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Abstract
Crash analysis has been performed for several years at Bombardier Transportation, former
Adtranz, Kalmar, Sweden.

Proceeding one step further, the current study is focused on optimization of a front structure
during crash-loading conditions. This is the first study within Bombardier Transportation in
the area of crash optimization. Therefore the finite element model was kept as simple as
possible without loosing relevance of the purpose of the study, i.e. to examine how much
weight that can be reduced from the current crash-structure without worsen the crash
performance. The analyzed structure was the crash-structure of the regional train Crusaris
Regina.

The optimization tool was LS-OPT together with the explicit code of LS-DYNA. Several
ways to set up an optimization are offered by LS-OPT and the current study focused on
intrusion and acceleration as constraints for the optimization.

Three different approaches were used to define the constraint due to acceleration.

The current thesis only regards optimization of thickness, which is the simplest optimization
category. Several simplifications were introduced and therefore the results obtained from the
current study cannot be directly transferred to the current design. Instead the results presented
shall be compared with the original design i.e. the relative improvements/deterioration’s from
the optimized design in comparison with design before any optimization analyses were
performed.

The analyses have shown that the weight of the structure can be reduced. Due to time-
limitations of the license of the software LS-OPT, a total satisfactory solution was not
obtained, but the results achieved indicate that a weight reduction of 50 kg. is realistic. It has
to be remembered that the crash-structure already, during the development of the Crusaris
Regina, has been manually optimized on a trial and error basis, which took approximately one
half of a man-year. LS-OPT required approximately two weeks of simulation time to achieve
a structure with the same crash-performance but with a weight reduction of approximately 50
kg.

The study also showed that the result of the optimization can be very dependent on how
certain constraints are defined, in this case the accelerations. Also, the study showed that the
computation time is highly dependent on the number of design variables and the number of
iterations LS-OPT is allowed to perform. The number of available processors and LS-DYNA
licenses has a major influence on the calculation time.

Including LS-OPT early in the product development of future crash-structures will result in a
shorter development time and an optimized design.
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1. Notation

iX Material coordinates

ix Spatial coordinates

iu Displacement vector

ijE Green-Lagrange strain tensor

ijF Deformation gradient

ijL Spatial velocity gradient

ijδ Kronecker’s delta

ijW Spin tensor

it Traction vector

ijσ Cauchy stress tensor

jn Normal vector

ijP First Piola-Kirchhoff stress tensor

ijS Second Piola-Kirchhoff stress tensor

ijε Small strain tensor

iv Velocity vector
.

ijσ Stress rate

ijklL Isotropic stiffness tensor

o

ijσ Jaumann stress rate (objective stress rate)

ijs Deviatoric stress

J2 Stress invariant
F Yield function
K Hardening parameter
.

λ Plastic multiplier

yσ Yield stress

H Plastic modulus

G Shear modulus

υ Poisson´s ratio

∆

ijσ Truesdell stress rate
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2. Introduction
Bombardier Transportation is a subsidiary company within Bombardier and is the largest
supplier of trains in the world with 36 000 employees and production facilities all over the
world.

This thesis was performed at the Department of Structural Mechanics at Bombardier
Transportation, Kalmar, Sweden where crashworthiness analysis has been performed for
about eight years.

In the conventional development cycle, the design is first ensured to withstand certain criteria
and then experienced- or intuition-based design changes are usually made to achieve certain
goals for instance a lower mass of the design. This procedure is time-consuming and often the
demands stated on the design are in conflict with each other, for instance high stiffness and
low acceleration levels together with low mass.  It is not obvious how a change of a certain
design parameter will influence the response and if it will be advantageous to the solution of
the problem as a whole. The complexity of the problem grows larger when considering a
complex structure together with a highly nonlinear processes such as a crash analysis of a
train crash structure. Therefore, more intelligent ways to perform optimization analysis need
to be investigated.

The aim with the current study is to investigate whether LS-OPT can be of any use for the
future development of new trains within Bombardier Transportation. This thesis is the first
step towards the use of special software for optimization of structures exposed to crash
loading within Bombardier Transportation. Therefore the model investigated was considered
to be as simple as possible but still be relevant enough to the purpose, i.e. optimization of
large, complex structures during a highly nonlinear processes, in this case train
crashworthiness analysis. The current thesis only regards optimization of thickness, which is
the simplest optimization category. Several simplifications were introduced and therefore the
results obtained from the current study cannot be directly transferred to the current design.
Instead the results presented must be compared with the original design i.e. the relative
improvements/deterioration’s from the optimized design in comparison with design before
any optimization analyses were performed. Therefore, no effort is put into describing the
material properties or the true stress-true strain curves for the different materials used. For
such data it is referred to the technical report of the crashworthiness analysis of the Crusaris
Regina, 3EST 76-857.

In order to obtain accurate results, the understanding of the underlying theories are essential
when performing finite element analyses. The theories involved in optimization of crash
structures are for instance optimization, contact, plasticity and large deformations. All
theories are rather extensive. Therefore, the current study is restricted to the theory of large
deformations and hypo-elastoplasticity, which are presented in the following chapter.
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3. Nonlinear Finite Element Theory
In linear finite element analysis the deformations and rotations of a continuum are considered
as small and the loads applied to the continuum are assumed not to cause any plastic
deformations i.e. the response in the structure is considered to be linear elastic. However,
performing finite element analysis regarding vehicle crashworthiness where the structure must
deform in a controlled manner to lower the accelerations, plastic response, large deformations
together with contact must be taken into account. In the current chapter an introduction to
nonlinear finite element theory will be presented with respect to large deformation and the
nonlinear response in the material i.e. the constitutive law.

3.1 Kinematics – Large Deformations
Displacements of a body under load can be divided into two categories: deformation and rigid
body motion. When a body is under load, the body may be displaced without having
developed any stresses, a rigid body motion. The body may be displaced in such a way that
stresses are developed, i.e. a deformation. These two displacements must be separated since
only deformations give rise to stresses. This is usually done by comparing the current
configuration with a reference configuration. Consider a continuum before an arbitrary load is
applied. This state of the continuum is denoted as the reference configuration. Each material
particle in the continuum can be described by its material coordinates, iX . After an arbitrary

load is applied, the continuum deforms and this state is denoted the deformed configuration or
the current configuration. The coordinates in the deformed configuration, ix , are described

by the material coordinates in the reference configuration and the displacements due to the
applied load i.e.:

),()( tXuXXx kiiki +=

In (1), ),( tXu ki  is the displacement vector and t is the time. Moreover (1) is called the

Lagrangian formulation which means that ix , also denoted the spatial coordinates, are

expressed in terms of the material coordinates, iX . Another formulation is the Eulerian

formulation where the material coordinates are expressed in terms of the spatial coordinates
but since the Lagrangian formulation is the most common formulation in commercial finite
element software, the Eulerian formulation will be discussed no further. In the continuation a
fixed configuration is considered, i.e. t is constant.

Consider two points A and B in the reference configuration and the same points in the
deformed configuration, now denoted A’ and B’, see fig. 1.

Fig. 1. Two points in the reference and deformed configuration.
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The distance between A-B and A’-B’, denoted dS and ds  respectively, are:

( )22

22

ii

i

dudXds

dXdS

+=

=

where jjii dxudu ,=  and jiu ,  is defined as:

j

i
ji X

u
u

∂
∂

=,

which is denoted the displacement gradient. The measure of deformation is considered to be
the change in distance between 2dS  and 2ds  i.e.:

( )
( )

jiji

ijjkjkjiji

iii

dXEdX

dXdXuuuu

dXdudXdSds

2                 

                 ,,,,

2222

=

++=
−+=−

which is the exact expression of the change in distance between A-B and A’-B’. The term ijE

in (4) is defined as:

( )ikjkijjiij uuuuE ,,,,2

1 ++=

and denoted Green-Lagrange Strain Tensor. In linear analysis where small displacements are
assumed the displacement gradients are small and the quadratic term in (5) is therefore
ignored and the Green-Lagrange strain tensor is reduced to the small strain tensor, which will
not be discussed in the current study.

Introducing the deformation gradient according to:

j

i
ij X

x
F

∂
∂=

and it is easily shown that by using (1) and (6), the Green-Lagrange strain tensor may also be
expressed as:

( )kjikijkj FFE δ−=
2

1

However, the Green-Lagrange strain tensor is not the only way to measure deformation, see
for instance [1].
Moreover, if taking the time derivative of the Green-Lagrange strain tensor to obtain the rate
of Green-Lagrange strain tensor according to:






 += kjkikjkiij FFFFE

...

2

1

Differentiation of (6) with respect to time and expand it by the chain rule will result in:

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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kjikij FLF =
.

where:

k

i
ik x

v
L

∂
∂=

and denoted as the spatial velocity gradient. The spatial velocity gradient can be divided into
a symmetric and an unsymmetric tensor according to:











∂
∂

−
∂
∂

=











∂
∂

+
∂
∂

=

i

j

j

i
ij

i

j

j

i
ij

x

v

x

v
W

x

v

x

v
D

2

1

2

1

where ijD  is the Rate of Deformation Tensor and ijW is the Spin Tensor. It can be shown, see

[2], that it is only the rate of deformation tensor that determines the deformation rate of the
body. Hence, the spin tensor is related to the rigid body rotation of the body. A relationship
between the rate of deformation tensor and the rate of Green-Lagrange strain tensor can be
established by using (9) in (8) and the realationship becomes:

ljklikij FDFE =
.

3.3.1 Equation of motion-Balance equation and stress tensors

Mechanical loads that may act on a body can be in the form of a traction vector, it  i.e. force

per unit area, and a body force per unit mass, ib , for instance gravity. In the current section,

three different forms of the balance law with respect to three different stress tensors will be
discussed namely Cauchy, first Piola-Kirchhoff and the second Piola-Kirchhoff stress tensor.
Many other possible stress tensors exist but the current study only deals with the three
mentioned.

Consider an arbitrary body in the current (or deformed) configuration with the volume v and
surface area a. Newton’s second law, i.e. the balance equation states that:

dvüdvbdat
a v v

iii∫ ∫ ∫=+ ρρ

where ρ  is the mass density in the deformed configuration and iü  is the acceleration vector.

Moreover, ib  is the body force vector in the deformed configuration. By the use of Cauchy’s

formula, see for instance [3] the traction vector can be expressed as:

jiji nt σ=

(9)

(10)

(11)

(12)

(13)

(14)
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In (14), jn  is the normal vector, in the deformed configuration, to the area a and ijσ  is the

Cauchy’s Stress Tensor which is the physical stress i.e. force per unit area. Inserting (14) in
(13) results in:

dvüdvbdan
a v v

iijij∫ ∫ ∫=+ ρρσ

Using the divergence theorem of Gauss on the first term in (15) which for an arbitrary tensor

ijc  states:

∫ ∫=
a v

jijjij dvcdanc ,

and (15) results in:

∫ ∫∫ =+
∂
∂

v v

ii

v j

ij dvüdvbdv
x

ρρ
σ

Since (17) must be valid for an arbitrary body the following must hold:

ii
j

ij üb
x

ρρ
σ

=+
∂
∂

which is the balance equation with Cauchy’s stress tensor. Note that it is defined in the current
configuration.

To obtain the balance equation in the reference configuration, consider that the current force
can, by the use of (14), be written as:

dandat jiji σ=

Making use of Nanson’s formula according to:

dAnJFdan o
jjii

1−=

where o
jn  is the normal vector in the reference configuration and J is the determinant of the

deformation gradient and denoted the Jacobian. With (20),  (19) now becomes:

dAnJFdat o
jjkiki

1−=σ

The first Piola-Kirchhoff stress tensor can now be defined according to:

1−= jkikij FJP σ

With (14) and (22), (19) becomes:

dAnPdan o
jijjij =σ

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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As can be seen, the left-hand side of (23) is the force in the current configuration, while the
right-hand side is the force in the reference configuration. By also considering that the mass
of the continuum must be constant i.e. conservation of mass:

dvdVo ρρ =

Proceeding by inserting (23) into (15) and use (24). Then, by using Nanson’s formula (20)
and since the relationship must hold for arbitrary volumes, the balance with the first Piola-
Kirchhoff stress tensor becomes:

i
oo

i
o

j

ij üb
X

P
ρρ =+

∂
∂

where o
ib  is the body force per unit mass in the reference configuration. One major

disadvantage is that the first Piola-Kirchhoff stress tensor is usually not symmetric which
makes it expensive to use. However, if multiplying (22) with 1−

liF  and a symmetric tensor is

obtained i.e. the second Piola-Kirchhoff stress tensor according to:

111 −−− == jkikliijlilj FJFPFS σ

where in (26), the relationship between the second Piola-Kirchhoff stress tensor and Cauchy’s
stress tensor also was established. By using (26) and (25) and rewriting the deformation
gradient according to (6) the following is obtained:

( ) i
oo

i
o

illj
j

übFS
X

ρρ =+
∂
∂

which is the balance equation with the second Piola-Kirchhoff stress tensor. Note that it is
defined in the reference configuration.

3.3.2 The principle of virtual power
In the previous section three different forms of the balance equations were derived with
respect to chosen stress tensor. The results are denoted as the strong form and in the current
chapter the weak form will be derived by using the principle of virtual power. As starting
point, (18) is multiplied with an arbitrary weight function, iw  i.e. a virtual velocity (due to

virtual power), i.e.:

iiii
j

ij
i üwbw

x
w ρρ

σ
=+

∂
∂

Now, by elaborating an expression like:

( )
j

ij
iij

j

i
iji

j x
w

x

w
w

x ∂
∂

+
∂
∂

=
∂
∂ σ

σσ

(24)

(25)

(26)

(27)

(28)
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and perform integration by parts on (28) over the volume of the body according to:

( )∫ ∫ ∫ ∫=+
∂
∂

−
∂
∂

v v v v

iiiiij
j

i
iji

j

dvüwdvbwdv
x

w
dvw

x
ρρσσ

Using (16) and (14) on the first term in (29) according to:

∫ ∫ ∫==
v a a

iijijijiji datwdanwdvw σσ ,)(

Studying the second term in (29). Since ijσ  is a symmetric tensor and the trace of a product of

a symmetric tensor times an antisymmetric tensor vanish, the symmetric part of 
j

i

x

w

∂
∂

 is

introduced according to:











∂
∂

+
∂
∂

=
i

j

j

iw
ij x

w

x

w
D

2

1

The quantity w
ijD  shall be interpreted as the rate of deformation tensor with respect to the

virtual velocity. Now, with (30) and (31), (29 b) results in:

∫ ∫ ∫ ∫=+−
a v v v

iiiiiij
w
ijii dvübwdvbwdvDdatw ρρσ

With the relationship in (12) but now for the rate of deformation tensor with respect to the
virtual velocity, i.e.:

jt
w
ijis

w
st FDFE =
.

with (26) and (33), equation (32) result in:

0
.

=−−+ ∫∫∫ ∫ dvbwdatwdVSEdvüw i

v

ii

a

iij

v V

w
ijii ρρ

which is the weak form of (27). Note that by expanding (31) by the chain-rule and together
with (33) and the second term in (34) is now defined in the reference configuration. To
transform the remaining terms in (34) to the reference configuration, consider that the traction
vector in the deformed configuration is defined as the current force divided by the current
area. Thus the traction vector in the reference configuration, denoted o

it  should be defined as

the reference force divided by the reference area, dA i.e.:

datdAt i
o
i =

By using (24) and (35), the equation (34) can be expressed in the reference configuration
according to:

0
.

=−++ ∫∫∫ ∫ dVbwdAtwdVSEdVüw i
o

V

i
o
i

A

i

V

ij

V

w
iji

o
i ρρ

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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which is  the principle of virtual power with the use of Green-Lagrange strain tensor and the
second Piola-Kirchhoff stress tensor and the corresponding weak form of (27). In some
literature the corresponding derivation as in the current study is performed by using variations
of the Green-Lagrange strain tensor, see for instance [4].

3.2 The Finite Element Formulation - Large Deformations
In this section a finite element formulation with respect to large deformations with starting
point according to (36) will be carried out. For simplicity, only plane conditions are
considered and (36) is presented in matrix format as the starting point of the derivation:

0=−−+ ∫∫∫∫ dVdAdVdV
V

oo

AV

w

V

o bwtwSEüw TT
.

TTρ

with the following notations:












=












=








=








=
















=





















=
o

o
o

o

o

w

w

w

w

b

b

t

t

w

w

ü

ü

S

S

S

E

E

E

2

1

2

1o

2

1

2

1

12

22

11
.

.

12

22

.

11

                                      

2

btw ü SE
.

The displacement vector, u, is in the finite element method approximated as:

Nau =

where N is the global shape function depending on which element formulation used and a is a
vector containing all nodal displacements.
According to (1), the displacement vector u is a function of both position and time and the
shape function is only a function of position, see for instance [5], i.e.:

)(        )(        ),( tXtX ii aaNNuu ===

Thus the following is valid:
Näü =

From (8) with (1) it follows that (33) can be expressed according to:







∂
∂

∂
∂

+
∂
∂

∂
∂+





∂
∂+

∂
∂=

t

j

s

j

t

i

s

i

s

t

t

sw
st X

u

X

w

X

w

X

u

X

w

X

w
E

2
1

2
1.

Expanding (42) for a plane case shows that (42) can be simplified by introducing one linear
and one nonlinear operator according to:

(37)

(38)

(39)

(40)

(41)

(42)
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u
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u

wu

I.e. with the strain vector in (38) and the introduced operators, (42) becomes:

wwE uo

.

∇+∇=w

To be able to proceed, the weight function, w must be chosen. Different ways to approximate
w exist, for instance the point collocation method or the subdomain collocation method, see
for instance [4] or [6]. However in the current study the weight vector is chosen according to
Bubnov-Galerkin or simply the Galerkin method where the weight vector is approximated in
the same manner as the displacement vector in (39), i.e.:

Ncw =

where c like w is an arbitrary vector with the exception that w is a function of position and
time and c is function of time only. Using (46) with (43) and (44) in (42) yields (in matrix
format):

( ) ( )cBBcNNE uouo

.

+=∇+∇=w

By inserting (46) in (42) it is realized that Bo is a function of the material coordinates and Bu

(in general) depend on the displacements i.e. Bo=Bo( iX ) and Bu=Bu( ii Xu , ). To simplify the

notation, the following is defined:

uo BBB +=

Proceeding by using (41), (46) and (48) in (37) and move c outside the brackets result in:

0=







−−+∫ ∫ ∫ ∫

V V A V

ooT dVdAdVdV oToTTT bNtNSBNäNc ρρ

Since (49) must hold for arbitrary c-matrices, (49) must become:

0bNtNSBäNN oToTTT =−−+∫ ∫ ∫ ∫
V V A V

oo dVdAdVdV ρρ

(43)

(45)

(44)

(46)

(47)

(48)

(49)

(50)
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The mass matrix M can be defined from the first term  (50) according to:

∫=
V

o dVNNM Tρ

the external forces are given by the traction vector to and the body force vector bo according
to:

∫ ∫+=
A V

o
ext dVdA oToT bNtNf ρ

and finally the internal forces in the continuum due to the applied load:

∫=
V

dVSBf T
int

With the above introduced expressions, (50) is reduced to:

0ffMäG =−+= extint

i.e. for equilibrium to hold: the external forces must be equal the internal forces plus the
inertial forces (Newton’s second law). The quantity G is denoted the Residual Force Vector.
As can be seen in (50) no constitutive model has been introduced. Therefore (54) is valid for
any constitutive law chosen.

3.3 Static loading conditions
Static analysis can only be performed using the implicit finite element method, see for
instance [3] and [7] where the nonlinear implicit finite element scheme is thoroughly
described. The equilibrium equation (54) is valid for dynamic conditions. For static or quasi-
static analysis, for instance sheet metal forming analysis, where inertial effects can be
neglected the mass-matrix is simply put equal to zero. As stated in the pervious section, no
constitutive law was introduced to obtain (54). In the current section, it is assumed that the
stress can be linearized and that the stress increment is defined as dS=DdE.

For nonlinear geometry, it is known that the Green-Lagrange strain tensor is nonlinear (due to
the quadratic term in (5)), (54) also becomes nonlinear. Therefore (54) cannot directly be
solved which would have been the case if the small strain tensor had been used. Instead an
iterative solution must be used, usually based on the Newton-Raphson Method, see for
instance [7]. To obtain an iterative format based on the Newton-Raphson method a Taylor
expansion of (54) around an equilibrium point is made. Assuming static conditions and the
Taylor expansion of (54) around an equilibrium point, a, becomes:

( ) 0G(a)G(a)aaG =+=+ dd

Assuming that the external load, fext is not depending on nodal displacements, the second term
of (55) is in comparison with (54) recognized as:

intfG dd =
i.e. (55) becomes:

(51)

(52)

(53)

(54)

(55)

(56)
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( ) ( ) 0afaG =+ intd

Recall (53) and (56) becomes:

∫ ∫+=
V V

dVddVdd SBSBf TT
int

As can be seen in (58) the first term deals with the change of the B-matrix i.e. the geometry
and the second term deals with the change of the stresses. Examining the terms in (58) and
recalling (48) where Bo in B only contain material coordinates i.e. constants, results in dBo=0.
But since Bu in (48) depends on the displacements so does B and since fint is highly controlled
by the nodal displacements, B must be differentiated i.e.:

uBB dd =

One way to formulate Bu in matrix-format is according to:

AHNB =
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Having introduced AH it can be shown that the first term in (58) can be written as:

aRHHSB TT dd =

where:
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
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
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The second term in (58) are established as follows:

aDBBEDBSB TTT ddd ==

Finally, by inserting (61) and (63) in (58) and then (55) yields:

( )

( ) 0aKaG

0aRHHDBBaG TT

=+
⇔

=





++ ∫ ∫

d

ddVdV
V V

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)
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where the stiffness matrix for large deformations under static loading conditions was
established i.e.:

∫ ∫+=
V V

dVdV RHHDBBK TT

Consider the two terms in (65) and it is evident that the first term is related to the constitutive
law whereas the second term is due to that nonlinear strain measures are taken into account,
i.e. large deformations.

3.4 Dynamic loading conditions
When it comes to solving dynamic problems, using the finite element method, time
integration must be performed. Today there are two major time integration algorithms for
solving dynamic problems using the finite element method: the implicit and the explicit
method. The time integration is basically the same for both algorithms but the big difference
is how the algebraic equations are solved. As will be shown in the next section, where the
explicit finite element method is discussed, the nodal displacements are obtained naturally by
the use of the approximations introduced by Newmark, together with some choices of
parameters. However, the calculation of the strains and the stresses are exactly the same for
both methods.

Considering dynamic loading situations, an integration of time must be performed. Recalling
(54) i.e. the equation of motion and in the meantime also introduce damping, C, into the
system:

( ) 0fafaCaM
...

=−++ )(int text

In the current study Rayleigh damping is assumed:

KMC 21 dd +=

where d1 and d2 are constants, usually determined experimentally. To transform the nonlinear
differential equations in (66) into algebraic equations, the Newmark time integration scheme
proposed by Newmark (1959) will be used.

Newmark introduced the following approximations of 1+n

.

a  and 1+n

..

a  according to:

( )
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where β and γ are certain parameters, see for instance [1].
Suppose that everything is known at state an. The next state to be determined is an+1, i.e. (66)
will be:

0fafaCMä
.

=−++ ++++ )1(1int11 )( nextnnn

Rewriting (68) to obtain:

(65)

(66)

(67)

(68)

(69)
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where the introduced ci-parameters are:
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For simplicity, the damping in (67) are assumed to only depend on the mass-matrix i.e. d2 in
(67) is set to zero which will be an evident choice in the section where the explicit finite
element formulation is discussed. Using (70) in (69) will in the step an+1 become:

( ) ( ) 0a’MfafMa
..

=−+++ +++ nnextnncdc )1(1int1411

where:

nnnnnnn cdcdcdccc
........

aaaaaaa’ 615141321 +++++=

Recall (55) i.e.
( ) G(a)G(a)aaG dd +=+

and in analogy with static conditions i.e. (56), (71) becomes:

( ) 0faMG =++= int411 ddcdcd eff

where it is noted that the mass-matrix is constant due to that the shape functions are constant
and the external forces do not depend on the displacement. Recall (58) and (64), i.e. dfint    

equals the stiffness matrix for static conditions, and (64 b) becomes:

0aKG =+ deffeff

where the effective stiffness matrix, Keff,  was introduced according to:

( ) KMK ++= 411 cdceff

As can be seen, the stiffness matrix for dynamic analyses is generated by using the stiffness
matrix for static loading situations with a few additions due to the dynamics.

3.5 Explicit Finite Element Method
The current section will show that by some choices, (73) is simplified to the explicit finite
element method, which is the most common tool for numerical analysis of vehicle
crashworthiness. In comparison with the implicit finite element method where the nodal
displacements are calculated by using the stiffness matrix, the nodal displacements are
directly obtained from the time integration algorithm, for instance the Newmark time
integration algorithm discussed in the previous section. Already now, by considering that d2

(70)

(71)

(72)

(73)

(74)
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in (67) is put to zero, a major difference between the implicit and the explicit finite element
method can be established: the explicit method does not use a stiffness matrix. Recalling the
approximations proposed by Newmark in (68).

In the explicit finite element method the following is chosen:

2

1
          0 == γβ

With these choices, Newmark’s approximations in (68) become:
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The equation of motion at the current time tn i.e.:

0ffaCaM
...

=+++ )()int( nextnnn

From (76) the current acceleration, n

..

a  can be determined:
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With (77) and (79) the nodal velocities, n

.

a  and the nodal accelerations, n

..

a  can be expressed
in terms of nodal displacements according to:
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With the choices done in (75) and consider (80), it is realized that the central difference

approximation of n

..

a  is obtained. For more information regarding the central difference
method, see for instance [4].

Finally, by inserting (80) into the equation of motion, (78) the following equation system is
obtained:

)(
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)2(
2 )()int(

2
111 nextnnnnn t

tt
ffaCaaMaCM −∆−∆−−=





 ∆+ −−+

Everything in state n is known, and then of course everything at state n-1 is known, and the
next state to be determined is the state n+1. Since the mass matrix also is known, (81)
provides the solution, i.e. the nodal displacements for state n+1 directly without any need of
iterations. By also turning the mass-matrix into a lumped mass-matrix i.e. the mass-matrix

(75)

(76)

(77)

(78)

(79)

(80)

(81)
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only contains diagonal terms, no inversion of the mass-matrix must be done. Also by setting
d2 in (67) to zero, no stiffness matrix is involved. Therefore only component division has to
be performed which is a huge advantage when it comes to computational time demand.

One way to lump the mass-matrix is as adopted by LS-DYNA, the software used in the
current study, to simply sum all terms in each row and place the sum so that a diagonal mass-
matrix is obtained, [8]. The major disadvantage with the explicit method is that the time step

t∆  must not be too large to avoid instabilities, see for instance [7].

3.6 Hypo-elastoplasticity
Today two major schools exist for constitutive modeling of plasticity namely Hyper-
elastoplasticity and Hypo-elastoplasticity, see for instance [2]. The most common model
when it comes to model plastic response in a material, using the finite element method, is
hypo-elastoplasticity, which will be presented in the current chapter. However, it does not (at
the present date) exist an officially accepted method, regarding modeling of large strain
plasticity,
The plasticity model that will be adopted is the Isotropic von Mises Hardening since this
model is commonly used when it comes to model plastic response in material during
crashworthiness analysis.

The displacements of a continuum can be rigid, elastic or plastic. Disregarding the rigid body
motions, since only deformations are of interest, and the displacement vector can be split into
an elastic and a plastic part according to:

p
i

e
ii uuu +=

where the superscript "e" denotes elastic and "p" is plastic i.e. e
iu  is elastic displacements and

p
iu  is the plastic displacements. In small strain plasticity the small strain tensor is divided into

an elastic- and a plastic part i.e.:

p
ij

e
ijij εεε +=

For problems involving nonlinear geometry this separation cannot be done due to the
nonlinear contribution. Instead the hypo-formulation states that the velocity vector can be
separated into an elastic and a plastic part:

p
i

e
ii vvv +=

and with this separation, the rate of deformation can be formulated as:

p
ij

e
ijij DDD +=

For small strain plasticity, the stresses are given by the strains via the constitutive law:


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To generalize to large deformation, the stress-strain relationship are formulated as:

( )p
klklijklij

o

DDL −=σ

( ) 





−
++= klijjkiljlikijkl GL δδ

υ
υδδδδ
212

1
2

where in (86), ij

o

σ  is the Jaumann stress rate defined as:

jmimmjimijij

o

WW σσσσ +−=
.

where ij

.

σ is the rate of Cauchy’s stress tensor. Moreover ijklL in (86) is an isotropic tensor, G

is the shear modulus and υ  is Poisson’s ratio.

The von Mises isotropic hardening yield criterion, see for instance [3], states that:

0)(3 2 =−= KJf yσ
where:
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where ijs  is denoted the deviatoric stress tensor of the Cauchy stress, yσ  is the yield limit

and K is some hardening parameter that form the hardening rule i.e. the rule for how the yield
surface changes with the plastic loading. Isotropic hardening is characterized by the fact that
the position and shape of the yield surface remains fixed whereas the size of the yield surface
changes with the plastic deformation, see for instance [3] and figure 2.

Fig. 2. Isotropic hardening of the von Mises criterion.

If a point is within the yield surface the point behaves elastic and if the point is on the yield
surface, the material point behaves plastic. Therefore, during plastic loading the following
must be fulfilled:

(86)

(87)

(88)

(89)

2σ

1σ

3σ

Current yield
Surface, f=0

Initial yield
Surface, F=0
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0),( =−= yeffij Kf σσσ

where effσ is the effective stress defined according to:

23
2

3
Jss ijijeff ==σ

Formulating the so-called consistency relation according to:

0
.

=f

and by the use of the chain rule and (92),  (90) becomes:
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The interpretation of the consistency relation is that during plastic loading, when the stress
state varies, so does also the hardening parameter, K, in such a manner that the stress state
always remains on the yield surface. Consider the first term in (93). An important relationship
can be established by multiplying the definition of the Jaumann stress tensor, (87) by sij and
using the definition of the deviatoric stress tensor in (89). This will result in the relation:
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The associated flow rule, see for instance [2], states:
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λ  is denoted the plastic multiplier. Defining the effective plastic strain rate:
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Using (96) into (97) with the use of (89) will result in:
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Proceeding with the definition of the effective plastic strain:

..

0

 or                 λεε === ∫ p
eff

p
eff

t
p

eff
p

eff DdtD

Moreover, strain hardening is chosen i.e. the hardening is controlled by the effective plastic
strains which for the hardening parameter in (93) means:

p

effK
..

ε=

Now, with the choice (100) and (99 b) the second term in (93) can be reformulated according
to:
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Finally, the consistency relation becomes:
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and H is the plastic modulus that has to be determined from experimental data, see [2].
Referring to the relationship in (94), the consistency relation in (102) can be written as:
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To determine the plastic multiplier, 
.

λ , (103) is combined with (86) and (96) which, after a
few calculations, result in:
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where:
HGA += 3

and finally by using (96) and (104) in (86) and after some calculation the following is
obtained:
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In (105), Lijkl is an isotropic tensor defined in (86) and ep
ijklL  is the elasto-plastic stiffness

tensor. From a purely numerical point of view, the difference between elasto-plastic stiffness
tensor and the constitutive law is that the stresses are obtained via the strains and the
constitutive law whereas the functionality of the elasto-plastic stiffness tensor only is for
generating the stiffness matrix, see the first term in (65) where D is the constitutive tensor.
However, since (105) involves the Cauchy stress tensor (via the deviatoric stress), it is defined
in the current configuration. Since the Lagrangian formulation, see (1), is the most frequently

used formulation, the rate of the second Piola-Kirchhoff stress tensor, ijS
.

, and the rate of the

Green-Lagrange strain tensor, ijE
.

, must be fit into (106). Without going into the signification
of objective tensors, instead it is referered to [2] where it is shown that the rate of the second
Piola-Kirchhoff stress tensor is described in an similar manner as in (26) i.e.:

11
.

−
∆

−= jlklikij FJFS σ

where kl

∆
σ is the Truesdell rate of the Cauchy stress, see for instance [2], defined according to:

sskllmkmmlkmklkl DLL σσσσσ +−−=
∆ .

With (105) and (106) and referring to  [2],  the final expression of the von Mises isotropic
hardening in the Lagrangian formulation is presented as:
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ijstD  is symmetric i.e. ep
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4. Analysis
The current chapter describes the hardware and software, the finite element model used and
the crash case that was studied. Moreover a general description of how the optimization
software LS-OPT works is presented and how it has been applied in the current study.

4.1 Hardware and Software
The computer used for the analysis was Bombardier Transportation’s Compaq HPC 200 with
Alpha EV6@667MHz. Each simulation was a single CPU job and the number of
simultaneous jobs varied between four and seven depending on the number of available
processors and LS-DYNA licenses. The finite element model was generated in Patran, a pre-
and post-processor developed by the MacNeal-Schwendler Corporation with CAD-geometry
from Pro/Engineer. The solvers used were LS-DYNA, which is an explicit finite element code
for three-dimensional nonlinear transient analysis, and LS-OPT, an optimization program for
complex nonlinear problems, for instance crash-analyses. Both LS-DYNA and LS-OPT are
developed by Livermore Software Technology Corporation. To evaluate the results, LS-Post
together with the graphical interface of LS-OPT, LSOptui was used.
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4.2 The Finite Element Model
The FE-model used was the front-structure of Crusaris Regina. The model was taken from the
full crash model of the Crusaris Regina and was originally generated in Patran using CAD-
models generated in Pro/Engineer. The model consists of a total number of 43556
Belytschko-Tsay shell elements, see [8]. Since the crash-structure is symmetric, only half of
the structure was modeled and symmetry boundary conditions were applied. The FE-model is
shown in figure 3.

Fig. 3. The FE-model of the crash-structure, Regina Crusaris.

The edge lengths of the elements are between 15-25 mm depending on location with 5
integration points through the thickness of the element.

The material model for all deformable elements was material number 24, Piecewise Linear
Isotropic Plasticity, see [8].
The contact definition used was CONTACT_AUTOMATIC_SINGLE_SURFACE, see [12].
The friction between the parts in the model was set to 0.7 and 0.4 for static and dynamic
coefficient of friction respectively. These values of the coefficients of friction are commonly
used within Bombardier Transportation, Kalmar, Sweden. The front structure is made mainly
of mild steel. Regarding material data, the true stress versus true strain curves are presented in
the technical report of the crashworthiness analysis of the Crusaris Regina, see [13].

4.3 Crash Load Case
The load case studied is case number three according to the STI-requirements [14] but
modified to keep the model and load case as simple as possible. The STI3-requirement as it is
originally designed states that the train shall withstand an impact at a speed of 110 km/h with
a lorry carrying a load and with a total weight of 15 tons. The lorry and the payload is, in
Sweden, represented/simulated by two rigid cylinders where the lower cylinder weighs 5 tons
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and is representing the lorry and the upper cylinder weighing 10 tons representing the
payload, see figure 4. Hence, since only half the crash-structure is modeled, half the masses of
the cylinders were defined i.e. in the FE-model, the upper cylinder weighs 5 tons and the
lower weighs 2.5 tons. The cylinders have a diameter of 1 m. and the lower cylinder is located
0.5 m above the top of the rail (TOR), see figure 4.

Fig. 4. The Swedish definition of the STI3-requirement.

The structure was designed in such a way that the impact buffers, see figure 5, will absorb the
kinetic energy due to the lower cylinder and the beams above the impact buffer will deal with
the upper cylinder.

To keep the FE-model and the analysis as simple as possible some simplifications were made.
Instead of using a complete train, only the crash-structure is taken into account and the
interface of the crash-structure towards the coach is locked in all degrees of freedom. Then,
instead of letting the crash-structure run into the cylinders, the cylinders are given an initial
velocity towards the crash-structure, see figure 5. As an additional simplification, the
intrusions and accelerations were measured on the cylinders instead of the front structure.

Fig. 5. The impact buffers will absorb the energy from the lower cylinder and the rest of the
crash structure will deal with the upper cylinder. The attachments towards the coach are
clamped and an initial velocity is applied to the cylinders.

5 t

10 t

0.5 m

TOR

0 km/h 110 km/h

Impact buffer
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These simplifications will have a major influence on the results. Therefore the results
obtained in the current study cannot directly be transferred to the current design of the crash-
structure, but the results will give perfectly good hints whether the weight of the crash-
structure as a whole can be reduced or not.

4.4 The crash course of event
As stated in the current section, the cylinders impact the crash structure with an initial
velocity of 110 km/h. The crash course of event at different time steps is shown in figure 6.

0 ms. 18ms.

50 ms. 82 ms.

102 ms. 148 ms.

Fig. 6. The deformation of the crash-structure at different time steps.
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4.5 Optimization using LS-OPT

4.5.1 General
Structural optimization are divided into three categories:
•  Sizing optimization - The design variables define a property for instance a thickness of a

plate.
•  Shape optimization - The design variables define the outer dimensions of the geometry.
•  Topology optimization – In this optimization approach, the geometry is not given an initial

design. Only the boundaries where material can be placed are defined.

The optimization problem can mathematically be described as:

)(min xf
  subjected to:

mjxg j ,......,2,1          ;0)( =≤
  and:

lkxhk ,1,2,......          ;0)( ==
  where:

The optimization method used by LS-OPT is the Response Surface Methodology (RSM).
RSM is a method for constructing functions that describe the relationship between responses
and design variables. These functions are called Response Surfaces (RS). To construct the RS,
a number of experiments are carried out where the values of the design variables are varied
and the responses are recorded. The RS are then fitted to the responses. The RS can be linear
or quadratic functions and often the fitting is done by using a least square criteria. To get
maximum accuracy in the RS for a given number of experiments, it is important that the
experiments are carefully planned. This process is often referred to as Design Of Experiments
(DOE). Several methods to select the experimental points i.e. perform the DOE, are available
in LS-OPT, for instance D-Optimality criteria.

LS-OPT uses RSM to create RS for the objective function and all constraints in the
optimization problem. The experiments in this case correspond to LS-DYNA simulations.
When LS-OPT has constructed the RS, LS-OPT then solves an approximation of the original
optimization problem, where the objective and constraint functions now are described by the
RS. Since the RS are approximations of the real problem, the approximations may be
overestimated or underestimated. This can result in that the constraints are violated.  The
result of solving the approximated optimization problem is the result of one iteration and
hopefully an improved design. LS-OPT has then several methods (e.g. zooming) by which the
accuracy of the accuracy of the RS can be improved by performing a new series of
experiments and constructing new, more accurate RS and, again, solving an approximation of
the original optimization problem. This can be continued until a satisfactory improved design
is found.

f=Objective function.
g=Inequality constraint function.
h=Equality constraint function.
x=Design variable.
m=l=Number of constraint functions.
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From a more user point of view, an optimization set up can be described as follows. When
defining an optimization analysis using LS-OPT, each design variable is given an initial value
i.e. the values of the design variables before any optimization is performed. Then a range is
defined for each design variable i.e. in what range the optimized solution is to be sought. The
domain where an optimum is sought is called the Design Space. The design space is reduced,
with respect to the range set for all design variables, to obtain the Region of Interest, see
figure 7. Then a number of Experimental Points, depending on the number of design variables
used, are distributed over the region of interest. One of the experimental points is based on the
initial values of the design variables i.e. the design before any optimization is performed. In
the rest of the experimental points, one or more design variables have been changed with
respect to the chosen range. This is done in such a way so that as much information as
possible is obtained through the experiments. The results from the responses from the
experimental points form RS via the RSM. In the current study, a linear approximation was
used to create the response surfaces but more advanced approximations are available in LS-
OPT, for instance quadratic and elliptical approximations. When the RS are established, LS-
OPT sets up an approximate optimization problem, which is solved, and the solution obtained
is the result from one iteration.  In the next iteration, the region of interest is decreased to
increase the accuracy of the RS.  For a more thoroughly description of the optimization theory
with respect to response surface methodology, see for instance [9] and the references within.

Fig. 7. Design space, region of interest and experimental points.

The chosen range is important since it controls the size of the region of interest, i.e. how much
each design variable is allowed to increase or decrease. In each iteration, each design variable
is allowed to increase or decrease with half of the defined range. The smaller the range is set
the smaller the region of interest and the more accurate the RS become, hence a more accurate
result is obtained. But if the range is set too small, the optimization-simulations will be very
slow and it would be hard to get a solution in a reasonable amount of time.

The number of experimental points used is of great importance since they also control the
accuracy of the RS. The more points used the better the predictive capability of the RS
become. LS-OPT has a default value of number of experimental points according to:

Number of experimental points=(Number of design variables+1)*1.5

However, according to [10], using the D-optimal design, this is a very rough method of
determining the number of experimental points required. The number of experimental points

Design space
Design
Variable 1

Design
Variable 2

Region of interestExperimental
point

Range 1

Range 2
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corresponds to the number of required simulations per iteration plus an extra simulation to
check how good the new optimized solution actually became i.e.:

Total number of simulations=Number of experimental points*Number of iterations+1

 For more information regarding LS-OPT, see [11]
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4.5.2 Current study
The objective with the current study is to lower the mass, by performing sizing optimization
without worsen the crash performance of the crash structure. The constraint functions were, in
the current study, chosen to be the intrusion of respective cylinder and the acceleration levels
on each cylinder.

The beams that were to be optimized were chosen on the basis of how important they are to
the crash-behavior during impact. Since some beams have other main tasks than absorbing
energy during crash, for instance attachment of the cab, these beams are not considered. To
keep the CPU-time as low as possible without making the optimization too simple, 12 design
variables i.e. 12 beams, were chosen according to figure 8 where the global coordinate system
also is shown.

Fig. 8. The design variables that were chosen to be optimized and the global coordinate
system.

For denomination of each design variable, in the current study together with initial thickness
and mass, se table 1.
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Table 1. The denomination of the design variables and their initial thickness and mass.

Beam: Design variable denomination: Initial mass [kg] Initial thickness [mm]:
1 t_108 9.0 3
2 t_109 11.9 4
3 t_110 22.9 5
4 t_112 42.0 5
5 t_113 23.1 5
6 t_114 49.3 6
7 t_116 14.8 3
8 t_117 11.1 3
9 t_118 11.8 3
10 t_119 34.1 (4) 3
11 t_128 21.3 (4) 1.5
12 t_145 13.4 3

The numbers within the parenthesis only point out the number of parts belonging to the same
design variable in the FE-model.

To obtain values for the constraint functions i.e. input data to LS-OPT, a simulation with the
initial values of the design variables were performed using LS-DYNA. The intrusions and the
accelerations have been measured on a node at the center of each cylinder, see figure 9.

             

 

Measuring nodes

Intrusion distance,
lower cylinder

Initial position of
the cylinders.

Initial position of
the cylinders

Intrusion distance,
upper cylinder

Fig. 9. The intrusions were measured from the
initial position to the point where the
cylinders had stopped moving in the X-
direction i.e. the kinetic energy was absorbed
by the crash structure.
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From the same LS-DYNA simulation, the time needed to cover the complete crash process
was determined to be 148 ms, which was the time used in the optimization setup. A more
accurate way to determine the termination time would have been to control the termination
time by the kinetic energy of the cylinders, i.e. when the kinetic energy of the cylinders are
zero the simulation is stopped. This option was not available in the current version of LS-
OPT.

Three approaches were considered regarding how the accelerations were to be defined:

1. Unfiltered acceleration curves. The all-over maximum value of the acceleration was set
as the maximum allowed acceleration on each cylinder according to:

2. Filtered acceleration curves. The all-over maximum value of the acceleration using a
SAE-filter with a frequency of 1000 Hz.was set as the maximum allowed acceleration on
each cylinder according to:

3. Mean acceleration. The value of the mean acceleration during the whole calculation was
set as an upper limit of allowed acceleration level on each cylinder. This can be done in
LS-Post by integrating the acceleration curve and then divide the area with the total time
for the analysis. However, in the current study, the sum of all acceleration values at each
time step were calculated and then divided by the number of time steps and a mean
acceleration of the whole crash process could be determined. The upper cylinder affected
the structure during the whole crash whereas the mean acceleration of the lower cylinder
was computed during the first 50 ms. i.e. the time that the lower cylinder is affecting the
crash-structure.

Maximum allowed
acceleration level.

Maximum allowed
acceleration level.
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Tables 2 to table 4 show the values obtained from the LS-DYNA simulation that were used as
constraint values for the optimization.

Table 2. The value of the constraint used in the optimization. Unfiltered acceleration curves.
Constraints: Lower limit: Upper limit:

Intrusion, Upper cylinder: -2062 mm. ∞
Intrusion, Lower cylinder: -817.3 mm ∞
Acceleration, Upper cylinder: -∞ 1.55 mm/(ms)2

Acceleration, Lower cylinder: -∞ 1.77 mm/(ms)2

Table 3. The value of the constraint used in the optimization. Filtered acceleration cuves.
Constraints: Lower limit: Upper limit:

Intrusion, Upper cylinder: -2062 mm. ∞
Intrusion, Lower cylinder: -817.3 mm ∞
Acceleration, Upper cylinder: -∞ 0.396 mm/(ms)2

Acceleration, Lower cylinder: -∞ 1.33 mm/(ms)2

Table 4. The value of the constraint used in the optimization. Mean acceleration.
Constraints: Lower limit: Upper limit:

Intrusion, Upper cylinder: -2062 mm. ∞
Intrusion, Lower cylinder: -817.3 mm ∞
Acceleration, Upper cylinder: -∞ 0.211 mm/(ms)2

Acceleration, Lower cylinder: -∞ 0.654 mm/(ms)2

Due to the orientation of the global coordinate system, see figure 8, where the cylinders travel
in the negative X-direction, the intrusions were defined as the lowest negative value that was
allowed.

Moreover, with 12 design variables, this resulted in 20 simulations per iteration. LS-OPT was
allowed to perform three iterations per optimization analysis except for the analysis using the
mean acceleration as constraint where LS-OPT was allowed to perform five iterations.
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5. Results
The objective with the current study was to decrease the mass of the crash-structure without
worsen the crash performance with respect to intrusion and acceleration levels. The
constraints used were the intrusion of the upper and lower cylinder respectively and the
acceleration at a node at the center of each cylinder. Three different approaches were used to
define the constraints with respect to acceleration, see section 4.5.2. Therefore, the results are
presented with respect to the type of acceleration constraint used.

5.1 Unfiltered acceleration curves
The all-over maximum value of the unfiltered acceleration was set as the maximum allowed
acceleration level on each cylinder. Since it is not possible, in the present version of LS-OPT,
to get discrete thickness of the design variables, the values of the design variables are
presented as they are presented in LS-OPT.

The change of the total mass of the chosen beams during the iterations is shown in figure 10.
Whether/ the acceleration and intrusion fulfill the constraints or not is shown in figure 11 and
figure 12. The intrusions are presented as the absolute value of the intrusions i.e. they are
defined as positive in the following figures.
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Fig. 10. The change in mass during the analysis using unfiltered acceleration curves.
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Fig. 11. Calculated intrusions vs. the constraint values using unfiltered acceleration curves.
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Fig. 12. Calculated accelerations vs. the constraint values using unfiltered acceleration
curves.

As can be seen in figure 10, the mass does not change very much in iteration 1 and 2 while in
iteration 3, the mass is reduced drastically. However, studying figure 11, it shows that the
intrusion of the upper cylinder has been exceeded in all iterations. The intrusion of the lower
cylinder was within the constraint value in iteration 1 and in iteration 2 and 3 it is very close
to the constraint value.

The acceleration of the lower cylinder is very close to the constraint value. For the upper
cylinder, the constraint value is exceeded in the first two iterations and well below the
constraint value in the third iteration. The results after the optimization are summarized in
table 5.

Table 5. The results from the optimization using unfiltered acceleration curves.
Before
optimization:

After
optimization:

Deviation
(%):

Mass of design variables (kg): 264,7 234,5 -11.4

Intrusion, upper cylinder (mm): -2062 -2202 +6.8
Intrusion, lower cylinder (mm): -817 -823 +0.7

Acceleration, upper cylinder (mm/(ms)^2): 1.55 1.38 -11.0
Acceleration, lower cylinder (mm/(ms)^2): 1.77 1.77 0

The mass is reduced but the intrusion of, especially the upper cylinder, is exceeded.

For more information regarding the change of thickness of the design variables, see Appendix
A.

A total number of 61 simulations for the whole optimization were performed.

Between four and seven processors were used and the total time for the analysis to be
completed was approximately 150 h. real time.
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5.2 Filtered acceleration curves
The all-over maximum value of the filtered acceleration was set as the maximum allowed
acceleration level on each cylinder. The filter used was a SAE-filter of 1000 Hz. Since it is
not possible, in the present version of LS-OPT, to get discrete thickness of the design
variables, the values of the design variables are presented as they are presented in LS-OPT.

The change of the total mass of the chosen beams during the iterations is shown in figure 13.
Whether the acceleration and intrusion fulfill the constraints or not are shown in figure 14 and
figure 15. The intrusions are presented as the absolute value of the intrusions i.e. they are
defined as positive in the following figures.
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Fig. 13. The change in mass during the analysis using filtered acceleration curves.

Intrusions

0

500

1000

1500

2000

2500

0 1 2 3

Iteration

In
tr

u
si

o
n

 [
m

m
]

Constraint value, upper
cylinder

Calculated intrusion, uper
cylinder

Constraint value, lower
cylinder

Calculated intrusion, lower
cylinder

Fig. 14. Calculated intrusions vs. the constraint values using filtered acceleration curves.
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Fig. 15. Calculated accelerations vs. the constraint values using filtered acceleration curves.

The mass is slightly decreased during the first two iterations, see figure 13. In the meantime
the intrusion and acceleration of the upper cylinder are exceeded with the maximum violation
when the mass is at its lowest value. In iteration three, the intrusion of the lower cylinder is
within the constraint limit but the acceleration for both cylinders exceed the constraint value.
The results after the optimization are summarized in table 6.

Table 6. The results from the optimization using filtered acceleration curves.
Before
optimization:

After
optimization:

Deviation
(%):

Mass of design variables (kg): 264.7 260.7 -1.5

Intrusion, upper cylinder (mm): -2062 -1949 -5.5
Intrusion, lower cylinder (mm): -817 -823 +0.7

Acceleration, upper cylinder (mm/(ms)^2): 0.396 0.454 +14.6
Acceleration, lower cylinder (mm/(ms)^2): 1.33 1.38 +3.8

The mass is decreased but all constraints are violated except the intrusion of the upper
cylinder.

For more information of the change of thickness of the design variables, see Appendix B.

Between four and seven processors were used and the total time for the analysis to complete
was approximately 150 h. real time.

5.3 Mean acceleration
The value of the mean accelerations during the whole calculation was set as an upper limit of
allowed acceleration level on each cylinder. A total number of five iterations were allowed.

The change of the total mass of the chosen beams during the iterations is shown in figure 16.
Whether the acceleration and intrusion fulfill the constraints or not are shown in figure 17 and
figure 18.  The intrusions are presented as the absolute value of the intrusions, i.e. they are
defined as positive in the following figures.



45

Mass

0

50

100

150

200

250

300

0 1 2 3 4 5

Iteration

A
cc

el
er

at
io

n
 [

m
m

/(
m

s)
^2

]

Mass (kg)

Fig. 16. The change in mass during the analysis using mean accelerations.
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Fig. 17. Calculated intrusions vs. the constraint values using mean accelerations.
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Fig. 18. Calculated accelerations vs. the constraint values using mean accelerations.

The mass is decreased until the fourth iteration where it is increased. The intrusion of the
upper cylinder exceeds the constraint but the intrusion of the lower cylinder and the
acceleration of both cylinders stay within the constraint value. The results after the
optimization are summarized in table 7.
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Table 7. The results from the optimization using mean accelerations..
Before
optimization:

After
optimization:

Deviation
(%):

Mass of design variables (kg): 264.7 236.5 -10.7

Intrusion, upper cylinder (mm): -2062 -2136 +3,6
Intrusion, lower cylinder (mm):

Acceleration, upper cylinder (mm/(ms)^2): 0,217 0.207 -4.6
Acceleration, lower cylinder (mm/(ms)^2): 0.654 0.645 -1.4

The mass is decreased by 10.7 % and the only constraint that is violated is the intrusion of the
upper cylinder.

For more information of the change of thickness of the design variables, see Appendix C.

Between four and seven processors were used and the total time for the analysis to complete
was approximately 250 h. real time.
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6. Conclusions
A total satisfactory result was not obtained in the current study since at least one constraint
was violated. However, the result from the analyses shows that the weight can be reduced by
approximately 54 kg. Considering discrete thickness of the beams, a weight reduction of
approximately 40 kg is realistic.  Taking into account that the crash-structure already has been
manually optimized and that only 12 parts of the crash structure were considered, the result
looks very promising.

It has to be remembered that the problem was simplified to decrease the computational time
without losing relevance of the purpose i.e. to investigate whether LS-OPT can deal with such
a complex process as a crash simulation. Due to these simplifications, the results cannot
directly be transformed to the current design but the results give good hints that the weight of
the crash structure can be reduced. Despite the simplifications introduced, the study shows
that LS-OPT is definitely a useful tool when it comes to crash analyses in future projects.

The study shows that the results of the optimizations depend on how the constraints are
defined, in this case the accelerations. How the constraint due to acceleration shall be defined
needs further investigations.

The computation time is highly dependent on the number of design variables that are to be
optimized and the number of iterations that are to be performed. In the current study 12
design variables were considered. The analyses were run on four to seven processors
(depending on the number of available processors) and the total computation time was
approximately 150 to 250 h. depending on how many iterations LS-OPT was allowed to
perform.

The termination time, i.e. the time when all kinetic energy is supposed to be absorbed, for all
simulations was set to 148 ms. However, depending on the design of a specific iteration, the
termination time may vary for each iteration. This may result in that the crash structure has 70
not absorbed all the kinetic energy from the cylinders and constraints that were fulfilled
would not be fulfilled if the termination time had been longer. A more accurate way to
determine the termination time would have been to control the termination time by the kinetic
energy of the cylinders, i.e. when the kinetic energy of the cylinders are zero, the simulation is
stopped. In the current study however, the differences in result if the termination time would
have been longer are considered to be small.

Several problems turned up during the project. Some of the problems resulted in that an
ongoing optimization had to be stopped, the problem had to be solved and the current iteration
had to be restarted. The presented computation times are therefore estimated. Since one
processor is required for each simulation, more processors and LS-DYNA licenses would
decrease the computation time. A generalization of how many processors and LS-DYNA
licenses that would be suitable to use is impossible to make but having one processor and one
LS-DYNA license for each simulation would be the most efficient action to decrease the
computation time. This because LS-OPT first has to finish the first iteration before the second
iteration is begun. If all simulations within one iteration could be solved directly instead of
having simulations in one iteration in queue waiting for an available processor and LS-DYNA
license, this would decrease the computation time drastically.

More investigations have to be performed, preferably on smaller models to get faster
response, and in this way to learn more about the options available in LS-OPT.
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8. Appendix

A. Change of design variables using unfiltered acceleration curves.

B. Change of design variables using filtered acceleration curves.

C. Change of design variables using mean accelerations.



52

Appendix A

Appendix A. The results from the optimization using unfiltered acceleration curves.
Design
variable:

Original
thickness
[mm]:

Optimized
thickness
[mm]:

Original
mass [kg]:

Optimized
mass [kg]:

Change of
mass [%]:

t_108 3 3.75016 8.997 11.247 +25.008
t_109 4 1.39977 11.88 4.1573 -65.006
t_110 5 6.45043 22.86 29.491 +29.007
t_112 5 6.06745 42.04 51.015 +21.349
t_113 5 3.31793 23.10 15.329 -33.641
t_114 6 2.09974 49.29 17.249 -65.005
t_116 3 3.75016 14.84 18.551 +25.007
t_117 3 2.38651 11.12 8.8460 -20.45
t_118 3 3.75024 11.78 14.726 +25.008
t_119 3 2.75484 34.14 31.350 -8.172
t_128 1.5 1.58407 21.29 22.483 +5.604
t_145 3 2.24986 13.39 10.042 -25.004

Appendix B

Appendix B. The results from the optimization using filtered acceleration curves.
Design
variable:

Original
thickness
[mm]:

Optimized
thickness
[mm]:

Original
mass [kg]:

Optimized
mass [kg]:

Change of
mass [%]:

t_108 3 4.95 8.997 14.845 +64.999
t_109 4 6.35045 11.88 18.861 +58.763
t_110 5 5.85 22.86 26.746 +16.999
t_112 5 5.85 42.04 49.187 +17.000
t_113 5 5.52833 23.10 25.541 +10.567
t_114 6 3.11557 49.29 25.594 -48.075
t_116 3 3.29814 14.84 16.315 +9.939
t_117 3 3.51 11.12 13.01 +16.996
t_118 3 1.81926 11.78 7.1436 -39.358
t_119 3 2.94939 34.14 33.564 -1.687
t_128 1.5 1.584 21.29 22.482 +5.599
t_145 3 1.97018 13.39 8.7936 -34.327
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Appendix C

Appendix C. The results from the optimization using mean accelerations.
Design
variable:

Original
thickness
[mm]:

Optimized
thickness
[mm]:

Original
mass [kg]:

Optimized
mass [kg]:

Change of
mass [%]:

t_108 3 3.80549 8.997 11.413 +26.9
t_109 4 4.09088 11.88 12.150 +2.2
t_110 5 4.91431 22.86 22.468 -1.7
t_112 5 4.90304 42.04 41.225 -2.0
t_113 5 4.14044 23.10 19.129 -17.2
t_114 6 4.03176 49.29 33.121 -32.8
t_116 3 4.32991 14.84 21.419 +44.3
t_117 3 1.24166 11.12 4.6024 -58.6
t_118 3 1.73143 11.78 6.7987 -42.3
t_119 3 3.36372 34.14 38.279 +12.1
t_128 1.5 0.97395 21.29 13.824 -35.1
t_145 3 2.99569 13.39 13.371 -0.1
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