
e,ldΩ = 0 (3.19)

δL
δλc

δλc =

(
∫

Ω

ρthdΩ− V0

)

δλc = 0 (3.20)28



For the interested reader we re
ommend reading [5℄ or [4℄.Rearranging (3.18) results in
∫

Ω

(

ηw′
,εkl

−Dijklλ
k
i,j

)

δεkldΩ = 0 (3.21)From this relation it is 
on
luded that the 
hoi
e
ηw′

,εkl
= Dijklλ

k
i,j ⇒ λk

i,j = ηCijklw
′
,εkl

(3.22)results in that
∂L
∂ue

δue = 0 (3.23)Note that the 
omplian
e tensor Cijkl = D−1
ijkl was introdu
ed. Insertingexpression (3.22) for the Lagrange multiplier λk

i,j into (3.17) results in
∫

Ω

(F ′
,ρδρ+ γρ,iδρ,i − f̃ ′

ρD
0
ijklεklCijpnηw

′
,εpnδρ+ λcthδρ+ ηw′

,ρδρ)dΩ = 0(3.24)Two of the terms from Equation (3.24) are now rewritten as
f̃ ′
ρD

0
ijklεklCijpnηw

′
,εpn = η

f̃ ′
ρ

f̃
εijw

′
,εij

(3.25)
ρ,iδρ,i = (ρ,iδρ),i − ρ,iiδρ (3.26)Applying Green-Gauss's theorem together with these reformulated termsgives

∫

Ω

(F ′
,ρδρ− γρ,iiδρ− η

f̃ ′
ρ

f̃
εijw

′
,εij

δρ+ λcthδρ+ ηw′
,ρδρ)dΩ = 0 (3.27)

w′
,ρ =

f̃ ′
ρ

f̃
w (3.28)

w′
,εij

εij = 2w (3.29)This means that the obje
tive fun
tion, see Equation (3.4), will have a lo
aloptimum when
µ = −λcth =

∂F

∂ρ
− γρ,ii − ηg̃(ρ,ue) (3.30)where g̃ is de�ned by

g̃ =
f̃ ′
ρ

f̃
w (3.31)29



Note that λc is a 
onstant whi
h means that our lo
al minimum o

urs at astate where µ is 
onstant over the whole domain Ω. During the simulationsthis is used to see if the solution has 
onverged. Also note that 
omparingequations (2.29) and (3.30) it is seen that µ < 0 when an optimum is found.In equation (3.31) the possible singularities dis
ussed in Se
tion 3.1.1 areobserved.An extrema that ful�ll (3.30) shall now be sought using the Cahn-Hilliardequation whi
h des
ribes the di�usion of material over time.
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3.1.3 Cahn-Hilliards Equation Three node elementsThe Cahn-Hilliard equation is de�ned by:
ρ̇+ Jj,j = 0 (3.32)along with the boundary 
onditions

ρ,jnj = µ,jnj = 0 along ∂Ω (3.33)where the �ux ve
tor Jj is de�ned as
Jj = −M(ρ)µ,j (3.34)and M denotes the mobility.A property that follows from using the Cahn-Hilliard equation appears afterinserting equation (3.32) into (3.5) whi
h results in

V̇ =

∫

Ω

ρ̇thdV = −
∫

∂Ω

JinithdS = 0 (3.35)where use have been made of equation (3.32), Gauss theorem as well asthe boundary 
ondition (3.33). Equation (3.35) tells us is that using Cahn-Hilliards equation results in that the method 
onserves the amount of mate-rial.To motivate why use is being made of Cahn-Hilliard equation the rate of thefun
tional Ψ = ∂L
∂t

is derived, i.e.
Ψ =

∫

Ω

(
∂F

∂ρ
− γρ,ii − λe

i,j f̃
′
ρD

0
ijklεkl + ηg̃)

dρ

dt
dΩ+ λc

∫

Ω

dρ

dt
thdΩ+

∫

Ω

(η
∂w

∂εkl
− λk

i,jDijkl)
dεkl
dt

dΩ+

∫

Ω

(σij,j + bi)
dλk

i

dt
dΩ + (

∫

Ω

ρthdΩ− V0)
dλc

dt(3.36)Rewriting equation (3.36), together with (3.35), (3.22) and imposing thepressent 
onstraints (3.5), (3.6) gives
Ψ =

∫

Ω

(
∂F

∂ρ
− γρ,ii − η

f̃ ′
ρ

f̃
σijCijkl2w + ηg̃)

dρ

dt
dΩ (3.37)where use have been made of the relation

εkl
∂w

∂εkl
= 2w (3.38)31



Equation (3.31) states that g̃ =
f̃ ′

ρ

f̃
w whi
h rewrites equation (3.37) into

Ψ =

∫

Ω

(
∂F

∂ρ
− γρ,ii − ηg̃)

dρ

dt
dΩ =

∫

Ω

µ
dρ

dt
dΩ (3.39)whi
h after making use of the produ
t rule and Gauss theorem results in

Ψ =

∫

Ω

µ(Mµ,i),idtdΩ = −
∫

Ω

µ,iMµ,idtdΩ+

∫

∂Ω

µMµ,inidtd∂Ω (3.40)Finally using the boundary 
ondition µ,ine = 0 on ∂Ω de�nes the rate of thefun
tional Ψ as
Ψ = −

∫

Ω

µ,iMµ,idΩ ≤ 0 (3.41)From equation (3.41) it is 
on
luded that if the mobility is 
hosen as M(ρ) >
0 the method will guide the solution to a state that minimizes the Lagrangianand therefore also minimizing the fun
tional E, 
f. (3.4).Making use of Cahn-Hilliard equations imposes that a dis
retization in timeis needed for a numeri
al implementation. The dis
retization in time is inthis thesis 
hosen as

ρ̇ ≈ ρ− ρn
∆t

(3.42)where the ρn represents the old state value and ∆t the time in
rement be-tween the old state and the 
urrent state
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3.1.4 Finite element formulationIn Se
tion 3.1.2 equation (3.30) was derived whi
h needed to be ful�lled inorder for E(ρ, ρ,i,u) to have a stationarity point. To rea
h this stationar-ity point and also making sure that it is a lo
al minimum Cahn-Hilliardsequation (3.32) is used. These two equations are now together the lo
alequilibrium equations (3.6) going to de�ne three strong forms from whi
hthe residuals f1, f2 and f3 are derived. The residual originated from the lo
alequilibrium equations has already been derived in Se
tion 1.2 and is nowdenoted f3 i.e. f3 = ∫
Ω

BT
mDBmdΩu−P (3.43)
f. (1.11)- (1.13)Strong formsThe other two strong forms de�ned by equations (3.30) and (3.32) are statedas

ρ̇+ Jj,j = 0 (3.44)
∂F

∂ρ
− γρ,ii − ηg̃(ρ, ue)− µ = 0. (3.45)Weak formsMultiplying equations (3.44) and (3.45) with the weight fun
tions ϕ̄l and µ̄land integration over the domain Ω the following is obtained

∫

Ω

ϕ̄lρ̇dΩ+

∫

Ω

ϕ̄lJj,jdΩ = 0 (3.46)
∫

Ω

µ̄l
∂F

∂ρ
dΩ−

∫

Ω

µ̄lγρ,iidΩ−
∫

Ω

µ̄lηg̃dΩ−
∫

Ω

µ̄lµdΩ = 0 (3.47)Whi
h after making use of the boundary 
ondition ρ,jnj = 0, the produ
trule Chain rule (ϕ̄lJj),j = ϕ̄l,jJj + ϕ̄lJj,j (3.48)33



and Gauss theorem (1.6) results in
∫

Ω

ϕ̄lρ̇dΩ−
∫

Ω

ϕ̄l,jJjdΩ+

∫

∂Ω

ϕ̄lJjnjd∂Ω = 0 (3.49)
∫

Ω

µ̄l
∂F

∂ρ
dΩ+

∫

Ω

µ̄l,iγρ,idΩ−
∫

Ω

µ̄lηg̃dΩ−
∫

Ω

µ̄lµdΩ = 0. (3.50)Insertion of the boundary 
ondition Jjnj = 0 and the time dis
retizationde�ned in equation (3.42) rewrittes equation (3.49) into
∫

Ω

ϕ̄l(ρ− ρn)dΩ−∆t

∫

Ω

ϕ̄l,jJjdΩ = 0. (3.51)whi
h together with equation (3.50) de�nes the two weak forms of the resid-uals f1 and f2.Finite element formulationDeriving the �nite element formulations that originates from these weakforms the �eld variables are approximated as
ρ = Nρ ∇ρ = Bρe (3.52)
µ = Nµ ∇µ = Bµe (3.53)u = Nmue ε = Bmue (3.54)where using Galerkins method when 
hoosing the weight fun
tions results in
ϕ̄l = Nϕ̄ ∇ϕ̄ = Bϕ̄ (3.55)
µ̄l = Nµ̄ ∇µ̄ = Bµ̄ (3.56)Inserting these approximations into equations (3.50) and (3.51) de�nes theresiduals asf1 = ∫

Ω

NT (ρ− ρn)dΩ+∆t

∫

Ω

BTM∇µdΩ (3.57)f2 = ∫
Ω

NT ∂F

∂ρ

1

ǫ
dΩ + ǫ

∫

Ω

BT∇ρdΩ− η

∫

Ω

NT g̃dΩ−
∫

Ω

NTµdΩ. (3.58)where use have been made of the de�nition of the �ux ve
tor Jj = −M(ρ)µ,jThe shape fun
tions used in the approximations of the �eld variables arede�ned by the theory based on triangular 
oordinates.34



3.1.5 Three-Node TrianglesThis se
tion will des
ribe the interpolation of a three-node triangle element.There are many ways to do this but here the interpolation is based on thetriangular 
oordinates L1, L2 and L3. The 
oordinate Li is best des
ribed asa straight line opposite the ith 
orner in the triangle, see Figure 3.3a,b.
1 2

3
L2 = 0.75

L2 = 0.5
L2 = 0.25

a)
1 2

3
L3 = 0.25

L3 = 0.5
L3 = 0.75

b)
Figure 3.3: Illustration of natural 
oordinates a) L2 b) L3.The triangular 
oordinates L1, L2 and L3 are related to the Cartesian systemtrough

x = L1x1 + L2x2 + L3x3 (3.59)
y = L1y1 + L2y2 + L3y3 (3.60)
1 = L1 + L2 + L3 (3.61)Solving this system of equations for x and y gives the triangular 
oordinates

L1, L2 and L3 expressed in the Cartesian 
oordinates x and y as
Li =

ai + bix+ ciy

2Ae

(3.62)Where Ae denotes the element area and the variables ai, bi and ci are de-s
ribed by
a1 = x2y3 − x3y2 (3.63)
b1 = y2 − y3 (3.64)
c1 = x3 − x2 (3.65)et
. with 
y
li
 rotation of indi
es 1,2 and 3. When using triangular elements
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with only three nodes the shape fun
tions are 
onveniently de�ned as
Ni =Li i = 1...3 (3.66)N =[N1 N2 N3] (3.67)Nm =

(

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

) (3.68)Referring to (3.62) B = ∇N and Bm = ∇̃TNm are de�ned byB =∇N =
1

2Ae

(

b1 b2 b3
c1 c2 c3

) (3.69)Bm =∇̃TNm =
1

2Ae





b1 0 b2 0 b3 0
0 c1 0 c2 0 c3
b1 c1 b2 c2 b3 c3



 (3.70)where ∇̃ is de�ned in Se
tion 3.2.Note that this means that B and Bm are 
onstant whi
h will turn out to bea useful property. For dis
ussion related to the triangular 
oordinates see [2℄Numeri
al integration is needed to be able to solve the integrations presentin the �nite element formulation.Numeri
al IntegrationThe numeri
al integration of a fun
tion f over a triangle with the area Ae isformed in the following way
∫ ∫

Ae

fdAe = Ae

n
∑

i=1

wif(L1, L2, L3) (3.71)where n is the number of integration points, in our 
ase we have throughtest runs 
ome to the 
on
lusion that n = 9 integration points are su�
ient.The 9 integration points are together with their weights wi found in Table 1
f. [3℄. Figure 3.4 illustrates the pla
ement of the integration points.
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Figure 3.4: Pla
ement of the nine Gauss points
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LinearizationThe 
onstru
tion of the global sti�ness matrix used in the numeri
al imple-mentation of the method will now be derived from the linearization of theresiduals derived in Se
tion 3.1.4. Linearization of f1, f2 and f3 results in
df1 = ∫

Ω

(NT +∆tBT∇µe

∂M

∂ρ
)dρdΩ+∆t

∫

Ω

BTM∇dµdΩ (3.72)
df2 = ∫

Ω

NT (
∂2F

∂ρ2
− η

∂g̃

∂ρ
)dρdΩ+ γ

∫

Ω

BT∇dρdΩ−

η

∫

Ω

NTHdεdΩ−
∫

Ω

NTdµdΩ (3.73)
df3 = ∫

Ω

BT
mf̃

′D0εdρdΩ+

∫

Ω

BT
mDBmdΩdu (3.74)where H =
∂g̃

∂εij
(3.75)To simplify the notation the following de�nitions are introdu
ed

df1 =K11dρ+K12dµ (3.76)
df2 =K21dρ+K22dµ+K23du (3.77)
df3 =K31dρ+K33du (3.78)Whi
h gives the following equation





K11 K12 0K21 K22 K23K31 0 K33









dρ
dµ
du  = −





f1f2f3  (3.79)
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where Kij i = 1, 2, 3 j = 1, 2, 3 are de�ned by:K11 =

∫

Ω

NTNdΩ +∆t

∫

Ω

BT∇µ
∂M

∂ρ
N)dΩ (3.80)K12 =∆t

∫

Ω

BTMBdΩ (3.81)K21 =

∫

Ω

NT (
∂2F

∂ρ2
− η

∂g̃

∂ρ
)NdΩ+ γ

∫

Ω

BTBdΩ (3.82)K22 =−
∫

Ω

NTNdΩ (3.83)K23 =− η

∫

Ω

NTHBT
mdΩ (3.84)K31 =

∫

Ω

BT
mf̃

′D0εNdΩ (3.85)K33 =

∫

Ω

BT
mDBmdΩ (3.86)As a next step in deriving the new method Newton-Raphson iterations willbe implemented to prevent errors from a

umulating at ea
h time step.
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3.1.6 Newton RaphsonLet R(Y) denote the global residual at the 
urrent state Y whereY =





ρ

µu  R(Y) =





f1f2f3  ≈ 0 (3.87)The goal is then to �nd a state Y su
h that R(Y) ≈ 0.A taylor expansion around a known residual R(Y) givesR(Y) = R(0) + δR(Y) + ... = 0 (3.88)where the dots indi
ate higher order terms and δR(Y) is de�ned as
δR(Y) = −∂R

∂YδY = −K(Y)δY (3.89)Here K(Y) =
∂R
∂Y (3.90)de�nes the global sti�ness matrix. Combining equations (3.88) and (3.89)results in

δY =K−1R(Y) (3.91)Yi =Yi−1 + δYi (3.92)where the i in (3.92) stands for the iteration index. This s
heme will thenbe used repeatedly until a state Y that satis�es R(Y) ≈ 0 is found.
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3.1.7 Adaptive MeshIn this se
tion the lo
al errors due to the spa
e dis
retization will be redu
edthrough a mesh re�nement. The pro
edure of re�ning the mesh starts withan error estimation for ea
h element, the errors are then 
ompared to a giventoleran
e. For those elements with an error that do not satisfy the toleran
ean adaptive s
heme will be applied whi
h will appear as a re�nement of thespa
e dis
retization.Estimation of the lo
al errorsIn Se
tion 3.1.4 two residuals f1 and f1 were derived from equations (3.30)and (3.32) whi
h for 
ompleteness are stated again.
∂ρ

∂t
−∆µ = 0 (3.93)

1

γ
(F,ρ − µ− γρ,ii − ηg̃(ρ,u)) = 0 (3.94)where ∆ denotes the Lapla
ian whi
h is de�ned by ∆ = ∇∇. When derivingf1 and f2 approximations of the �eld variables ρ, µ and u were made. Insertingthese approximations into equations (3.93) and (3.94) introdu
es an error tothe equations. When 
al
ulating the residuals these errors are 
ompensatedby the multipli
ation of the weight fun
tions and integration over the domain

Ω 
f.[6℄. These errors will however still in�uen
e the solution on lo
al levelfor ea
h element e. The error estimated for element e is denoted Ri
e and
al
ulated as the residual that 
omes from inserting the approximations ofthe �eld variables dire
tly into equations (3.93) and (3.94).For example would R1

e de�ne the residual that 
omes from inserting theapproximations into equation (3.93) i.e.
R1

e = N(ρ− ρn)

∆t
|e (3.95)Where use have been made of

ρ̇e ≈
ρ− ρn
∆t

(3.96)
∇∇ = ∆ (3.97)

∆Nµ = ∇Bµ (3.98)
∇B = 0 (3.99)41



and |e means that the �eld variable is 
al
ulated in element e.When estimating the lo
al error in the spa
e dis
retization the residual Ri
edoes not 
onstitute the whole error. The error is also in�uen
ed by thedi�eren
e in the �eld variables between two neighboring element. This 
on-tribution to the lo
al error is for two elements 
onne
ted trough τ de�nedas

J2
τ (t) = (Bρ|e1 −Bρ|e2)Tn1 (3.100)

J1
τ (t) = (Bµ|e1 −Bµ|e2)Tn1 (3.101)(3.102)where τ denotes the sides of element e and with the ex
eption that if the
urrent element has one ore more side τ 
onne
ted to the outer boundarythe following de�nition will be used instead.

J2
τ (t) = 2(Bρ|e)Tn (3.103)

J1
τ (t) = 2(Bµ|e)Tn (3.104)(3.105)Here n1 denotes the unit normal ve
tor to τ pointing from element e1 toelement e2 and n denotes the unit normal ve
tor to τ pointing away fromthe body Ω.The lo
al error estimators η1e(t) and η2e(t) are for ea
h element de�ned as

ηje(t) = he‖Rj
e‖L2(e) +

∑

τ∈∂e

(
1

2
hτ‖J j

τ‖2L2(τ))
1/2, j = 1, 2. (3.106)where he denotes the element area, hτ denotes the length of τ and ‖X‖L2(e)is de�ned as.

‖X‖L2(e) = (

∫

he

XTXdhe)
1/2. (3.107)Finally the lo
al error is estimated as

ηe(t) = ((η1e(t))
2 +

1

γ2
(η2e(t))

2)1/2 (3.108)Re-meshingAfter ηe(t) has been 
al
ulated for ea
h element they are 
ompared to a thetoleran
e LET �lo
al error toleran
e� and depending on the results of these
omparisons the following de
isions are made42



• if ηe(t) > LET split the element into two new elements, (this pro
edureis 
alled re�nement)
• if ηe(t) < LET/

√
3 
oarsen the elementIf an element is about to be re�ned this is done by inserting a new nodeon the longest side τ of the element and draw a line between this node andthe node opposite the longest side. The re�nement pro
ess is sket
hed inFigure 3.5.

b

b

b

b

b

b

b

b

b

b

bFigure 3.5: Illustration of the splitting pro
essIf the longest side is 
onne
ted to another element this element has to besplit as well sin
e no element should 
ontain a loose node. Sometimes theneighboring element has not been re�ned as many times as the element thatis supposed to by re�ned and in these 
ases the neighboring element has tobe re�ned before the new node is added. For better understanding of thispro
edure Figure 3.6- 3.9 are shown.Imagine that element 10 in the mesh shown in Figure 3.6 is supposed tobe re�ned. Sin
e splitting element 10 leaves element 9 with a loose nodeelement 9 has to be split as well 
f. Figure 3.7. Now imagine that the newelement 19 needs to be re�ned. Splitting element 19 would leave element 11with a loose node but sin
e element 11 has not been re�ned as many timesas element 19 a problem o

urs. To resolve this problem element 11 must bere�ned before the new node is insertedAfter element 11 has been re�ned the last loose node 
an be 
onne
ted in a
orre
t way 
f. Figure 3.9. 43
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Figure 3.6: Original mesh
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Figure 3.7: Original mesh re�ned one timeIf an element is about to be 
oarsened the line τ that was inserted duringa previous re�nement is supposed to be removed. However this τ 
an notbe removed before 
he
king if all the neighboring elements that share thesame nodes as τ also are about to be 
oarsened. If any of these neighboring44
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Figure 3.8: Displaying the loose node
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Figure 3.9:elements is not set to be 
oarsened the element in question have to stayuntou
hed during this re-meshing.
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3.1.8 Results from Part BTo demonstrate the presented s
heme the pro
edure is applied to Example1, 
f. 1.1.1. The stru
ture 
onsidered 
onsists of a 
antilever beam loadedwith a point load F , 
f. Fig.3.10a. The initial material distribution is shownin Figure.3.10b. b)
Figure 3.10: a) Illustration of the design spa
e, b) Initial material distributionThe initial spatial dis
retization is 
onstru
ted with 442 triangular elementsand is illustrated in Figur 3.11

Figure 3.11: Initial spatial dis
retizationThe e�e
t of 
hanging γThe optimized density distribution for γ = 6 · 10−4/m2 is shown in Fig-ure 3.12a, for γ = 2 · 10−4/m2 in Figure 3.12b and for γ = 4 · 10−5/m2 in46



Figure 3.12
. From these �gures it is 
on�rmed that the density distributions
ome 
lose to ρ ∈ {0, 1} with the ex
eption of the thin interfa
es between re-gions where ρ = 1 and ρ = 0. A minor deviation from ρ ∈ {0, 1} 
an also beseen in the point where the load is applied, here the density is slightly above1. When 
omparing the optimized stru
tures illustrated in Figure 3.12a,band 
 the e�e
t of 
hanging γ be
omes 
lear i.e a smaller γ returns thinnerinterfa
es. The e�e
t of 
hanging γ is also seen in that a smaller γ allowmore regions of interfa
es whi
h in Figure 3.12a,b and 
 appears as a smaller
γ returns a stru
ture with more holes in it.MeshIn the spa
e dis
retization performed in this thesis fo
us were put on resolvingthe interfa
e. For this reason all the parts ex
ept from J2

τ are negle
ted in theerror estimation 
f. 3.1.7. In Figure.3.13a,b,
 the spa
e dis
retization afteroptimization for ea
h γ are illustrated. Sin
e some data 
an be hard to readfrom these �gures Table I 
ontaining additional data for ea
h mesh is alsoin
luded.Table I
γ /m2 Total number of Number of elements usedelements to resolve the interfa
e
6 · 10−4 18178 17
2 · 10−4 61215 17
4 · 10−5 251793 21Table I: Data from spa
e dis
retization shown in Figure 3.13Sin
e the interfa
e is hard to de�ne the number of elements used to resolvethese are only approximate numbers.A

ording to Table I roughly the same number of elements are used toresolve the interfa
es for di�erent γ but the total number of elements usedin ea
h spa
e dis
retization di�ers widely. This is partly an e�e
t of that asmaller γ allow more gradients but also an e�e
t of that the interfa
e of asmaller gamma is resolved with smaller elements whi
h results in that moreelements are needed to 
onne
t these interfa
e elements with the rest of theelements. From these �gures one 
learly sees the importan
e of using anadaptive spa
e dis
retization. 47



Illustration of the optimization pathIn Figure 3.14 the pro
ess of optimizing the stru
ture shown in Figure 3.10bis illustrated. This optimization is performed using γ = 2 · 10−4/m2 and inthe �gure every 50th step is shown.Dis
ussion of µFigure 3.15 are in
luded to show that, for all three γ, the solutions 
onvergedto a state where µ is 
onstant over the whole domain. This is a propertyof the method that was derived in Se
tion 3.1.2 and also used as a 
he
k toterminate the simulations.E�e
t of 
hanging LET �lo
al error toleran
e�In Figure 3.16 two optimization simulations are performed on the same stru
-ture using the same γ = 6 · 10−4/m2. What di�ers these two simulations isthat they are run with two di�erent lo
al error toleran
es LET (
f. Se
-tion 3.1.7). The di�eren
e in LET will appear as a 
hange in the spa
edis
retization and the two simulations are 
ompared to emphasize that themesh dependen
y is no longer present.In Figure 3.16 it is shown that the two simulations run with di�erent LETreturns basi
ally the same stru
ture. The number of elements needed for thespa
e dis
retization of the optimized stru
tures are presented in the TableII.Table IILET Total number of Number of elements usedelements to resolve the interfa
e
2 · 10−2 18178 33
4 · 10−3 73834 80EnergiesCommenting on the evolution of the energies in fun
tional E (
f. Se
tion 3.1)is di�
ult sin
e the fun
tional depends on the spatial dis
retization. In Fig-ure 3.17a the �rst two se
onds of a simulation performed with γ = 4·10−5/m2is shown, in this �gure a �jump� in the energies 
an be observed. This �jump�,is the result of a 
hanged spa
e dis
retization. From Figure 3.17a it is 
learthat the total energy is de
reasing for ea
h spa
e dis
retization. Comparing48



Figure 3.17b with Figure 3.14 the same phenomena is observed, namely thatthe main 
hanges in the stru
ture o

urs in the beginning of the optimization.The energies that are shown in Figure 3.17 are de�ned by equations (1.26), (3.2) , (3.3) and (3.4) whi
h state that
w =

1

2
εijDijklεkl (3.109)

F (ρe) = (ρ2e(1− ρe)
2e15(0.5−ρe)2 + ρ2e(1− ρe)

210) (3.110)
S(ρ) =

∫

Ω

ρe,iρe,idΩ (3.111)
E(ρ,ρ,i,u) = ∫

Ω

(F (ρe) +
γ

2
ρe,iρe,i)dΩ+ η

∫

A

w(ρe, ǫij)dΩ (3.112)
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a)

b)


)

Figure 3.12: Optimized stru
tures for a) γ = 6 · 10−4/m2 b) γ = 2 · 10−4/m2
) γ = 4 · 10−5/m2 50



a)

b)


)

Figure 3.13: Final spa
e dis
retization for a) γ = 6 · 10−4/m2 b) γ = 2 ·
10−4/m2 
) γ = 4 · 10−5/m2 51
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Figure 3.14: Illustration of the optimization pro
ess
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a)

b)


)

Figure 3.15: Distribution of µ for a) γ = 6 · 10−4/m2 b) γ = 2 · 10−4/m2 
)
γ = 4 · 10−5/m2 53



a)

b)

Figure 3.16: Optimized stru
tures for γ = 6 ·10−4/m2 and a) LET = 2 ·10−2b) LET = 4 · 10−3
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a)

b)

Figure 3.17: a)Energy history after 2 se
onds b)Energy history after 10 se
-onds
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3.2 Appendix13.2.1 The matri
es in equations (1.11) - (1.13)t = ( tx
ty

) b =

(

bx
by

) (3.113)Nm =

(

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

) (3.114)Bm = ∇̃TNm =





∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x



 (3.115)
∇̃ =





∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x



 (3.116)3.2.2 Derivatives of f̃iThe derivatives of f̃i are 
al
ulated as
(f̃3)

′
ρ =

a(2ρke−2kρ + b+ e−2kρ)

(b+ e−2kρ)2
(3.117)

(f̃3)
′′
ρ =− 4ake−2kρ(kρb− ρke−2kρ − b− e−2kρ)

(b+ e−2kρ)3
(3.118)where the derivatives of f̃1 and f̃2 are 
onsidered trivial and for that reasonnot written down.3.2.3 Derivatives of g̃

∂g̃

∂ρ
=(f̃3)

′′
ρεijDijklεkl

∂2g̃

∂ρ2
=(f̃3)

′′′
ρ εijDijklεkl

∂g̃

∂εij
=2(f̃3)

′
ρD

0
ijklεkl =

2(f̃3)
′
ρ

f̃3
σij56
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