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Abstract

This masters thesis is done in collaboration between the Division of Solid Mechanics at
Lund University and Orthopaedic Department at Lund University Hospital. The thesis is
the start of a multi disciplinary research project where the goal is to develop a model for
adaptive bone remodelling and.

The main task of the thesis is to investigate existing bone remodelling theories found in
the literature. Extra effort has been put down to understand the medical issues involved
in the bone remodelling process. The remodelling theories was investigated by use of the
finite element method which provides a sufficient solution to the field problems involved.

The first model investigated was a model developed by Huiskes in 1987. This model has a
very loose connection to the actual medical issues guiding the remodelling process, instead
it is based on an assumption of constant strain energy density distribution in the structure.
A change of numerical solution technique from an Euler forward method, proposed by
Huiskes, to a Newton algorithm was done in this investigation to ensure force equilibrium.
Still the results obtained was similar to the one given by Huiskes.

The second model investigated is a prestudy of a model with a more rigid connection to
the medical and physiological effects involved in bone remodelling process. The theory is
assumed to explain the contradiction that bone remodelling occurs at much lower tissue
level strains then is needed to cause bone signaling in deformed cell cultures. The remod-
elling theory involves the movement of bone fluid in bone and the fluid flow is assumed to
induce strains large enough to trigger the cells. A compleat model has not been developed,
due to the limited amount of time given, so the magnitudes of the cell strains induced by
the fluid flow has not been evaluated. The effect that has been investigated is how the
different loads influence the magnitude and pattern of the fluid flow. It was found that
there is a linear relationship between the magnitude of the fluid flow and the frequency of
the load applied.

Suggestions and guidelines for future work within the research project is also given, since
this thesis has only coped with a fraction of all aspects involved in adaptive bone remod-
elling.

iii



v



Contents

1 Introduction 1
1.1 Background to the assignment . . . . . . . .. .. ... 1
1.2 Objective and restrictions . . . . . . . . ... ... L oo 1
1.3 About this thesis . . . . . . . . . 2

2 Anatomical description of bone structure 3
2.1 Longbones . . . . .. . .. 3
2.2 Macroscopic level . . . . . .o 3
2.3 Microscopic level . . . . . . . . 4
2.4 Bone cells and osteoporosis . . . . . . . . ... o 5

3 Mechanical properties of bone 7
3.1 Cortical and cancellous bone . . . . . . . ... ..o 7
3.2 Material properties used in this thesis . . . . . . . . . ... . ... ... .. 7

4 Bone adaptation and stimulus 9
4.1 Bone adaptation . . . .. ... L L 9
4.2 Stimulus . . . ... 10
4.3 Stimuli investigated in this thesis . . . . . .. ..o 000000 10

5 Basic continuum mechanics and numerical treatment 11
5.1 Definitions of strains and stresses . . . . . . .. .. ... L. 11
5.2 Balance of linear momentum and principal of virtual work . . . .. .. .. 13



vi

CONTENTS
5.3 Finite element formulation . . . . . .. .. ... ... o L. 15
5.4 Constitutive relation . . . . . . . ..o Lo 16
5.5 General format of Newton’s method . . . . . . . ... ... ... ... ... 17
Bone adaptation simulation by use of an updating algorithm for Young’s

modulus 21
6.1 Newton’s method . . . . . . . . . ... . L o 21
6.2 Updating of Young’s modulus . . . . . . ... ... o oo 22
6.3 Derivation of the algorithmic tangential stiffness . . . . . . .. .. ... .. 24
6.4 Bone-density prediction. . . . . . ... .o L oo 26

Finite element formulation and numerical solution technique for a porous

medium 29
7.1 General definitions . . . . . .. .. oo 29
7.2 Force equilibrium . . . . ..o 30
7.2.1 Effective stress . . . . . . . L 30
7.2.2 Principal of virtual work and finite element formulation . . . . . . . 30
7.2.3 Constitutive relation for a porous medium . . . .. .. .. ... .. 31
7.3 Porefluidflow . . . . . . ... 32
7.3.1 Mass continuity equation for the pore fluid . . . . . ... ... ... 32
7.3.2 Constitutive relation . . . . . . . ... o000 35
7.4 Numeric solution technique . . . . .. . ... .. ... 0 0. 35
Simulation of bone fluid flow in cortical bone 41
8.1 Geometry and mechanical properties . . . . . . ... ... L. 41
8.2 Loading situation and boundary conditions . . . . . . .. . ... ... .. 42
8.3 Gait walk analysis . . . . . .. ..o 43
8.3.1 Loading situation . . . . . ... ... oL 44
832 Results. . . . .. . . 44
8.4 Vibration analysis . . . . . . .. .o Lo 45

8.4.1 Loading situation . . . . . . ... ... L Lo o 46



CONTENTS

842 Results. .. ... ..

9 Discussion and future work

9.1 Discussion of the results . .

9.2 Suggestions for future work

A Matlab code

vil

46

49
49
a0

53



Chapter 1

Introduction

1.1 Background to the assignment

Bone is made up of living material which posses the ability to change properties when
exposed to mechanical loading. Even thought this phenomena has been known for cen-
turies the actual mechanism controlling the bone remodelling proses is poorly understood.
Due to this fact a multidisciplinary research project involving both orthopedics and solid
mechanics has started at the University of Lund. The aim for this project is to gain better
understanding for the bone remodelling process itself and evidently find a treatment for
osteoporosis which is a growing problem worldwide.

1.2 Objective and restrictions

The main objective of this master thesis is to investigate and evaluate existing bone adap-
tive remodelling models found in the literature. The objective can be broken down in the
following

e study of medical literature to understand the medical and physiological issues in-
volved in the bone remodelling process.

e study of biomechanical literature to find suitable bone remodelling models.
e implementation and evaluation some of the found bone remodelling models.

Due to the size and complexity of the problem it is impossible to investigate all the aspect of
bone remodelling during the short time period given. In this thesis only mechanical effects
will be considered i.e. the influence of chemical or genetic processes is not accounted.

1



2 Chapter 1. Introduction

1.3 About this thesis

The thesis can be divided into three sections. The first section consists of chapter 2 to
chapter 4 where the medical and physiological aspects of bone remodelling will be described.
Also in this section the most interesting bone remodelling aspects will be pointed out. In
chapter 5 to chapter 8 the issues of the numerical simulation will be described and in the
last section, chapter 9, a discussion of the results from simulations is given. Suggestions
of future work will also be given since this thesis only coped with a fraction of all aspects
involved in adaptive bone remodelling.



Chapter 2

Anatomical description of bone
structure

In this chapter the structure of bone will be described. This will be done in a hierarchical
manner to improve understanding and to introduce some commonly used terms. For more
information within this area see Bagge [1], Taber [14] or Sonesson [13]

2.1 Long bones

Only long bones will be examined in the thesis, so a short presentation of this type of
bones is needed.

Long bones are composed of a hollow shaft called diaphysis with an extension, epiphysis,
at the ends, see fig. 2.1. The inner and outer surfaces of the diaphysis are called endosteum
and periosteum, respectively. The cavity in the diaphysis is called medullary cavity and
contains the bone marrow. The ends of the long bones are covered with cartilage which
is a very specialized type of material with extreme low frictional coefficient (u ~ 0.002,
Bagge [1] ). The low friction ensures that the joint movements run easily.

2.2 Macroscopic level

On the macroscopic level, which corresponds to what can be seen with the naked eye, there
are two types of bone, cortical and cancellous bone. The latter one is also referred to as
trabecular bone. Cortical bone is the compact type of bone that primarily can be found in
the diaphysis of the long bones. Cancellous bone is a more poroses type of bone made up
of a lattice of rods and plates which are referred to as trabeculas, see fig 2.2. This type of
bone, also known as spongy bone, makes up the epiphysis of the long bones.

3



4 Chapter 2. Anatomical description of bone structure

Figure 2.1: Cross-section of a long bone. (taken from Taber [14])
2.3 Microscopic level

Microscopic there are three types of cortical bone, wowen bone, lamellar bone and Haver-
stan bone. Wowen bone is randomly arranged and can be seen in very young bone and in
large fracture sites. Lamellar bone is, as the name implies, a more arranged type of bone.
It is made up by a system of concentric lamina separated by vascular network. Some of the
lamellar bone eventually converts to Haversian bone, which consists of cylindrical elements
called osteons or Haversian systems. The Haversian systems have a radii of 100 — 150um
and are roughly aligned with the axial direction of the bone.

Figure 2.2: Cancellous bone structure showing a network of rods and plates.(taken from
the web-site http://www.nd.edu/ gniebut /research.html)



2.4. Bone cells and osteoporosis )

In the center of each Haversian system a Haversian canal is located. These canals have a
radii of 25m and contains blood vessels, nerves and bone fluid. The connection of some
Haversian systems is done by Volkmann canals. The Volkmann canals are of the same
dimension as the Haversian canals (10um) and these canals do also contain blood vessels,
nerves and bone fluid. These two type of canals makes up a porosity level of bone which
is referred to as the vascular porosity.

On the wall of each Haversian canal, the entrances to the canaliculi can be found. The
canaliculi are passageways (radii in the order of 0.1pm) that run from the Haversian canal
to small cavities, lacunae, or between lacunae. This porosity level is known as the lacuna-
canalicular porosity. The spreading of the canaliculi in restricted by the cementline. The
cementline is relative impermeable for the bone fluid and makes up the circumference of
each osteon. A sketch of a systems of osteons can be seen in 2.3 (Volkmann canals are not
visible in this sketch).
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Figure 2.3: Cross-section of cortical bone showing a system of osteons (taken form the
web-site http://www.bartelby.com)

2.4 Bone cells and osteoporosis

Bone consist primarily of thee types of cells:
e osteoblasts: a cell that create (deposit) bone.
e osteoclasts: a cell that destroy (resorb) bone.
e osteocytes: a cell that takes care of the maintenance of the bone

Growth of bone do not involve cell division, instead first the osteoclasts resorb bone and
then the osteoblasts fill in the gap with new bone. The new bone is initially soft but
hardens gradually due to mineralization. By involving both osteoclasts and osteoblasts it
is assumed that new bone can be lied down without creating residuals stresses, [14].
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The activity of the two processes involved in bone growth changes with age. For the first
25-30 years, the deposition of bone is greater the the resorption leading to steadily increase
of bone mass. From here on, the bone resorption process will be more active leading to
a slow decomposition of the bone. The resorption process is extremely active for women
during there menopause, this due to an almost complete stop of the production of the
female hormone estrogen. The process of growing older described here, is a completely
normal process and it will take place in all human life. Although, if the resorption of
bone becomes to severe the strength of the skeleton will be so reduced. Complications
during normal life will then occur often in terms of fractures in the hip spine or wrist. This
phenomena is known as osteoporosis. The treatment of extreme osteoporosis consists today
of bone resorption decreasing medication such as estrogen (for women) and bisphosphonates
(for both men and women). For less extreme cases increased physical activity is the most
effective treatment.



Chapter 3

Mechanical properties of bone

In this chapter, the material properties of bone will be described.

3.1 Cortical and cancellous bone

The material properties of both cortical and cancellous bone have been measured by using
different techniques such as machine testing or ultrasound. The specimen used for mea-
surement of mechanical properties are often taken from the femur, the tibia, the humerus
or the radius. This because both cortical and cancellous bone are present in larger blocks
here then in other parts in the skeleton. Some example of mechanical properties for cortical
bone can be seen in Table 3.1

The same techniques have been used to measure the mechanical properties for cancellous
bone, some examples can be seen in Table 3.2.

As can be seen in Tables 3.1 and 3.2, there is a grate diversity for the material properties
obtained by the various investigators. Besides the variation obtained from the use of
different measuring techniques, the material properties show dependency of moisture level
and anatomical position.

3.2 Material properties used in this thesis

In this thesis the bone material is assumed to be isotropic linear elastic. Furthermore, it
will be assumed that both cortical and cancellous bone have the same material properties.
Evens if these assumptions do not perfectly agree with the real behavior of human bone,
they will be assumed to do as a sufficient approximations.
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Measuring Material sym- | Properties
technique metry
Reilly and machine transversely E,=Ey; =115 GPa
Burstein (1975) | testing isotropic E; =17.0 GPa
long bones, G113 = Ga3 = 3.28 GPa
freshly frozen V31 = 39 = 0.46
V91 = 0.58
Ashman et al. ultrasound orthotropic E1 =12.0 GPa
(1984) femur, E; =134 GPa
freshly frozen E3 =20.0 GPa
G132 = 4.53 GPa
G13 = 5.61 GPa
G23 = 6.23 GPa
Vig = 0.376
Vg = 0.222
vz = 0.235
Choi et al. (1991) | microstructural | isotropic E =5.44 GPa
tibia, freshly level machine
frozen testing

Table 3.1: Some measured properties for cortical bone. The coordinate system is oriented
with the first axis in the radial direction, the second in circumferential direction and the
third in the axial direction of a long bone.

| | Measuring technique | Material symmetry | Properties |

Choi et al. (1990) | microstructural isotropic E =459 GPa
tibia, level machine

freshly frozen testing

Linde et al. (1991) | machine isotropic E =0.77 GPa
proximal tibia, testing

frozen

Table 3.2: Some measured properties for cancellous bone.



Chapter 4

Bone adaptation and stimulus

In this chapter the behavior of bone adaptation will be discussed. Further the actual
mechanism that triggers the bone remodelling, i.e. the stimulus, will be investigated.

4.1 Bone adaptation

Bone is considered as a self-organizing material which adapts its structure to its function.
This can for example be seen in long bones, e.g. the femur, whose main task is to transfer
the body weight from one end of the bone to the other. The relative flexible ends of the long
bones act like shock absorbers when the bone is exposed to impact forces. The trabeculas
in each end of long bones are oriented in a way that optimizes the load carrying capacity,
the phenomena is known as Wolft’s law (Wolff [17]). The hollow shaft effectively support
bending stresses and at the same time it is a structure that minimize weight.

This self-organizing ability also implies that when the loading conditions are changed the
bone will adapt to this new state. It is a well known fact that increased activity, such
as military training, leads to bone deposition. On the other hand inactivity, such as bed
resting, leads to bone resorption, sometimes as much as 200 mg a day (Sonesson [13]).

Many experimental studies has been done in this area mainly using animal testing. When
doing these types of studies it is of grate importance that the loading environment is
controlled and the properties of the bones are measured with satisfying accuracy. Moreover
the experiment has to be done in such a way that statistic accuracy is ensured.

One experimental discovery of grate importance for this thesis was made by Lanyon et al.[§]
and more recently by Rubin [11]. Both these experiments show that the bone remodelling
process does not only depend of the magnitude of the loading but also of the frequency of
the applied load. This can be of high interest when designing a rehabilitation program for
osteoporosis.



10 Chapter 4. Bone adaptation and stimulus

4.2 Stimulus

Even thought the phenomena of bone remodelling has been known for centuries the actual
signal triggering the bone remodelling process is poorly understood. Several mechanisms
have been proposed for the transduction of mechanical loads to the bone remodelling
response, Treharne [15], such as:

e direct stresses or strains on bone cells

e mechanical micro damage

e piezoelectric or streaming potentials

e alteration in mineral solvability due to stresses

Experimental data can be found to support all of these mechanisms so this problem is by
no means solved.

4.3 Stimuli investigated in this thesis

Two types of stimuli will be investigated in this thesis. The first one is based on the
assumption that the bone structure adapts to the loading situation i.e. resorb bone in
areas where it is not needed and deposit bone in more affected areas. This assumption of
stimulus will be investigated by use of a plane strain finite element simulation.

The second type of stimulus investigated in this thesis is based on the assumption that
direct strains on the bone cell can be acting as stimuli. Thought, an extension of this
hypothesis is needed to explain the experimental result found by Rubin and Lanyon [12]
and Fritton et al. |5]. Their experiments show that the strains applied to the whole bone
(i.e. tissue level strains) is many times lower that the strains needed to cause bone signaling
in deformed cell cultures. The extension made involves the bone fluid in the Haversian
canal and in the canaliculi-lacuna system. It has been hypothised that the flow of the bone
fluid in the canaliculi-lacuna system will induce strains large enough to trigger cell reaction
in the cells on the bone surface. This process will be investigated using a finite element
simulation.



Chapter 5

Basic continuum mechanics and
numerical treatment

In this chapter the basics of continuum mechanics, finite element formulation, constitutive
relation and numerical solution technique will be described. For more information within
these areas, see Ottosen and Ristinmaa [9] and Ottosen and Ristinmaa [10]

5.1 Definitions of strains and stresses

When dealing with deformable bodies it is vital to establish a quantity that only describes
the deformation of the body, i.e. the rigid body motion is excluded.

Consider a body before deformation i.e. a reference configuration. In this body a mate-
rial point with the position z; can be found. The body is now deformed into a current
configuration and the same material point can then be found at the position z} given by:

where u; = u;(x;,t) is called the displacement vector and t is the time.

Now, consider two material points, P and (), located infinitely close to each other in
the undeformed body. After deformation the same two material points has moved to the
position P* and Q* respectively, see Fig. 5.1. From (5.1) it can be concluded that the
vector from P* to Q* is given by (for fix ¢):

dx} = dx; + %dxj (5.2)

Lj

Oui

where 72+ is called the deformation gradient. (5.2) can then be written

11
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Q*
Q xf +dot =z 4 dog + ui(z; + dy)
x; + dx; r/7
\

\ I

ZT; \I
p ’*x;‘ = x; + ui ()

P

Figure 5.1: Displacements of the material points P and Q

J

where 0;; is Cronecer’s delta. Now, let the distance between P and () be denoted by ds and
the distance between P* and Q* by ds*. From fig. 5.1 the following relations are concluded

ds® = dr;dv;; (ds*)? = dwjda}, (5.4)

It is evident that the deformation of the body is related to change of distance. The change
of distance between the two material points discussed earlier may, together with (5.3), be
described as:

Ou;  Ouj  Oug 0
J L L J

It is possible to write (5.5) as

(dS*)Q — d82 = 2d$1EUd.Tj (56)

where

1

1 (3% Ju;  Ouy %)
2

c%cj 01:1 8131 an
is called the Green strain tensor. Here only small deformations will be considered i.e.
8m]~

Under these circumstances, (5.7) can be approximated to

<1 (5.8)
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1 (9ul 8uj

where ¢;; is called the small strain tenor. Note that ¢;; is a symmetric tensor.

As stress measure the "true" stress or the Cauchy stress will be used. Cauchy’s relation i
given by:

ti = 041 (510)

where t; is the traction force acting on a surface with the normal n; pointing outward form
the body, see fig 5.2, and o;; is a symmetric tensor called the Cauchy stress tensor.

Ifi = aijnj

U

Figure 5.2: Traction force acting on a surface

5.2 Balance of linear momentum and principal of virtual
work

The balance of linear momentum for a body with the volume V', the surface area S and
the outward pointing normal n; (see fig 5.3) can for a static situation be written as:

S v
where t¢; is the traction force discussed earlier, p is the density of the medium and b;

represent the body forces per unit mass. By use of the divergens theorem together with
(5.11) and (5.10), the following equation is obtained

80'2']' .

Or, since this relation holds for an arbitrary volume:

L+ pb; =0 (5.13)
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Figure 5.3: Body with the volume V, surface S and the normal n;

This equation is often called the strong form of equilibrium.

Now, if (5.13) is multiplied by a some arbitrary weight function, v; and integrated over the
volume the following equation is obtained:

aO'Z'j
/v (3%' (514
or
a(”UiO'ij) Bvi
/V( o, axjaj—i-pv ) V=0 (5.15)

From the divergence theorem and (5.10) together with (5.15) the following equation is
obtained:

S \%

v 0;
Since o;; is a symmetric tensor, only the symmetric part of % will contribute to the left
J

hand term in (5.16). The symmetric part of 37”; is written as:

avi 1 avi an
== 5.17

Then, by comparing this equation with (5.9) the following quantity can be defined:

gy = sym <ggz) (5.18)
j

Introducing (5.18) into (5.16) the following relation is obtained:
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This equation is known as the weak form of equilibrium or the principal of virtual work,
and will later be used to derive the finite element formulation.

5.3 Finite element formulation

To obtain a useful finite element formulation, matrix notation turns out to be convenient
because this format is more suitable for numerical implementation.

If matrix formulation is adopted the equation of virtual work (5.19) can be written as

/ () 'adV = / v’ tdS + / pvlbdV (5.20)
14 S |4

where

€11 o1

€99 022

€U o (%] tl bl
33

€' = Bl o= o v= v |; t=|t|; b= b (5.21)
9V U3 3 3
€13 013
L 2571)3 i | 023 |

The, perhaps, funny looking form of €’ will be explained in the next section.

The next step in the finite element formulation is to introduce an approximation for the
displacement vector u for the body. The approximation is given by:

u=Na (5.22)

where NN is the global shape functions and a is a vector containing the nodal displace-
ments of the body. Since the shape functions only depend on the position and the nodal
displacement vector only depends on the time, it can be concluded that

¢ = Ba (5.23)
where the matrix B is derived from the matrix IN according to (5.9).

Now, to obtain the final expression for the finite element formulation, the arbitrary vector
v must be investigated. It is possible to approximate this vector in the same way as the
displacement vector i.e.
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v=Nc (5.24)

where N is the same shape functions describe earlier and c is an arbitrary vector. This is
known as Galerkin’s method. Since ¢ is arbitrary it is possible to define a quantity similar
to € according to:

€’ = Bc (5.25)
If (5.24), (5.25), (5.22) and (5.23) are introduced into (5.20) the following equation arise:

c’ { /V (B)" odV — /S (N)" tdS — /V p(N)deV] =0 (5.26)

Since this equation must hold for an arbitrary ¢ vector it is concluded that

/ (B) gdV = f (5.27)

where f is the external forces according to:

f= /S (N)" tdS + /V p (N)" bdV (5.28)

Since the FE-formulation is derived using only the balance of linear momentum, (5.27)
holds for every constitutive relation.

5.4 Constitutive relation

It is now time to investigate the constitutive relation i.e. the relation between the stresses
and the strains. The constitutive relation that will be used in this thesis is called Hook’s
law and it can be written as

0ij = Dijricn (5.29)

where D, is a fourth orders tensor. Since both o;; and ¢, are symmetric quantities it is
evident that

Dijkl = Djikl§ Dijkl = Dijlk (5-30)

It was discussed earlier that matrix formulation is convenient for numerical implementation,
it is therefore vital to establish the constitutive relation in this fashion. By expanding
equation (5.29) by its dummy index and using (5.30) the following relation is obtained
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€1

€22
€

[Uij]:[Dijll Dijos  Dijzz Dijiz Dijiz Dij23] 2;132 (5.31)

2e13

| 2813 ]

By choosing proper values for the indexes ¢ and j the constitutive relation in matrix form
is given by

o = De (5.32)
where
011 Diiin Diize Diiss Diniz Dinis Diiss €11
092 Dosir Dazgs Dazzs Dagia Dagiz Dagos €22
o= | |. p= Dssi1 Dssao Dssss Dsgia Dszig Dagos € — €33
— : — -
012 Di211 Dizee Digss Digiz Di2iz Digos 2¢e12
013 Dizin Dizze Disss Digiz Digiz Disas 2¢13
| 023 | | Dazi1 Dasss Dazzz Dazia Daziz Dozas | | 2623 |

5.5 General format of Newton’s method

The equation system that arise from the finite element formulation is usually nonlinear
and, which will be shown later, can involve many parameters. When solving these type of
problems the usual approach is some kind of iterative method such as Newton’s method.

For a one-dimensional problem the idea of Newton’s method can be seen in fig 5.4. The
issue is to find the solution to the nonlinear equation f(x) = 0. This is done by guessing
an initial value of z, i.e. 2°, and then identify the point f(2°). For this point the tangent
is determined and extrapolated to obtain the next estimation if the solution x!. This
procedure is then repeated until satisfying accuracy of the solution is obtained.

Consider now the following equation, that for the wanted state fulfills

Pi(ay...a,) =0
: : (5.33)

1&”(0,1.. .. G/n> :O

where (a1, ..., a,) are all the involved parameters. Assume, in accordance with the one-
dimensional case, that the state (a1+day, ..., a,+da,) satisfies (5.33). Here (da, ..., da,)
denotes small increments, or corrections, for each parameter. By using a Taylor expansion
and ignoring higher order terms the following equation is obtained
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f(z)

A

Figure 5.4: Newton’s method for a one-dimensional problem

P(ay +day...a,+da,) =1(a;...a,)+dy(a;...a,)

: : (5.34)
Y, (a;+da;...a,+da,) =v,(a...a,)+dp,(a;...a,)
or, since the state (a; + da;, ..., a, + da,) satisfies (5.33)
0 =v¢,(ar...a,)+d¥(a;...a,)
: : (5.35)

6 =, (a;...a,) —|— dip,(a;...ay,)

Here the symbol d denotes differentiation. Furthermore may the term di,(a; ...a,) be
evaluated as

d,(a;...a,) = 2”: ad;i(cgz — an)daj (5.36)

J=1

By using (5.36) into (5.35) the following relation is obtained

—¥ = KA (5.37)
where
oY (a,..., n Py (ay,..., "
Yi(ay,. .., a,) ‘Pl(glfla) ngfna) da,
\Il — . 9 Kt = : . : ) dA = :
¢n(a1, . ,an) a'ﬁbn(?l 77777 an) . O0Y,(ar,...an) da,
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K, is usually called the tangential stiffness matriz. From (5.37) it is possible to calculate
the corrections for each parameter i.e. dA, sins all other quantities are known. It is
furthermore possible to update each parameter according to

A = A, +dA (5.38)

where the subscript i denotes the increment index and the vector A contains the values
for each parameter.
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Chapter 6

Bone adaptation simulation by use of an
updating algorithm for Young’s modulus

This bone remodeling simulation was originally done by Huiskes [7]. The simulation is done
by using a plane strain finite element model in combination with an updating algorithm
for Young’s modulus. Here the finite element problem is solved by a Newton algorithm
instead of an Euler forward method which was done originally. To do so, the general format
of Newton’s method discussed is section 5.4 is further investigated. In this simulation an
expression to update the Young’s modulus within each iteration has to be derived. Further,
when using a Newton algorithm, the tangential stiffness in each iteration must be found to
ensure good convergence. The model is implemented in Matlab together with the Calfem
toolbox (the code is listed in appendix).

6.1 Newton’s method

In this simulation, Newton’s method is based on the equilibrium (5.27) so it can be con-
cluded:

(a) = / (B) cdV — f (6.1)

where 1(a) represents the out of balance forces. For equilibrium it it evident that

(a) =0 (6.2)

In this case the external forces f are known and kept constant. Further more is the stresses
only depending on the nodal displacements a. Since the matrix B does not depend on the
displacement the Taylor expansion, according to (5.35), is given by:

21
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/ (B) dodV = f — / (B odV (6.3)
|4 |4

To obtain the final expression the constitutive relation given by (5.32). Differentiation of
this equation yields

do = D.de (6.4)

where D, is the tangential stiffness matriz. This quantity will be discussed later in this
chapter. The term de is given by differentiation of (5.23) according to

de = Bda (6.5)

If (6.4) and (6.5) is introduced to (6.3) the final expression for Newton’s method is obtained
as

Kda=f — /V (B)" odV (6.6)

where

K, = / (B)" D,BdV (6.7)

is the tangential stiffness matrix. The state for the next iteration is the given in accordance
with (5.38)

6.2 Updating of Young’s modulus

The updating algorithm is based on the theory of adaptive elasticity and uses the strain
energy density (SED) as feed-back control variable. The SED is defined as:

1 1
U= igijo—ij = §€TO' (68)
The difference between the actual SED and a site-specific homeostatic equilibrium SED,

U,, is used as stimuli. The rate equation for the Young’s Modulus is the defined as:

i [ ClU— (1 )T, U> (1+ ),
— =< 0, (1-5)<U<(1+8)U, (6.9)
di C(U - (1 — 8)Uy), U< (1-s)U,

Here s is half the width of the "lazy" zone and C. is the slope of the curve. A graphical
interpretation of (6.9) is presented in figure 6.1
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dE
dt

2s

Figure 6.1: Rate equation for Young’s modulus

If the width of the lazy zone is assumed to be zero, this in accordance with Huiskes [7],
(6.9) can be written as

dE
—=C.(U-U, 6.10
¥ —cw-u) (6.10)
(6.10) is then integrated i.e.
E"+dE t+AL
/ B — / CL(U — U,)dt (6.11)
n t

The index n means that the quantity is taken from the last state of equilibrium. (6.11) is
now approximated by a Euler backward method since it ensures unconditional stability

AE = CAt(U™! —U,) (6.12)
where the index n + 1 refers to the next iteration step.

The next step is to involve the constitutive relation. In this analyze bone is assumed to be
isotropic linear elastic i.e.:

o = De (6.13)
where D is defined by
1—v v v 0
E v 1—v v 0
D = 6.14
(14+v)(1—2v) v v l-v 0 (6.14)
0 0 0 %(1 —2v)

For the next iteration step, (6.13) gives:
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l—v v v 0
ol _ prtlgn+l L pnet BT AE v 1-v v 0
' (1+v)(1—2v) v v 1—v 0
0 0 0 3(1-2v)
(6.15)

Now, the issue is to derive an scalar expression for the updating term for Young’s modulus
AFE This can be done by using some simple algebraic manipulation (here the constant
matrix in the expression for D™ in (6.15) is replaced with G so the equation can be
written in a more compact manner):

1
C.At 5(6"“)T0'"+1 — Un] = C.At [

E"+AFE

Tz )G U] (616)

By using (6.16) together with (6.8) and (6.12) the following relation is derived

C2

AE = 1
T (6.17)
where:
o CeAt n+1\T n+1
= 20T )1 =) (") Ge (6.18)
and
cy = C. At B (e"™MTGett -, (6.19)
‘ 2(14+v)(1 —2v) "

The expression for the updating term of Young’s modulus in (6.17) can now be used in a
Newton algorithm.

6.3 Derivation of the algorithmic tangential stiffness

In this section the algorithmic tangential stiffness matrix will be derived. Here tensor
notation will be used due to its compact manner.

To start with (6.15) is written on tensor form:

n+1 — Dﬂ+1€n+1 (620)

Oj ikl ki
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where

n+1 En+l 1 v

Further the (6.20) is differentiated according to:

do ™t = dDP et + Dl dep ! (6.22)
To obtain a useful expression the term dejJ,gll needs further investigation. This term can
be rewritten as:

Dy = d(E™ Aija) = d(AE) Ay (6.23)
where

1 1 v
Aijii = 110 (5(51'1:5]1 + 640,1) + E(Sijfskl)

When (6.23) is introduced into (6.12) the following equation is obtained:

p it A aUn—H _ B n+1 il 4
Dijkl = Ce t Dot d mn —8€n+1 dEmn ijkl (624)
(6.24) is inserted into (6.22) and the result is
. L aUn+1 N Un+1 ) L
dOZ; <]ijop - CeAtAijkﬁZ;_ agn+1) = (CeAtAijkﬁZ?_ el + D?j}) deZ:' (6.25)
op qr

Now the only thing remaining is to invert the forth orders tensor on the left hand side of
(6.25). Combining this with (6.8) the following equation is obtained:

do™ = (DY ATS e, (6.26)

i ijqr

where the algorithmic tangential stiffness tensor, (D%;})ATS, is introduced as:

1 B n+l_n+1/1 n+1 _n+1 n+1
(DnJrl)ATS o lc AtA"kl€n+10'n+1+Dn+l—|— QCeAtA’ijnemn €Op (QOeAtAopklgkl qu + Dopqr)
ijqr - € ) kl qr ijqr 1 n+1

The expression for the arithmetic tangential stiffness is then expanded, similar to (5.31),
to obtain a matrix formulation suitable for finite element implementation.



Chapter 6. Bone adaptation simulation by use of an updating algorithm for Young’s
26 modulus

6.4 Bone-density prediction

The updating algorithm described above can be used to predict bone-density in a proximal
femur. The initial configuration is a proximal femur with uniform Young’s Modulus(F =
0.5 - 10*MPa) which is load on the femoral head and by the abductor muscles, see Fig.6.2.
The constant homeostatic SED, U, is calculated in this configuration according to:

U, = > U (6.27)

where nelm is the number of element used in the finite element model.

The updating algorithm is now used and Young’s modulus is updated within every element
in each time increment. Constraints Young’s modulus must be specified so no unphysio-
logical values(higher than 2.5-10MPa or lower than zero MPa) is obtained. The final stat
of the proximal femur can be seen in Fig. 6.2

3000 N E (MPa) E (MPa)
25410 25410
1400 N
0.0 0.0
ae e

(a) Initial state of the proximal femur (b) Final state of proximal femur

showing load situation and boundary con-

ditions

Figure 6.2: Initial and final state of proximal femur

When the variation of Young’s Modulus is known, the density distribution can be calculated
by the relation(see Huiskes [7])
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E=uap
where a is a constat.

Discussion of the result is done in chapter 9.

(6.28)
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Chapter 7

Finite element formulation and
numerical solution technique for a
porous medium

In chapter 3 it was stated that the movement of bone fluid is involved in the bone remod-
elling process. Even thought a commercial finite element code (ABAQUS) will be used,
a brief introduction to the theory for a porous media presented. First of all some basic
quantities must be defined, then the governing equations and the finite element formulation
will be investigated. Finally the numerical solution technique for this type of problem will
be discussed. For more information see Hibbit, Karlsson and Sorensen [6]

7.1 General definitions

A porous media is considered as a multiphase material where the elementary volume, dV/,
is made up of a volume of solid material dV, and volume of voids, dV,. The volume of voids
is filled with a volume of liquid , dV,,, under the condition 0 < dV,, < dV,. The liquid if
free to move through the material when driven. It is now possible to define the porosity,
n, of the medium according to

v,
av

(7.1)

n =

or

dV, dV° dv?

AV dV dvo (7.2

n=1-—

29
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where the superscript 0 indicates the values in the reference configuration. From (7.1) and
(7.2) it is concluded that

1—n  Js
T g (3)

where

_ v
A

and
dVs

I

The saturation, s is defined as

v,
-

Finally, the volume ratio of the liquid at a point is defined as

S

AV,

= W = sn (75)

Ty

7.2 Force equilibrium

In a solid which contains a fluid it is assumed that both the fluid and the solid can carry
load. The total stress 0;; acting in a point can the be written as:

Oij = 0ij — XUy0ij (7.6)

where ;; is the stress in the solid phase or the effective stress , u,, is the pore fluid pressure
and y is a variable depending on the saturation. In ABAQUS the variable x is assumed
to equal the saturation s of the medium.

If (5.18) together with (7.6) is introduced to (5.16) the following equation is obtained:
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\% 14 S \%

or in matrix notation

/ (€”)TadV — / (€") Ixu,dV = / oTtdS + / pvbdV (7.8)
v 14 S v

where I a matrix defined as:

S OO = ==

By using (5.24) and (5.25) into equation (7.8) gives

/V (B) &dV — /V (B)" I'yu,dV = /S (N)" tdsS + /V p (N)" bdV (7.9)

If the solid is assumed to be linear elastic the constitutive relation can be described as:

05 = Eijklgkl (7.10)

where ﬁijkl is, for this case, the same tensor as in equation 6.21. The term &, represent
the effective strain and is defined by

_ n 1 suy,
€pl = € —
kl kl 3 K.

where K is the bulk modulus for the solid. (7.11) may also be written in matrix formulation

S (7.11)

+1$uw
E J—
3 K,

The constitutive relation in matrix formulation may then be written as

€

(7.12)

— 1su
o=D —— | 7.13
o (€+3KS ) (7.13)
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If the fluid compressible, the following relation is assumed
Pw Uny
— 1+ — 7.14
P K, (7.14)
where p,, is the density and K, is the bulk modulus for the fluid.

Furthermore, if the solid is compressible a similar relation is assumed

ps 1 1 D
—=—=x14+— w 7.15
P 7 + . (su + 11— n) ( )
where the mean effective pressure, p, is defines as
_ 1_
P = —gakk (716)
or, in matrix notation
_ Lo
p= —§I o (7.17)

7.3 Pore fluid flow

This equation is based on mass continuity for the pore fluid. The total mass for the fluid
in a control volume is

/pdew:/pwnde (7.18)
v v

where p,, is the density for the fluid. The time rate of change of the mass for the fluid may
be written as

() [

The time rate of change of mass for the fluid must equal the mass that enters the volume
trough its surface. This statement gives rise to the mass continuity equation for the fluid
ie.

d

/%(/Ownw)dvz —/Spwnwni(vw)idS (7.20)
14
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where n; is the normal to the surface pointing out form the body and (v,,); is the average
velocity of the fluid relative the solid. By using the divergence theorem (7.20) can by
written as

/V% (Puwit) + (% (P (va)i) dV =0 (7.21)

Or, since the volume is arbitrary

o (une) + 5 (o)) = 0 (.22

This relation is often called the strong formulation. To obtain the equivalent weak for-
mulation, (7.22) is multiplied by an arbitrary weight function, w, and integrated over the
volume i.e.

d 0
/Vw% (pwnw) dV + /v wa—mi (Puwnuw(Vy):) dV =0 (7.23)

or, by using the divergence theorem

d ow
- - w )1t wllw e\ Yw )i — 7.24
/V {wdt (Pwn) axipnw(v )] dV —i—/swp NN (Vg )idS = 0 (7.24)

To deal with the time derivative term (7.24) is approximately time integrated by an Euler
backward formula giving

0
[ o s = unady = 8052 punutvade| av 4 8t [ wpananva)ids =0
1% % S

(7.25)
or, by adopting matrix formulation

av + At/ WP N (M) VWdS = 0
s

/V [w(<pwnw)t+At ~ (punn)s) — Alpui (g—:)TUw
(7.26)

where

ow
ow % n (Uw)l
o a_::; ;o m= | ny |5 v = | (Vw)
g—; n3 (Uw)s

It is now possible to introduce an approximation for the weight function w according to
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w=N¢ (7.27)

where the vector IN represents some shape functions (not to be confused with the shape
function IV discussed in chapter 5) and € is an arbitrary vector. Since € do not depend on
the position it is evident that

ow

2 = Be (7.28)
where
— ON

Introduction of (7.27) and (7.29) into (7.26) then yields

(E)T/V [(N)T ((pwnw)tJrAt - (pwnw)t) — At pyny (E)T'Uw} dV+

@)" At /S ()" punn(n) vyWdS =0 (7.30)

Since (7.30) must hold for every vector € it is obvious that

/v [(N)T ((Pwnw)irar = (Pwnw)t) — Atpyny (E)va] dV +

At /S (N)T P (1) 0,dS =0 (7.31)

It will later turn out to be convenient to normalize (7.31) by the density of the fluid in the
reference configuration, p’, giving

/V {(W)T ((z—é”ns)tw - (Z—g"ns)t> — AtPuns (E)va} v

w w pw

At/ (W)T Z—g}ns(n)vadS =0 (7.32)
S w

Here the term n,, has been replaced by ns in accordance with (7.5)
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The constitutive relation for the pore fluid flow is governed by Darcy’s law, which states
that the fluid flow is proportional to the gradient of the piezometric head i.e.

~ 0¢

w)i = —kii—— 7.33
sn(w)s = R, (7.3
where Eij is a tensor describing the permeability of the medium and ¢ is the piezometric
head, defined as

¢ =13+ —2 (7.34)
w
where x3 represents the elevation from some reference datum and ¢ is the magnitude of
the gravitational acceleration acting in opposite direction to x3. Since the direction and
magnitude of ¢ is constant, (7.33) can be written as

~ 1 ou
wz:_kz— _w_ e 735
51V ]gpw (8% P gj) ( )
where
0z
%= 95,
J

or, by adopting matrix formulation

~1 [0Ou
S N (e :
SNV, " ( B pwg) (7.36)

7.4 Numeric solution technique

In this section the numerical solution technique for a coupled fluid flow/displacement sys-
tem will be discussed. The solution technique that will be used is Newton’s method de-
scribed in section 5.5 and the system of equations that is to be solved is defined by

e -

where

(B)" I'xu,dV — /

(N tdS — / p(N) bdV  (7.38)

|4
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and

Wo(a, uy) = /V [(N)T ((Z—gns)tw -~ (Z—%}“ns),) . Atz—gns (E)va} AV +

At/ (W)T%ns(n)T'nwdS =0 (7.39)
S w

In accordance with (5.35) the following relation is given

W (a,uy) + dip(a,u,) =0
{ ¢;(a’7uw) + dlb;(a,uw) =0 (740)

where the terms dv,(a,u,,) and di,(a,u,,) needs further investigation in order to obtain
the final expression for Newton’s method.

Since the external forces do not depend on the strains or the pore pressure, the term
dip,(a,u,) can be written as

dip, (@, uy,) = /V (B)" d(&)dV + /V (B)" Id(xu,)dV (7.41)

Introducing (7.36) into (7.41) then gives

d¢1(a’“w)=/V(B)Tﬁdedv+/ L

Vv S

— (d
(B)" DI (d—suw + s) du,,dV +

U

/V (B)"' I (C% + X) du,dV  (7.42)

It is now possible to approximate the pore pressure u,, in the same fashion as described in
(7.27) i.e.

Uy = Np (7.43)

where p is a vector containing the nodal values for the pore pressure. Since the shape
functions do not depend on the pore pressure it is evident that

du, = Ndp (7.44)
Introducing (6.5), (7.43) and (7.44) into (7.42) gives
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dp, (@, uy) = /V (B)" DBdVda+

1 T == dS— —_ T dX_ ___
B'DI (=N NdV BTI|2AN NdV| d 4
[/VZ%KS( ) (duw p+8) +/V( ) (duw P+ X p (7.45)

Evaluation of the term di,(a,u,,) is a bit more complicated. To derive a useful expres-
sion, it must be assumed that the current configuration differs a bit from the reference
configuration e.i. the differentiation of (7.39) at time ¢ + At is written as

dip,(a, u,) = /V % {(W) d (Jz—wsn) + Atd <Jp—ns (E)va)l v (7.46)

here the contribution from the surface integral has been neglected. The constitute relation
given by (7.36) is then introduced to (7.46), this yields

dip,(a, u,) = /V% {(N) d (ng ) + i—gd (Jk:s (B)" & <a% - pwg)ﬂ v
(7.47)

To evaluate the first differentiated term in (7.47), investigation of the quantity J g—g”sn is
needed. To start with (7.3) is introduced to (7.15) giving

1 D Sy 1
_ P 1—=(1— 4
T T (Ks A 7 "°)> (7.48)

Maclaurin expansion of the first term in (7.48) and neglecting all but first order terms will

give

1
nzl—l—i—i—j(l—l—no) (S““’ —1) (7.49)

K K

Then, by introducing (7.14) to (7.49) and again neglecting all but first order terms, the
following relation is given

Puw D 1 1 1 0 5 1
LPPO I ol (1= (2 - .
pwn + K. J( n’) +u < w—i—J( n’) (7.50)

Introducing (7.17) (7.36) and (7.12) into (7.50) yields

I = w w
Jp—oanJs{ 3K (e—irSZst )—i—lu(—w] —5——|—sn+uw(1—n0)(Ks =
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Differentiating (7.51) and neglecting small quantities compared with unity finally gives

d (Jp—w3n> ~ (—sJ ! ITE+sJIT> de+

0 3K,

ds 52 s sJ sJ

Sy P ) Y S (R RIS
[duw(J )+ ”)(KS Kw)+Kw OK?

ITﬁI] du, (7.52)

The second differentiated term an the right hand side in (7.47) is evaluated as

d [Jks (B) k (%%” = pww>] — Jk, (B)" k (%” = pw’w) I"de+

J

dk, ds —)Tk(é?uw T . Oduy, (753)

The expression for di,(a, u,,) is obtained by introducing (7.52) and (7.53) into (7.47) and
neglecting small terms, this gives

/V [_3}1 (N) ("D +s (N)T(I)T] det

ds 1—n 1—n"s? 1-n" s s —
() e (e ) | R
At dk, ds — Oy, — odu,,
" (B) k(S pug )| duw + ke (B) kSt dv
ox ox

(7.54)

It is now possible to introduce the approximation for the pore pressures (7.43) into (7.54).
In accordance with (7.28) it is evident that

S -\ 7 T ==
— N) (I) DI + ———
[ 9K? (V) (D) * P2 g ds duy,

(o[ TI—

Finally (6.5), (7.43) and (7.55) together with (7.54) gives

/V - 3}9(5 (N)" ()" DB + s (N)" (I)" BdVda+

ds 1—-n"\ —7— 1-0n"s> — 17— 1—n% s s —\T —
/‘/E(Ur 7 )(N) N + ¥y Z(N) N+( 5 K—w+K—w)(N) N
At dh, ds
PYg ds duy,

S

9K?

S

(B)" k (Bp — pug) N + k, (B)" kBdVdp
(7.56)

(N)" (I)" DIN +




7.4. Numeric solution technique 39

the relations (7.45) and (7.56) is then rewritten on the form given by (5.37) as

- [ ZZEZZZ; 1 - { gp gpﬁ 1 [ZZ] (7.57)

where

4
Kaa:/ "DBdv
1%
K, :/ ! ﬁﬁp%—s WdV—k/(B)TI d—XanLX dV
P v KS duty, v dity,
K, =- 3; N) (I)" DBAV + / (N)T(I)TBdV
s Vv
s 1—n%\ — 17— 1—n%s? — 71—
Kpp:/vduw (1 )(N) NdV+/V b Z(N) NdV+
1-— S —\ T — S —\ T T ==y
N) N — N I DIN
[ (5= Kw)() W~ [ G (V) (1) DINV+
At B)"k (B —_ T, =
/— — (B) k(Bp—pug) NdV+/ks (B) kBdV
L g sduw v

From (7.57) it is possible to calculate the corrections for each variable and then the new
state is given according to (5.38)
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Chapter 8

Simulation of bone fluid flow 1n cortical
bone

In this chapter simulations of bone fluid movement in cortical bone will be done. The issue
is to investigate the magnitude of bone fluid flow in the diaphysis of a human femur exposed
to different loading situations. The fluid flow is assumed to take place on the vascular
porosity level since this porosity corresponds to the whole bone level. The simulations will
be preformed by using a commercial finite element code (ABAQUS).

8.1 Geometry and mechanical properties

The geometry used in the simulations represents the proximal half of a human femural
diaphysis. This has been approximated by a cylindrical tube, see Fig. 8.1.

(a) Geometry of diaphysis of fe- (b) Geometry of diaphysis of fe-
mur, side view mur, front view

Figure 8.1: Geometry of femural diaphysis
From this geometry a FE-model was created. The element type that has been used is fully
integrated, 8-nodal linear brick element that are able to represent a linear pore pressure

distribution. The FE-model can be seen in Fig. 8.2.
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Figure 8.2: FE-model of femural diaphysis

To be able to represent the loading conditions that will be discussed in the next section,
rigid elements where attached to the proximal end of the model.

The dimensions and mechanical properties that has been used in the simulation are listed
in table 8.1 (see Cowin [3] )

‘ Property ‘ Value ‘
[ (mm), length 120
d, (mm), outer diameter 34
d; (mm), inner diameter 10
n, porosity 0.04
E, (GPa), Young’s modulus 15
K (GPa), bulk modulus of solid | 15
v , Poisson’s ratio 0.33
k (m/s), isotropic permeability | 50 - 107°
K, (GPa), bulk modulus of fluid | 2.2
pw (kg/m?), density of fluid 1000

Table 8.1: Geometrical and mechanical properties of the model

8.2 Loading situation and boundary conditions

The loading situation and the mechanical boundary conditions can be seen if Fig. 8.3 The
fixed end is due to symmetry, this end represents the mid section of the femur. The applied
force and moment represents the loads from the femural head and the abductor muscles.
The nature of the applied load will be described in detail in the next sections.
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|
F .
1

Figure 8.3: Boundary conditions and load case

The boundary conditions for the pore pressure is taken from a similar simulation done by
Cowin [3]. Here the pore pressure on the endosteal surface is prescribed to be 3.3 kPa and
it is assumed to remain constant during the loading cycle. Furthermore, the periosteal
surface and the ends are assumed to be unpermeable for the bone fluid.

8.3 Gait walk analysis

Regular walking is probably the most common loading situation exposed to the long bones
in the legs. Due to this fact it is of high interest to investigate how this type of loading
will affect the of bone fluid flow.

The results from the simulations are examined in a section halfway thought the model.
This section is choosen to minimize the effects of the boundary conditions for the ends.
Furthermore will all quantities that are plotted as a function of time be evaluated in just
one point at this section. The section and evaluation point can be seen if Fig. 8.4

il

)

Figure 8.4: Section and evaluation point for the model
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The loading situation used in this section is taken from Bergmann [2| who has measured
the load acting on the proximal femur during some routine activities. The result for normal
walking can be seen in Fig. 8.5 (the terms "compressing force" and the "bending moment"
corresponds to the notations in Fig. 8.3).

F(N) M,y
1500 | 30 7
1000 t 20 1
500 1 10 1
05 i;(s) 0.5 1t(s)
(a) Compressing (b) Bending Moment

force
Figure 8.5: Loading situation during a gait cycle

These loadings are used as input data to the FE-simulation.

The first thing that is to be examined is the magnitude and the time dependence of the
bone fluid flow. The result can be seen in Fig. 8.6
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Figure 8.6: Magnitude of fluid flow for gait walk analysis
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Secondly, the bone fluid flow directions throughout the mid section has been examined.
The flow directions under different stages in the loading cycle can be seen in Fig. 8.7

(a) Fluid flow, time=0.05 s.

(d) Fluid flow, time=0.75 s. (e) Fluid flow, time=1.00 s

Figure 8.7: Fluid flow directions for different stages during a gait load cycle.

8.4 Vibration analysis

As stated earlier, one of the most interesting issues for this thesis is to investigate how
different loading situations effect the fluid flow in cortical bone. In this section the behavior
of the fluid flow will be investigated when the model is exposed to a pulsating loading
situation.
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The quantities will be evaluated in the same manner as in the previous section (see Fig.
8.4).

The loading situation is assumed to take the form of

{ F = Fy + Fysin(27 ft) (8.1)

M = My + Mysin(27 ft)

where f is the frequency for the load. Simulations are then done using different values for
the constants Fy, My and f. The ratio between F, and M, is kept constant and is taken
form Bagge [1]. The frequency of the load is variated in the range from 1 Hz to 10 Hz.
Since the model does not include inertia forces, higher values of the frequency will result
in too inaccurate results.

The results from the different simulations can be seen Fig.8.8, where the values plotted is
the peak value of the fluid flow during the loading cycle. The magnitude of the fluid flow
is given by a sine function with the same frequency as the load.

Flow magnitude (m/s) ,

.10-6 +
2.0-10 £33 =7.2-10714
—6 1
1.5-10 £33 =5.4-1074
1.0-1076 1 £33 =3.6-107*
0.5-1076 T £33 =1.8-1074
5 10 f (Hz)

Figure 8.8: Magnitude of fluid flow for different frequencies
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As can be seen in Fig. 8.8 there is a linear relation between the magnitude of the fluid flow

and the frequency. Furthermore are the magnitude of strains for the different simulations
within physiological correct values [4]

The direction of the fluid flow for different stages of the pulsating loading cycle is given in
Fig. 8.9

~N X \\\\\
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(¢) Fluid flow, time=0.80 s. (d) Fluid flow, time=1.00 s

Figure 8.9: Fluid flow directions for different stages during a pulsating load cycle (e33 =
1.8-107%, 1 Hz).

The pattern of the fluid flow directions obtained from the different frequencies and load
magnitude was identical.
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Chapter 9

Discussion and future work

In this chapter a discussion of the accuracy and the reliability of the different simulations
will be carried out. Future work for the project will also be discussed since this thesis only
has dealt with a fraction of all the issues involved in the area of adaptive bone remodelling.

9.1 Discussion of the results

Initially it can be discussed whether the stimuli chosen to be investigated in this thesis are
representative for real bone remodelling process. This is hard to answer since the actual
medical reason for bone remodelling by no meas has been established. It is very likely that
different choices of stimulus would result in similar results.

The result from the simulation done in chapter 6, bone adaptation simulation by use of an
updating algorithm for Young’s modulus, shows grate similarities to the results obtained
by Huiskes, even thought a different solution technique has been used. It can furthermore
be assumed that the solution technique used in this thesis will result in a numerical more
accurate result, since the Newton’s method provides control of the residual (out of balance
forces). Whether the result corresponds to real life is a bit more uncertain. It is clear that
the model can not represent the development of a human femur since the simulation starts
for a physiologically incorrect state i.e equal density distribution, this process is more likely
to be guided by genetic factors. The final state shows some similarities to a adult human
femur so it can be assumed that some similar density distribution process is present in the
real bone remodelling process. It is worth mentioning that the simulation will not result
in a global optimal structure since the aim of the updating algorithm is to give a uniform
strain energy density distribution. An optimal structure is given by a minimization of the
strain energy.

The magnitude of the results from the simulation of bone fluid flow are in the same order
as the result obtained by Cowin [3]. The linear relation between fluid flow and frequency
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where also found by Weinbaum [16]. How these results match the the real behavior of the
bone fluid is hard to say since no medical testing with similar loading situation was found
in the literature. There are two major drawbacks with the model used in the simulations.
The first and most important one is that no inertia forces was included. This effects
the result for higher frequencies since then the inertia forces would be one of the major
influences on the behavior of the bone fluid. The reason for not including inertia forces
was due to a software problem (ABAQUS does not include this in their code), so only
low frequency loading could by investigated. The second drawback of the model is that
it only can predict the bone fluid flow in the vascular porosity of the bone. It was stated
in chapter 4 that the fluid flow in the canaliculi-lacunae porosity could play an important
roll in bone remodelling so the magnitude of the bone fluid flow on this level of porosity
would be of interest. However, it can be assumed that the behavior of the fluid flow in the
canaliculi-lacunae porosity can be represented by the fluid flow on vascular porosity level.

9.2 Suggestions for future work

The major effect that has to be incorporated in a future model is probably, as mentioned
in the previous section, inertia effects. This has to be done by implementation of the model
in for example Matlab or Fortran since this allows for better control of the issues involved.
A development of a two level porosity model, similar to the one described by Cowin [3],
is also vital for an accurate simulation of the bone fluid behavior. Furthermore may also
the blood pressure driven bone fluid flow be taken into account. The ultimate goal for
the model is probably to link together the two models investigated in this thesis providing
an updating algorithm for material properties due to a physiological and medical correct
stimuli.
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Appendix A

Matlab code

Here the Matlab code used in for the simulations done in chapter 6 is listed. The geometry
file has been excluded since it is to sparse to print.

Y= Huiskes bone remodelling (1987)---------- %
% h
% Main program %
% By: Magnus Harrysson %
% h
e h

clear all warning debug
[Edof ,Dof ,bc,ndof ,nelm,Ex,Ey,Edof_plot,ndof_plot]=bone_geometry2;

U=ones(nelm,1); Un=0; a=zeros(ndof,1); E=0.5e4*ones(nelm,1);
E_new=0.5e4*ones(nelm, 1) ; ny=0.3; ep=[2 30]; t=30; kass=0;
dt=0.0005; nstep=7000; Tplot(1)=0; Eplot(:,1)=E(:,1);
eps1=0.0000005; eps2=le-5;

fi_1=-pi/9; fi_2=-pi/9; p_1=-3000; p_2=1400;
f=zeros(ndof,1); df=zeros(ndof,1); fl=zeros(ndof,1);
£1(251)=p_1x*sin(fi_1); £1(252)=p_1*cos(fi_1);
£1(221)=p_2*sin(fi_2); £1(222)=p_2*cos(fi_2);

f_int=zeros(ndof,1); f_int_norm=25*ones(ndof,1); K=zeros(ndof);

for step=1:nstep

33
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while norm(f1-f_int_norm,2) > epsl | iter==0

iter=iter+1;

K=zeros (ndof) ;
for i=1:nelm
if iter==1 & step==1
D(:,:,1i)=hooke(2,E(i),ny);
Ke=plantec(Ex(i,:),Ey(i,:),t,D(:,:,1));
assemc (Edof (i,:),K,Ke);

else
Ke=plantec(Ex(i,:),Ey(i,:),t,Dt(:,:,1));
assemc(Edof (i, :),K,Ke);

end

da=solveq(sparse(K),f1-f_int,bc);

a=atda;

if iter==1 & step==1
for i=1:nelm

Ed=extract(Edof,a);
[es,et]=plants(Ex(i,:),Ey(i,:),ep,D(:,:,1),Ed(i,:));
U_ne(i,1)=0.5%(es(1,:)*et(1,:)7);
end
Un=sum(U_ne,1) /nelm;
end

[E_new,f_int,U,Dt,dE]=E_update3(E,ny,nelm,ndof,Ex,Ey,a,ep,dt,Edof,Un,step);
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f_int_norm=f_int;

for i=1:length(bc)
f_int_norm(bc(i,1))=0;

end
if iter==30
f_int_norm=£f1;
kass=kass+1; %if convergence not is obtained
fkass=f(5);
break
if kass==
Ekass=E_new;
end
end
iter
disp(’norm?)
norm(f1-f_int_norm,2) %print to screen
step
kass

history(step,iter)=norm(f1-f_int_norm,2);

end
%----End of iteration-loop---------
E=E_new;

Eplot(:,step+1)=E;
Tplot (step+1)=Tplot(step)+dt;
if iter < 4
dt=dtx*1.1;
end

if iter > 5

dt=dt*0.9;
end

end

first=[1:1:nelm]’; Edof_plot2=[first Edof_plot];

for i=1:ndof_plot
Ee_plot_sum=0;

[r,c]=find (Edof_plot==1i);
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for j=1:length(r)

Eee=E(r
Ee_plot

end
Ee_plot=Ee_plot_sum/length(r);
E_nod(i,1)=Ee_plot;

end

h
h
h
h
h

(G),1);

_sum=Ee_plot_sumtEee;

E_update function
By: Magnus Harrysson

function[E_new,f_int,U,Dt,dE]=E_update3(E,ny,nelm,ndof ,Ex,Ey,a,ep,dt,Edof,Un,step)

L=zeros(6); H=zeros(6); C=10e6; D_red=[1-ny ny ny O

ny 1-ny

ny O

ny ny 1-ny O
0 00 0.5%(1-2*ny)];

Ed=extract (Edof,a);

f_int=zeros(ndof,1);

for j=1:nelm

[es,et]=plants(Ex(j,:),Ey(j,:),ep,D_red,Ed(j,:));

T_et=et*D_red*et’;
C1=T_et*C*dt/ (2% (1+ny)*(1-2*ny)) ;
C2=T_et*Cxdt*E(j,1)/(2*(1+ny) * (1-2*ny) ) -Cxdt*Un;

dE=C2/(1-C1);

if E(j,1)+dE > 50 & E(j,1)+dE < 2.5e4

e

e

E_new(j
1se

E_new(j
nd

»1)=E(],1)+dE;

»1)=E(],1);



sigma=E_new(j,1)/((1+ny)*(1-2*ny))*D_red*et’;
%sigma_33=E_new(j,1)*ny/ ((1+ny)*(1-2*ny))* (et (1)+et(2));

sigmaf=[sigma(1)
sigma(2)
sigma(4)];

fe=(plantf (Ex(j,:),Ey(j,:),ep,sigma’));
f_int=insert(Edof (j,:),f_int,fe);

U(j,1)=0.5*et*sigma;

if E(j,1)+dE > 50 & E(j,1)+dE < 2.5e4

A=hooke(4,1,ny);

D_1=hooke(4,E_new(j,1) ,ny);

Q=1-(C*xdt*(A(1,1) *et (1)+A(1,2)*xet (2)+A(1,4) *et (4))*0.5*%et (1) +
Cxdt*x(A(2,1)*xet (1)+A(2,2)*xet (2)+A(2,4) *xet (4) ) *0.5*%et (2)+Cxdt* (A(3,1) *et (1)
+A(3,2)*xet (2)+A(3,4) *xet (4))*0.5xet (4));

B=[C*xdt*0.5%(A(1,1)*et (1)+A(1,2)*et (2)+A(1,4) *et (4) ) *sigma(l)
Cxdt*0.5%(A(2,1)*et (1)+A(2,2) *et (2)+A(2,4) *et (4) ) *sigma (1)
Cxdt*0.5%(A(3,1)*et (1)+A(3,2)*xet (2)+A(3,4) *et (4) ) *sigma (1)
Cxdt*0.5%(A(4,1)*et (1)+A(4,2)*xet (2)+A(4,4) xet (4) ) *sigma (1)
Cxdt*0.5%(A(5,1)*et (1)+A(5,2)*xet (2)+A(5,4) *et (4) ) *sigma (1)
Cxdt*0.5%(A(6,1)*et(1)+A(6,2)*xet (2)+A(6,4) *et (4)) *sigma(l)

y/A—— second column-----------
Cxdt*0.5%(A(1,1)*et (1)+A(1,2)*xet (2)+A(1,4) *et (4) ) *sigma(2)
Cxdt*0.5%(A(2,1)*et (1)+A(2,2)*xet (2)+A(2,4) xet (4) ) *sigma(2)
Cxdt*0.5%(A(3,1)*et(1)+A(3,2)*xet (2)+A(3,4) xet (4) ) *sigma(2)
C*xdt*0.5%(A(4,1)*et(1)+A(4,2) *et (2)+A(4,4) *et (4)) *sigma(2)
C*dt*0.5%(A(5,1)*et (1)+A(5,2) *et (2)+A(5,4) *et (4)) *sigma(2)
Cxdt*0.5%(A(6,1)*et(1)+A(6,2)*xet (2)+A(6,4) xet (4) ) *sigma(2)

Cxdt*0.5%(A(1,1)*et(1)+A(1,2)*xet (2)+A(1,4) *et (4))*sigma(3)
Cxdt*0.5%(A(2,1)*et (1)+A(2,2)*xet (2)+A(2,4) *et (4) ) *sigma(3)
Cxdt*0.5%(A(3,1)*et(1)+A(3,2)*xet (2)+A(3,4) *et (4)) *sigma(3)
Cxdt*0.5%(A(4,1)*et (1)+A(4,2)*xet (2)+A(4,4) xet (4) ) *sigma(3)
Cxdt*0.5%(A(5,1)*et (1)+A(5,2)*et (2)+A(5,4) *et (4) ) *sigma(3)
Cxdt*0.5%(A(6,1)*et(1)+A(6,2)*xet (2)+A(6,4) *et (4)) *sigma(3)

Cxdt*0.5%(A(1,1)*et(1)+A(1,2)*xet(2)+A(1,4) *et (4))*sigma(4)
Cxdt*0.5%(A(2,1)*et (1)+A(2,2) *et (2)+A(2,4) *et (4) ) *sigma(4)
Cxdt*0.5%(A(3,1)*et (1)+A(3,2)*xet (2)+A(3,4) *et (4) ) *sigma(4)
Cxdt*0.5%(A(4,1)*et (1)+A(4,2)*xet (2)+A(4,4) xet (4)) *sigma(4)
Cxdt*0.5%(A(5,1)*et (1)+A(5,2)*xet (2)+A(5,4) xet (4) ) *sigma(4)
C*xdt*0.5%(A(6,1)*et(1)+A(6,2) *et (2)+A(6,4) *et (4))*sigma(4)
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/A—— fifth column--------———-
0
0
0
0
0
0
h-———- sixth column--————————-
0;
0;
0;
0;
0;
0;
Y
1+D_1;

N=[Cxdt*x(A(1,1)*et(1)+A(1,2)*xet (2)+A(1,4)*xet(4))
Cxdt*x(A(2,1)*xet (1)+A(2,2) *et (2)+A(2,4) *xet (4))
C*xdt*(A(3,1)*et (1)+A(3,2)*xet (2)+A(3,4) *et (4))
Cxdtx(A(4,1)*et (1)+A(4,2) *xet (2)+A(4,4) *xet (4))
Cxdt*x(A(5,1)*xet (1)+A(5,2) *xet (2)+A(5,4) xet (4))
Cxdt*x(A(6,1)*xet (1)+A(6,2) *xet (2)+A(6,4) *xet (4))];

Dt_tot=[B(1,1)+N(1)/(Q)*(0.5*%et (1)*B(1,1)+0.5*%et (2)*B(2,1)+0.5%et (4)*B(4,1))
B(2,1)+N(2)/(Q)*(0.5%et (1)*B(1,1)+0.5%et (2)*B(2,1)+0.5%et (4)*B(4,1))
B(3,1)+N(3)/(Q)*(0.5%et (1) *B(1,1)+0.5%et (2) *B(2,1)+0.5%et (4)*B(4,1))
B(4,1)+N(4)/(Q)*(0.5*et (1) *B(1,1)+0.5%et (2) *B(2,1)+0.5*et (4)*B(4,1))
B(5,1)+N(5)/(Q)*(0.5%et (1)*B(1,1)+0.5%et (2) *xB(2,1)+0.5*%et (4)*B(4,1))
B(6,1)+N(6)/(Q)*(0.5%et (1)*B(1,1)+0.5*et (2)*B(2,1)+0.5*%et (4)*B(4,1))

B(1,2)+N(1)/Q*(0.5%et(1)*B(1,2)+0.5%et (2)*B(2,2)+0.5%et (4)*B(4,2))
B(2,2)+N(2)/Q*(0.5%et (1) *B(1,2)+0.5%et (2)*B(2,2)+0.5%et (4)*B(4,2))
B(3,2)+N(3)/Q*(0.5*et (1) *B(1,2)+0.5%et (2)*B(2,2)+0.5%et (4)*B(4,2))
B(4,2)+N(4)/Q*(0.5*et (1) *B(1,2)+0.5%et (2)*B(2,2)+0.5%et (4)*B(4,2))
B(5,2)+N(5) /Q*(0.5%et (1) *B(1,2)+0.5%et (2)*B(2,2)+0.5%et (4)*B(4,2))
B(6,2)+N(6)/Q*(0.5xet (1) *B(1,2)+0.5%et (2)*B(2,2)+0.5xet (4)*B(4,2))

B(1,3)+N(1)/Q*(0.5%et(1)*B(1,3)+0.5%et (2)*B(2,3)+0.5%et(4)*B(4,3))
B(2,3)+N(2)/Q*(0.5%et (1) *B(1,3)+0.5%et (2)*B(2,3)+0.5%et (4)*B(4,3))
B(3,3)+N(3)/Q*(0.5%et (1) *B(1,3)+0.5%et (2)*B(2,3)+0.5%et (4)*B(4,3))
B(4,3)+N(4)/Q*(0.5%et (1) *B(1,3)+0.5%et (2)*B(2,3)+0.5%et (4)*B(4,3))
B(5,3)+N(5)/Q*(0.5%et (1)*B(1,3)+0.5%et (2)*B(2,3)+0.5%et (4)*B(4,3))
B(6,3)+N(6)/Q*(0.5%et (1)*B(1,3)+0.5%et (2)*B(2,3)+0.5%et (4)*B(4,3))

B(1,4)+N(1)/Q*(0.5*et (1) *B(1,4)+0.5%et(2)*B(2,4)+0.5%et (4)*B(4,4))
B(2,4)+N(2)/Q*(0.5*et (1) *B(1,4)+0.5%et(2)*B(2,4)+0.5%et (4)*B(4,4))
B(3,4)+N(3)/Q*(0.5%xet (1) *B(1,4)+0.5%et (2)*B(2,4)+0.5%et (4)*B(4,4))
B(4,4)+N(4)/Q*(0.5%xet (1)*B(1,4)+0.5%et (2)*B(2,4)+0.5%et (4)*B(4,4))
B(5,4)+N(5)/Q*(0.5%et (1)*B(1,4)+0.5%et (2)*B(2,4)+0.5%et (4)*B(4,4))



B(6,4)+N(6)/Q*(0.5%et (1) *B(1,4)+0.5%et (2)*B(2,4)+0.5*et (4)*B(4,4))

B(1,5)+N(1)/Q*(0.5%et (1)*B(1,5)+0.5%et(2)*B(2,5)+0.5%et (4)*B(4,5))
B(2,5)+N(2)/Q*(0.5*et (1) *B(1,5)+0.5%et (2) *B(2,5)+0.5*et (4)*B(4,5))
B(3,5)+N(3)/Q*(0.5*et (1) *B(1,5)+0.5%et(2)*B(2,5)+0.5*et (4)*B(4,5))
B(4,5)+N(4)/Q*(0.5%et (1) *B(1,5)+0.5%et (2)*xB(2,5)+0.5%et (4)*B(4,5))
B(5,5)+N(5) /Q*(0.5%et (1) *B(1,5)+0.5%et (2)*B(2,5)+0.5%et (4)*B(4,5))
B(6,5)+N(6)/Q*(0.5%et (1) *B(1,5)+0.5%et (2)*B(2,5)+0.5%et (4)*B(4,5))

B(1,6)+N(1)/Q*(0.5%et (1)*B(1,6)+0.5%et (2)*B(2,6)+0.5%et (4)*B(4,6))
B(2,6)+N(2)/Q*(0.5%et (1)*B(1,6)+0.5%et (2)*B(2,6)+0.5%et (4)*B(4,6))
B(3,6)+N(3)/Q*(0.5%xet (1)*B(1,6)+0.5%xet (2)*B(2,6)+0.5%et (4)*B(4,6))
B(4,6)+N(4)/Q*(0.5%et (1)*B(1,6)+0.5%et (2)*B(2,6)+0.5*%et (4)*B(4,6))
B(5,6)+N(5)/Q*(0.5%et (1) *B(1,6)+0.5%et (2)*B(2,6)+0.5%et (4)*B(4,6))
B(6,6)+N(6)/Q*(0.5%et (1) *B(1,6)+0.5%et (2)*B(2,6)+0.5%et (4)*B(4,6))];

Dt(:,:,j)=[Dt_tot(1,1) Dt_tot(1,2) Dt_tot(1,3) Dt_tot(1,4)
Dt_tot(2,1) Dt_tot(2,2) Dt_tot(2,3) Dt_tot(2,4)
Dt_tot(3,1) Dt_tot(3,2) Dt_tot(3,3) Dt_tot(3,4)
Dt_tot(4,1) Dt_tot(4,2) Dt_tot(4,3) Dt_tot(4,4)];

else
Dt(:,:,j)=E_new(j,1)/((1+ny)*(1-2*ny))*D_red;

end

end

S — y
h h
% Plot fuction %
% By: Magnus Harrysson %
h h
. %

function plotfuncel(nelm,Edof_plot,ndof_plot,E,Ex,Ey) figure(3)
axis([-120 155 0 250])

for i=1:nelm
if E(i)>=22.5e3 & E(i)<2.5e4
C=[0 0 0];
end

if E(i)>=20e3 & E(i)<22.5e3
C=[0.1 0.1 0.11;
end

if E(i)>=17.5e3 & E(i)<20e3
C=[0.2 0.2 0.2];
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end

end

if E(i)>=15e3 & E(i)<17.5e3
C=[0.3 0.3 0.3];
end

if E(i)>=12.5e3 & E(i)<15e3
C=[0.4 0.4 0.4];
end

if E(i)>=10e3 & E(i)<12.5e3
C=[0.5 0.5 0.5];
end

if E(i)>=7.5e3 & E(i)<10e3
C=[0.6 0.6 0.6];
end

if E(i)>=5e3 & E(i)<7.5e3
C=[0.7 0.7 0.71;

end

if E(i)>=2.5e3 & E(i)<be3
C=[0.8 0.8 0.8];
end

if E(i)>=0e3 & E(i)<2.5e3
c=[11 1];
end

hold on
£i11(Ex(i,:),Ey(i,:),C)

xp=[100 120 120 100]; for i=1:9

end fill(xp,[140 140 130 1301, [1 1 11);

text (98, 235, ’E (MPa)’) text(125, 130,

yp=[230-i%10 230-i*10 230-i*10-10 230-ix10-10]

3

£i11(xp, yp,[-0.1+i*0.1 -0.1+i%0.1 -0.1+i*0.1])

text(125,220,22.5%1074)

’0.07)
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