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Abstract

This master thesis was done at Altair Engineering AB and the Division of Solid Mechanics
at the university of Lund. The main task of this thesis was to investigate the different
issues involved in a drop test simulation of a cellular phone. Due to the limited time of the
project, a complete model of a cellular phone was not possible to investigate. The model
used in the simulation contains two parts of the phone, the frame and the front.

An impact analysis such as a drop test last for about 2 ms and a very small time increment
had to be used in order to track high frequency response. Therefore an explicit time
integration scheme was used.

A hypo elastic material model was used due to lack of material data. By doing so, the
material model contains no information of the damping in the model.

The elements used for the simulation were second order tetrahedron elements and first
order hexagon elements. Both fully and under integrated hexagon elements were used.

To generate the mesh the preprocessor Altair Hyper-Mesh version 5.1 was used. The
tetrahedron element model has the advantage of solid auto meshing, making it possible to
complete a model setup in 8 hours. For the hexagon element model a lot of manual work
has to be done in order to create the mesh, leaving the mesh time to 160 hours. For the
simulation time, the conditions are the opposite. The simulation time for the model using
tetrahedron elements was close to 48 hours but for the hexagon model only two hours. The
time difference can be explained by the higher computer cost using second order element
and in this case, the greater number of elements in the tetrahedron element model. From
the mesh- and analysis time the conclusion can be drawn that when performing more than
six analysis, the hexagon element is the element to be used.

The analysis using full- and under integrated elements were reformed in LS-Dyna version
960 and the analysis using second order tetrahedron element and under integrated hexagon
elements were performed using Abaqus explicit version 6.3.

The difficulty of extracting hard data from the physical drop test makes it hard to verify
the simulations. The most intuitive method is to look at the simulation and a high speed
video clip of the physical drop test side by side. By doing so, the model that seams to
correspond best to reality is the under integrated hexagon element model.
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Chapter 1

Introduction

1.1 Background to the assignment

Probably the most common failure of a cellular phone in every day use is the accidental
drop. Due to this fact, there have been some work over the last years to develop cellular
phones that are impact resistant and even waterproof. However, these models do not
appeal to everyone, mostly due to the extra weight. For the consumer choosing a light
weight cellular phone, the expectation is that the phone should not fail due to accidental
drop.

It is therefore important for the designers of the product to obtain a clear view of what
actually happens during a drop test of a cellular phone. However, a physical drop test can
only be conducted near the end of the design cycle, providing little feedback to improve
the product. Moreover, it is very difficult to understand how the components interact
inside the assembly. Therefore, the interest has turned toward finite element simulations.
These simulations can be preformed at an early stage of the development cycle and give
guidelines for improvements.

1.2 Objective

In this master dissertation, drop test simulations of a cellular phone will be performed.
The purpose is to carefully investigate the different parts that a simulation consist of such
as:

1. Choice of integration method
2. Choice of element

3. Choice of material model
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4. Choice of boundary condition in the simulation

When this is theoretically investigated, the analysis will hopefully be carried out in a
more efficient manner and the possible deviations from physical drop tests may be better
explainable.



Chapter 2

Continuum Mechanics and Finite
Element Formulation

To obtain a better understanding of non-linear finite element analysis, a brief introduction
to continuum mechanics and finite element formulation will be done in this chapter. The
main purpose is to explain the non-linearity due to large deformations and rotations,
i.e. no constitutive relations will be introduced in this chapter. The calculations will be
performed in Cartesian coordinate systems where the base vectors e; (i=1,2,3) are used.
Tensor notation will be used due to its versatility. For more information, the reader may
consult Belytschko [1] or Ottosen and Ristinmaa [6]

2.1 Large deformations

When dealing with large deformations and rotations, it is often convenient to refer the
deformed body to an initial system or reference configuration. Each material particle
in the reference configuration has a material coordinate X;. The same particle in the
deformed, or current configuration, has a spatial coordinate x;.

The Lagrangian description, i.e. spatial coordinate as a function of material coordinate,
may be written as:

For a fix time t, (2.1) gives:
oz;
dz; = 8;_de = F,;dX; (2.2)
j
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Reference configuration  Current configuration

Figure 2.1: Displacement u; from the reference configuration z; to the current configuration
X;.

where Fj; is called the deformation gradient tensor. It may be interesting to investigate
the deformation of the body i.e. no rigid body motion is of interest. Consider two particles
in the reference configuration. It follows that the distance between them is:

dS? = dX;dX; (2.3)

The distance between these two points in the current configuration, may be written as:

ds® = dx;da; (2.4)

It is evident that the deformation of the body is related to a change of distance. Such
quantities are called strain tensors. The change of distance may in this case be written as,
with (2.2):

It is now possible to introduce a new quantity such as:

d82 - dS2 = QdXZEZJdX] (26)

where

1 1

is called the Lagrangian strain tensor and the term Cj; is called the right Cauchy-Green
deformation tensor. It turns out that E;; is not the only possible strain tensor. There are
in fact a infinite possibilities to construct strain tensors. However it is convenient to define
the strain tensor in the reference configurations, as will be showed when deriving the finite
element formulation.
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It is possible to introduce some tensor which describes the rate of deformation. This may
be done according to:

8vi
ox j

where L;; is called the spatial velocity gradient and the term wv; is the velocity and defined
by:

Lij =

(2.8)

Oz
ot
The spatial velocity gradient can be decomposed into a symmetric part and an antisym-
metric part according to:

(2.9)

(%

Lij = Dy; + Wy (2.10)

where

v Jv; — U4 Ov;
Di; = %(Szj +a0) Wi = %(gzj ~ 52) (2.11)

The terms D;; and W;; are called rate of deformation tensor and spin tensor respectively.

2.2 Balance equation

Consider an arbitrary body exposed to traction forces ¢; and volume forces b; in the current
configuration. The traction forces may be expressed from Cauchy’s formula:

ti = 041, (212)

where n; is the normal to the surface in the current configuration and o;; is the Cauchy
stress tensor or the "true” stress tensor. However, this quantity is referring to the current
configuration. To find a similar expression for the reference configuration the meaning of
t; needs to be investigated. The traction vector ¢; is defined as the current force divided
by the current surface area. Let it be assumed that the force acting upon the current body
should be the same acting on the reference body.

tida = t)dA (2.13)

The relation between an area element in reference configuration and an area element in
current configuration may be expressed with Nanson’s formula:
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n;da = det(Fkl)Fi;ledA = JFjgledA (2.14)
where J is known as the Jacobian and n; and N; are the normals to to the surface da and
dA respectively. By using (2.14) in (2.13), the following relation arises:

tz-da = oijnjda = UijJF};lNldA = B]deA = t?dA (215)

where P;; is named first Piola-Kirchoff stress tensor and can directly from (2.15) be related
to the Cauchy stress according to:

P,'j = JO','jEﬁl (216)

It is evident that P;;

57> N general, is non-symmetric.

For the arbitrary body mentioned earlier, the balance of linear momentum can be developed
by Newton’s equations in the reference configuration:

/ t9dA + / p’bidV = / pliidV (2.17)
A 14 1%

The term ii; denotes the acceleration and p® is the density in the reference configuration.
Using (2.15) and the divergence theorem of Gauss to obtain:

Pi'
/ t9dA = / P;jN;dA = / 98y 4y (2.18)
A A Vv an

By inserting (2.18) into (2.17) and using the fact that the equation should hold for a
arbitrary body, the local equation of motion i.e. the equation of motion for all material
points in the body arise:

OF;;

0X;
This is the balance equation expressed in what is called strong form. There is also a weak
form, and this may be interpreted as the principle of virtual power.

+ p°b; = plii; (2.19)

2.3 Principle of virtual power

The principle of virtual power is generated by multiplying (2.19) with an arbitrary vector,
w;, and integrating over the body:

0P
v 0X;

\%4 14
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It is now possible to rewrite the first term in (2.20) as

OP;; 8w,
w;d iIN;d ; 221
G = [, Pans = [ Piggav 221
Insertion of (2.21) into (2.20) and using the divergence theorem of Gauss the equation
result in principle of virtual power:

aX \%4 S \%4

It is now time to evaluate the choice of the arbitrary vector. First the spatial coordinate
may be expressed as a function of the displacement:

This implies that a virtual rate of displacement can be expressed as:

Wl = i (2.24)

1

It is now possible to choose the arbitrary vector w; as %7 and with this choice it follows

that:
ow; 0 dz? d (0z? .
— ) — 2 L R 2.2
0X; 0X; ( dt ) dt <Xj) Y (2.25)

As mentioned earlier, the first Piola-Kirchhoff stress tensor is not symmetric. A symmetric
quantity is, of course, of interest, and not surprisingly the second Piola-Kirchhoff stress
tensor Sj; exist such as:

P;; = FiySk; (2.26)

From (2.16) it is clear that Si; is symmetric. Introducing the second Piola-Kirchhoff stress
tensor into (2.20) and using (2.23) the following relation is given:

/F FkSdeV—{—/ pPw;il;dV = /tow,d5+/ pPw;b;dV (2.27)

When investigating the first term in this equation it is clear that, since Si; is symmetric,
only the symmetric part of F};Fj; will survive. For this reason, a new quantity may be
introduced such as:

(F Fy + FLF ) (2.28)

l\Dl'—‘

Jk_
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The name E;’k implies the similarity of (2.7). With (2.28) inserted into (2.27) the final
expression of virtual power arise according to:

14 14 S 14

The finite element formulation, which will be derived in the next chapter, is based on this
formulation.

2.4 Finite element formulation

It is now time to derive the finite element formulation for large deformations. The for-
mulation will be based on the principle of virtual power (2.29) and, as the formulation
indicates, it is performed in the reference configuration. It is possible to introduce the
FE-approximation for the displacement according to:

U; = Nz’aaa

Or in matrix notation:

u = Na (2.30)

where N is the shape function that is determined by the element i.e. a function of the
coordinates. The vector a contains the nodal displacement and is a function of time. Since
only a is a function of time the rate of displacement can be written as:

u = Na

It in now possible to choose the arbitrary rate of displacement u; according to Galerkin’s
method i.e. choose the same shape function as for the displacement.

u’ = Nc (2.31)

where c is an arbitrary vector. When introducing the FE approximation into the expression
for virtual power, the term E}; needs to be closer investigated. According to (2.23) it is
possible to write (2.28):

1 (00  0uj 1 [ 0u} Ouy Oy Ouy
Eij=3 (an + 8Xi) *3 (axi ox, T ax, aXi) (2:32)

By inserting (2.31) into (2.32) it follows that:
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E = (B°+B%c=Bc (2.33)

From the discussion earlier it is clear that B° is constant and B" in general depends on
the displacement. By inserting (2.33) and (2.31) into (2.29):

c’ ( / NT p%udv + / B"SdV — / NTt%s — / NprdV> =0
Vv 14 S 14

or, by using the fact that c is arbitrary and inserting (2.30) the finite element formulation
arises:
Ma + / B"SdV —f.;,; =0 (2.34)
1%

where the mass matrix is defined as:

M = / P’NTNdV
14

and the external force vector is defined as:

£, = / NTt%s + / pNTbdV
S Vv

Commercial finite element codes sometimes use updated Lagrange formulation. This means
that the reference configuration change when moving forward in time. As mentioned in
the beginning of this chapter, no constitutive relations has been introduced and therefore
this expression is valid for all constitutive relations. The next task is to solve the set of non
linear differential equations provided by (2.34). This will be discussed in the next chapter.
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Chapter 3

Choice of Time Integration Method

Now it is time to turn the interest toward the issues of this dissertation. When dealing
with these kind of dynamic problems, a time integration has to be performed. Facing that
fact, there are mainly two different approaches, the implicit or the explicit algorithm. In
this chapter these two algorithms will be briefly presented as well as their advantages and
disadvantages. Finally, the most suited algorithm for the drop test will be chosen.

3.1 Explicit scheme

To understand the advantage of the explicit scheme it is necessary to understand what the
algorithm actually do. As derived in the previous chapter, the FE formulation contains
a number of nonlinear differential equations, which needs to be translated into algebraic
equations in order to be solved. To do that, the Newmark time integration scheme may
be used. This is given by:

AV . )
a,i1 = a, + Ata, + T[(l —2B3)a, + 234, (3.1)

a1 = a, + At[(1 — v)a, + ya,,1] (3.2)

Where 5 and 7 are certain parameters and At is the time step. The variable a may in this
case be interpreted as the displacement. Depending on the particular choice of parameters
different integration strategies are obtained. For the particular choice of v = % and 8 =0,
(3.1) and (3.2) can be written as:

2

At
ap+1 = ap + Atan -+ Tan (33)

11
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i : At
Apy1 = A, + 7(3n + an+1) (34)

It can be assumed that at a certain time, all quantities are known. This state is the one
with the index "n”. By using (3.3) the acceleration at state n can be written as:

. 2 2
an — E(anﬂ — an) — @an (35)
From this expression it is possible to derive the acceleration at state n+1 according to:
. 2 2 .
Apt1 = A—ﬁ(a"“ —apq1) — Azt (3.6)
Inserting (3.5) and (3.6) into (3.4) result in:
) 1
Ap41 = Q—At(an+2 + an)

i.e.

. 1
a, = Q—At(an—f—l + an—l) (37)

By inserting (3.7) into (3.5) the acceleration at the stage n can be determined as:

1
AR
By introducing (3.8) into (2.34) the following relation arises:

a, (aps1 —2a, +a, 1) (3.8)

Ma, ;= M(2a, + an_1) + AR (£ — / (B)TS,dV) (3.9)
v

It is now clear why this algorithm is called the explicit algorithm. If the mass matrix is
considered to be lumped, then (3.9) provides a set of uncoupled scalar equations. This is
a great advantage, but it is not free of complications. To get an accurate result from an
explicit time integration, the time step At must be within certain limits. If this constraint
can not be satisfied, then the solution will be worthless. The maximum value of the time
step is set by the speed of wave propagation in the material and the mesh. If the time
step is so large that an element may be unaffected by the wave, the time step is to large.
In some cases, in order to get an adequate mesh, there are a number of small elements
concentrated to a certain area. Not to let these elements set a unnecessary short time
step different methods may be used. One approach is to change these elements in a way
that the wave propagation becomes slower. In most cases, this is done by increasing the
density of the elements and therefore the procedure is named mass scaling. When using this
method, the affected elements have to be carefully monitored so that they do not corrupt
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the solution. For more information, please see Ottosen and Ristinmaa [7] or Zienkiewicz
and Taylor [8]

3.2 Implicit scheme

When solving non linear equations, the most widely used method is to linearise the equation
at the given point and then search for the state wanted. The solution given is not necessarily
the correct solution, and therefore the procedure is repeated until the correct solution is
located. For a simple one variable problem this approach may be visualised according to
figure 3.1.

f(@)

A

\
= T
/.733 Z2 1

Figure 3.1: Newton iteration.

This approach is called the Newton iteration method or the implicit method. When deriving
this method a different choice of parameters § and 7 in (3.1) and (3.2) have to be done.
Let it be assumed that 3 differs form zero. From (3.1) the following equation arises:

1 1, 1-28..

a= W (an+1 — an) — @an — 70’” (310)

where all quantities are assumed to be known at a certain time ¢,,. The equation of motion
is rewritten as:

M&n+1 + 'lb(ayH_l) =0 (311)

where

'(»b(an—kl) = / (BO + Bu)TSdV - fea:t
Vv

By inserting (3.10) into (3.11) the following equation arises:
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v(ay,41) =0 (3.12)

where v is a column matrix and is given by:

1 1 1-2
g (@ = ) = g wﬁan +(an) (3.13)

Since all quantities at the state n are known, it is now possible to derive an iteration scheme
by using a truncated Taylor expansion of (3.13) according to:

v(a,1) =M

v(at') = v(a') + dv(a’) (3.14)

Let it be assumed that v(a*™) is zero. The differentiation of v may be written as:

dv(a’)

M
= da + / d(B“)'SdVda + / BTdSdv (3.15)
BAL? v v

It is now possible to calculate the correction of the displacement by rewriting (3.15) ac-
cording to:

dv(a")

M
= da + / H"RHdVda + / BT'D'BdVda (3.16)
BAL? v v

were H and R are certain matrices and D" is the tangential constitutive matrix. For more
information, please see Appendix B.

The displacement for the next iteration may now be established by using (3.14) and (3.16)
according to:

i-17 "1
( M + / H"RHAJV + / BTDthV) v(a™) (3.17)
1% \%

BAP

As can be seen in (3.17), calculating the correction of the displacement involve inverting
a matrix which takes lots of computer power to do, especially when the dimension of the
matrix becomes large. Another drawback of the method is that it is more complicated to
implement in a finite element code. However the constrain for the time step is not as hard
as it is for the explicit method, leaving this approach most suitable for problems with long
load duration. In these cases, higher order modes are often of lower importance.

3.3 Selection of integration method

It is now time to choose the best suited algorithm for drop test simulations. An impact
analysis such as a drop test has a short duration (2-4 milliseconds). To be able to track
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high frequency response a very short time step has to be used. When a short time step has
to be used, the most suitable approach has to be the explicit time integration, when the
computer cost for each calculation is much lower than for the implicit algorithm. There
are a number of explicit commercials finite element codes available on the market and the
ones used in this thesis will be LS-Dyna v960 [2] and Abaqus explicit 6.3 [3].
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Chapter 4

Choice of Element and Numerical
Integration

In this chapter the choice of element will be investigated. Due to the number of elements
accessible in commercial finite element codes, only a few element types will be investigated.
Then the numerical treatment of these elements will be investigated.

4.1 Numerical integration

To solve the finite element formulation, a number of integrations has to be performed, see
for instance (2.34). These integrals are in general so complex, that an analytic solution
is impossible to obtain, it is therefor necessary to use numerical integration. The most
common numerical integration method is based on Gauss integration points. When using
Gauss integration, a number of Gauss points i.e. evaluation points for the integration are
used. By using a certain number of Gauss points, n integration points, an exact integration
of a polynomial of the order 2n—1 (see for instance Ottosen and Petersson [5]) are possible.
The number of integration points will be discussed later.

When using Gauss integration it is usually convenient to use what is called isoparametic
elements. This means that the element used is defined in a ”parent domain” and then
mapped to its actual position or the ”"global domain”. When doing this, it is possible
to rotate the element in space as well as distorting the element to fit the mesh. A two
dimensional example may be viewed in fig 4.1, where a four node quadrilateral element is
mapped from parent domain to the global domain. As the name isoparametric implies, the
mapping from parent to global domain is performed with the same shape functions as the
FE-approximation (see (2.30)) according to:

17
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Parent domain Global domain
! (23,95)
(-1,1) (1,1) (2a,9a) "5
4 3 4
Yy
3 — )
2

. 5 (z1,91) - (2,12)

Figure 4.1: Mapping into four-node isoparametric quadrilateral element.

r = N°(&, n)x
y = N°(¢& n)y°

where £ and 7 are the variables in the parent domain, and ¢ and y® contains the nodal
coordinates in the xy-coordinate system. According to the finite element formulation, a
number of both surface and volume integration has to be performed. An arbitrary function
f may be integrated according to:

(4.1)

/ £z, y)dS = / / F(2(&,m), y(€m), (€, n))detd de dn (4.2)

where J is known as the Jacobian and may be interpreted as a connection between the
parent- and global domain. The Jacobian is written as:

9 On

To calculate the Jacobian, the shape functions come in handy. By using (4.1) the terms
inside the Jacobian matrix may be calculated according to:

AN,
(g_.z_ Ble +8N2x2++ noda;.nod
oz __ 6N1 8N2 6Nnod
AN Y P (1.4
a_g = 3,51 Y1+ B¢ B Y2+ ...+ azmiynod

_ ON ON2 9N,
o = o T Gy Y2t T Ynod

where nod is the number of nod points of the element used. It is from (4.4) possible to
calculate the transpose of the Jacobian matrix according to:
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x1 A
oz oy oN; BNy ONyoq x
o o€ | _ € 96 - B¢ 2 Y2 (4 5)
oz Oy ON1  ON» INod . . .
an On 8¢ /S 3

Tnod Ynod

4.2 Reduced integration and spurious zero-energy modes

The high computational cost of analysis using ”standard” elements formulation in an ex-
plicit code may be overcome by using linear element with reduced integration. Element
variables are then evaluated in a single point located in the centre of the element and evalu-
ation of variables can be reduced. For an example may a 8 node brick element reduce from
2x2x2 Gauss points to one, see fig 4.2. Reduced integration of element variables provides
calculation speed up.

(a) Fully integrated (b) Under integrated
Figure 4.2: 8 node hexagon element.

Introduction of reduced integration has both advantages and disadvantages. The major
advantages, as mentioned earlier, are the speed and the simplicity. The drawback is that
spurious zero-energy modes may occur. These zero-energy deformation modes cancel out
at the integration point, see fig 4.3. Since the strain in this point is zero, also the strain
energy in this point and therefore the energy for the whole element will be zero. The
problem usually is termed hourglassing due to the shape of two connected elements were
zero-energy modes have occurred see Jacob [4] or Zienkiewicz and Taylor [8]. Hourglassing
is highly destructive on the solution because once present, it can not be removed and
usually propagate leaving the solution non-physical and useless. There are a number of
numerical methods to prevent this kind of problem. Hourglass control is usually performed
by introducing artificial nodal forces based on nodal velocities or nodal displacements that
act in opposition to the zero energy modes and thereby controlling the effect in the solution.
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Figure 4.3: Planar representation of hourglass mode.

4.3 Choice of element

When selecting the element type for a simulation, a number of things needs to be consid-
ered. The easiness of the mesh generation is one important factor as well as the accuracy
of the element for the simulation. The fact that there do not exist a ”superior” element i.e
an element useful for all applications must be kept in mind. The mesh generation for the
geometry described in chapter 5 is made in Hypermesh version 5.1, a preprocessor devel-
oped and distributed by Altair. The type of elements used are the four side tetrahedron
element and the six side brick- (also called hexagon) element, see figure 4.4. When creating
a mesh containing hexagon elements, it is sometimes necessary to use a pentagon element
(a collapsed hexagon element) in order not to distort the hexagon element.

When creating the mesh, there are two different approaches:
e Automatic solid meshing using tetrahedron element
e Semi-automatic meshing using hexagon and pentagon element

The first approach has the advantage of automation, giving a fast model setup. However,
the user loses a great deal of control over the element size and quality. The second approach
is more time consuming due to the relatively large amount of manual or semi-automatic
mesh generation. The automatic hex-mesh algorithms are not yet stable enough to be used
but may be an alternative in the future. The great advantage of this method is that the
user has control over the mesh and the number of elements may be reduces compared to
the first approach.

4.3.1 30 degrees of freedom tetrahedron element

The 30 degrees of freedom tetrahedron element is the second order element of the constant
strain element or the ”simplex” element as the first order tetrahedron element is called.
First order tetrahedron element will not be used in the simulation due to the large number
of elements needed. When using a second order tetrahedron element, a variable 7' is set to
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; L

(a) tetrahedron element (b) Hexagon element

Figure 4.4: Elements used in simulations

vary within the element according to:
T = oq + 0% + sy + ouz + asz? + agy? + ar2? + sty + gz + gy (4.6)

This element is more costly to use compared to the simplex element or other first order
element since the higher order.

4.3.2 24 degrees of freedom hexagon element

This is the first order hexagon element. This element is known to produce more accurate
results than other first order elements due to the better approximation than for the first
order tetrahedron element. When using a first order hexagon element, a variable 7" is set
to vary within the element according to:

T = aq + o + 3y + sz + a5Ty + gz + aryz + agxyz (4.7)

When later making use of this type of element, both under and fully integrated method
are used.

4.4 Summary

As mentioned earlier, the calculations are performed using the commercial finite element
codes LS-Dyna v960 and Abaqus 6.3. In table 4.1 the different element used in these two
codes are listed (for more information see Hibbit et al. [3] and Hallquist [2])
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‘ Code ‘ Tet second order ‘ Hex fully integrated ‘ Hex under integrated ‘ Penta ‘
Dyna v960 Not available Element formulation 2 | Element formulation 1 | See hex
Abaqus 6.3 C3D10M Not available C3D8R C3D6

Table 4.1: Element in commercial finite element code.



Chapter 5

Geometry and Mesh

In this chapter the geometry used for the simulation will be investigated. Due to the
limited time of this projects, a complete model of the entire cellular phone is not possible
to generate. When the geometry is examined the models used for simulation will be
examined.

5.1 CAD data

The geometry used are shown in figure 5.1 and contains the front and the frame of the
Sony Ericsson T68 cellular phone. The geometry files are delivered from Sony Ericsson
and are of IGES type.

To prevent unnecessary problems when creating the mesh, a geometry cleanup was made.
Here the possible bugs from the importing of the IGES file are erased and small details
of no interest for the outcome of the drop test analysis are eliminated. The two different
parts may be studied in figure 5.2 and figure 5.3.

5.2 Mesh

When meshing, mainly two element types are used. As mentioned earlier, when using
hexagon element a great deal of time will be devoted to creation of the mesh but the analysis
time may be rather short. The opposite may be expected for tetrahedron element. Some
useful information on the two models may be found in table 5.1 where the tetrahedral model
is second order and the hexagon model is first order. The great difference in numbers of
nodes are due to the fact that second order element where adopted when using tetrahedron
element. The two models may also be viewed in fig 5.4.
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Table 5.1:

Figure 5.1: Geometry.

Model/data || Tetrahedron | Hexagon
Element 87860 11549
Nodes 174975 20427
Mesh time (h) 8 160
Initial time (h) 1 1

Model data. Initial time includes initial condition setup time.
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Figure 5.3: Cellular phone frame from different views.
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(a) Hexagon model

(b) Tetrahedron model

Figure 5.4: Models used in the simulations.



Chapter 6

Material Model

There are a number of different materials in the components in a cellular phone. The
accuracy of the results from a FEA is of course dependent on the accuracy of the material
model and it is therefore important to understand the behaviour of the material involved,
when being exposed to loads like a drop test. The material of interest in a cellular phone
is primary polymer material and therefore this material will be shortly examined and a
suitable material model used in the finite element code will be suggested.

6.1 Mechanic properties of polymers

Polymers are known to display viscoelastic behaviour and there are a number of viscoelastic
material models available. The material also respond differently to dynamic loading when
different strain rates are used. However, there are some theoretical work and quantities
that needs to be introduced before introducing the material law.

6.2 Frame

When observing a certain event one may choose different frames. A frame is a reference
system where different coordinate system may be introduced.

Introduce two different frames at a certain time (¢°) where two coordinate system, one in
each frame, coincider. To tell the two frames apart, one frame is called F and the other is
called F*. The base vectors® in the coordinate system in frame F are called e; and in frame
F* the base vectors are called e;. At the time t° a particle (named P and P* in the two
frames) in a body is observed. Consider now a period in time. During this period the body

! The base vectors are rigidly attached to the frame

27
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Figure 6.1: Two moving frames tracking the same particle p.

is deformed and the frames have moved from the position where the base vectors coincided
to a location both translated and rotated relative each other (see fig 6.1). By doing so, the
observer in frame F has the impression that the location of the particle mentioned earlier
is given by the vector X at the time ¢° and by the vector z after the the time period has
elapsed. For the observer in frame F* these two positions are given by the vectors X* and
x*. When the two observers now report their observations to a third ”observer”, who is
assumed to be located in frame F, an interesting result emerges. The observer in frame
F will report the components of the vector z (using the base vectors e;) and the observer
in frame F* will report the components in vector z* (using e}). It is clear that the report
that the observer in frame F sends to the third observer do not correspond to the report
that the observer in frame F* sends, but the deformation of the body is the same.

P, P*

Figure 6.2: Motion reported from F and F*. The point P and p correspond to the report
send by observer in F' and P* and p* correspond to the report send by observer in F*

The third observer will construct the vectors x and z° (see fig 6.2). From fig 6.1 it is clear
that:
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where b is a vector connecting the two frames expressed in the base e; and the vector x* is
expressed in the base e}.

The transformation between different base vectors e; and e] are given by:

6; = Qijej (62)
where ();; is a time dependent second order tensor. It is now possible to determine the
relation between z* given in the base e; and z® given in the base e;:

7 = Qi (6.3)

Inserting this result into (6.1) gives:

T = Qjix; + b; (6.4)

Since @;; is orthogonal (6.4) can be rewritten as:

.’E,? = Qij.Ij -+ C; (65)

where

¢i = —Qijb;
It is cleat that the relation given by (6.5) appear to be similar to a change of coordinate
system.

6.3 Objective tensors

When performing a change of frame according to (6.5), it is of interest how different
tensors change during a change of frame. One may introduce the term objective tensor.
An objective tensor is a quantity that change similar to a change of coordinate system i.e:

a; = Qija;

for a first order tensor and for a second order tensor according to:

T{; = QuTimQm

where the quantities a} and 7} are the components in frame F*.
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However, not all vectors and second order tensor change in this fashion when changing
frame. It turns out that there are a number of possibilities. One may expect that some
tensors do not change when changing frame. These tensors are called invariant objective
tensors and change in the following fashion:

*
*— ..
T =T,

When both objective and invariant objective tensors have been mentioned, it seems reason-
able that some tensors behave not like an objective tensor, nor an invariant objective but
something in between. These tensors are called mized objective tensors. A mixed objective
second order tensor change in the following fashion:

17 = QikTy;

6.4 Objectivity of tensors used in this thesis

When having established a systematic way to sort the tensors when changing frame, it is
of impotence to know how different quantities change. It follows that:

dﬂ?: = Q,-jdacj Objective
FZ’; = QirFk; Mixed objective
Jr=J Inverant objective
c*=C Invariant objective
E*=F Invariant objective
. (6.6)
D;j = QikalQlj ObJeCthe

dE}; _ dE;; . . .
== Invariant objective

U;j = Qiko-lelj Objective

Sy = Sij Invariant objective

An interesting conclusion is that all quantities referring to the material configuration (La-
grange formulation) are invariant objective, the one referring to spatial configuration (Eu-
lerian formulation) are objective and those referring to both are mixed objective.
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6.5 Objectivity of stress rates

When formulating a constitutive law, it sometime turns out to be an advantage to use time
rate of certain tensors. When considering an objective tensor, the rate of this particular
tensor in not objective.

Consider the rate of the objective Cauchy stress in the frame F*:

dU;‘kj _ dQik
dt dt
. ., dol; . D
As can bee seen in (6.7) the quantity % is not an objective tensor. To generate an

dt
objective quantity the result in (6.6) for the tensor W;; can be used:

kol Qji

dt

Qi + Qik—r— le + QikOri—, (6.7)

dQ;; .
% = ikaj - Qikaj (6-8)

By inserting (6.8) into (6.7) the following relation holds:

do};
dt] = (W Qmk — QimWimk)ouQji + Qirn—1— le

le+sz0kl( W Qmi — QimWim)  (6.9)

which gives:

da* do’
dt Wko-k] ;'kk sz( i kaaml - O-kaVlm)le (610)

It is now possible to introduce a quantity accordlng to:

dO’ij
dt
where 07j; is called the Jaumann rate and clearly is an objective quantity.

)

Oij = — Wikok; — 0is Wik (6.11)

6.6 Backbone of constitutive modelling

It is intuitive clear that the response of a certain load must be independent of the choice
of coordinate system. This is solved by using tensor notation when a tensor is a quantity
changing in a special manner when changing coordinate system. It is now possible to
introduce the concept that the response also have to be independent of the choice of frame.
By doing so some fundamental conclusions arises.

The most general form of constitutive relation can be written according to:
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0i; = G(History of x; 6.12
J

Since the material itself does not know what frame the observer is located in, the objective
principle, or independence of frame may be written as:

In frame F 0;; = G(History of ;)

In frame F* of; = G(History of x)
where the function G in both cases is the same function. There is no restriction of using
Cauchy’s stress tensor as done above.

(6.13)

6.7 Hypo elasticity

A constitutive model that many large stain models are based on is hypo-elasicity. This
model is based on that the Cauchy stress rate only depends on the current stress and the
current spatial velocity gradient, i.e:

dO’ij
dt
Making use of the objective princple, the same relation must hold in frame F* i.e:

= G(O’kl,le) (614)

do}; . s
dtj = G(op, L) (6.15)

Using (6.11) and (6.6) in (6.15) it follows that:

kom

ink kol del = G(kaO'anln, Tle‘FkaLannk) (616)

7 O'lejl“'QikWle"‘Qikakl 7

To simplify the calculations, let it be assumed that ();; = d;;. Using this assumption and
the fact that ();; is a orthogonal tensor it follows that:

dQij dQji
=— 6.17
dt dt (6.17)
Since the spin tensor is antisymmetric i.e. W;; = —W}; the following statement can be
used:
dQij
— = —W;, 6.18

By using (6.11) and (2.10) it follows that:
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0ij = H(0w, D) Hypo-elasticity (6.19)
where Dy, is the rate of deformation and oj; is the Jaumann rate.

The relation in (6.19) was derived using the constrain that Q;; = 6;; and dQ;;/dt = —W;;
but it can be shown that the relation holds under general condition as long as H is an
isotropic tensor function. It is now possible to introduce a simplification of (6.19) by
assuming that the stress rate is a linear function of the rate of deformation:

0ij = Lijik D (6.20)

where L;i; is a fouth order isotropic tensor:

E
14+v
where F is Young’s modulus and v is Poisson’s ratio.

1 v
(500 + dadin) + 7010k (6.21)

L =
ijkl 1 —

It is however interesting to evaluate (6.20) in quantities referring to the reference configu-
ration i.e. second Piola Kirchhoff stress tensor and the Green Lagrange strain tensor. Let
us introduce the Kirchhoff stress tensor:

Ti; = Joij (6.22)
Start by evaluating the terms in the Jaumann rate (6.11) i.e. the left hand side in (6.20)

. d (Tij Tij 1 3
(T T Lo g 6.23
i dt(J> 7 ~ T 7CnEr (6.23)
where
. d ; i ‘
7ij = 7 (FeSubije) = FixSulj + FiuSul + FnSuFi (6.24)

To evaluate the time derivate of the material deformation gradient it is possible to use the
spatial velocity gradient according to:

By using (6.25) in (6.24) the following relation arises:

FiSwFj + FixSuFy + FiSuFy
= Lim FrkSuFji + Fix Skl + FinSpiFjm L
= LimTmj + Ekglejl + Timn Lim; (6.26)
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By inserting the results obtained in (6.23), (6.26) and then using (6.22) and (2.10) results
in:

. O .
FipSuFy = YijiwDy — Digorj — o Dji + J_gcmnEmn (6.27)

Finally the rate of deformation tensor may be related to the rate of Green Lagrange strain
tensor according to:

Dij = F;' EuF;' (6.28)
By inserting (6.28) in (6.27) holds:

‘ o o o L .
Spa = Fi Fig (Yo Fri Pyt = 00 i Fo = 00iF Fot + =2 Cinn) B

J2
or . '
Spg = DpgmnEmn (6.29)
where
15— 1 1 1 Oij
qumn = F;PIF}QI (TijlemliFnll - UaijilFanl - O-aiijlFanl + J_;Cmn) (630)

6.8 Material model

Polymer in general show proof of visco elastic behaviour and depending not only on tem-
perate and time but also strain rate. By not having gained enough material data for a
complete model, a simple hypeo elastic material mode will be adopted. By doing so, infor-
mation considering the damping of the material will be lost. This will of course influence
the results, but it will serveas a approximation. The material data can be viewed in table
6.1.

Young’s modulus (Gpa) | 30
Poisson’s ration 0.3

Table 6.1: Material properties.



Chapter 7

Testing Environment

To verify the analysis, a laboratory drop test has been performed at Sony Ericsson. In this
chapter the laboratory equipment and used methods will be examined.

7.1 Drop test equipment

To simulate a physical drop test a test equipment containing a ”flippable” table is used.
The table may be elevated or lowered so that different heights of drops can be performed.
By placing the cellular phone on this table orientated in a manner corresponding to the
impact case that will be examined (see fig 7.1), and then by a ”flip” mechanism letting the
table be fast removed the cellular phone will drop to the ground in the wanted position.
The impact is then captured on a movie clip using a high speed camera (4000 frames per
second).

Cellular phone

=

Figure 7.1: Sketch of drop test equipment.
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7.2 Projection

The outcome of the experiment, is not always as expected. Due to initial rotation (espe-
cially in this case when the geometry is lightweight) the phone may not enter the floor in
the wanted angle. It is therefore necessary to use a two dimensional video clip to extract
data of how the telephone is orientated in space. To make this easier, five points where
marked on the geometry. Two reference models where used (see fig 7.3) for evaluation of
the method.

€3

Figure 7.2: Cellular phone represented using planes.

7.2.1 Projection method

Consider a plane in space. There are five points positioned in the plane corresponding
to the points marked on the cellular phone. When performing the drop test, the cellular
phone may enter the floor slightly rotated and translated. In fig 7.2 this is shown by a
simplified sketch, where the dashed geometry correspond to the actual position and the
solid to the reference position. By introducing local coordinate systems for the two planes,
e; in the plane correspond to the reference position and e; in the actual position, the
relation between these two bases can be written as

6; = Aijej (71)
where A;; usually is called the rotation tensor. By looking at fig 7.2 it follows that:

X=c+p (7.2)

or more explicit, using base vectors:

Xiei = c;e; + pie; (73)
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When the coordinate system is rigidly attached to the plane, the components in p; and P,
are the same. By using (7.1) in (7.3) it follows that:

Xz' — C; = Aijpj = Aiij (74)

where the components in P; are known (z-component zero). To evaluate the z-components
in X; the fact that the vector P and the vector X — ¢ has the same length is used i.e.:

[Pl =X -

By assuming that ¢, (the z-component of ¢) is zero the z-component of vector X may be
written as:

Z=4\/(P2+ P2 = (X — ) + (Y —)?) (7.5)

As shown, it is not possible from this approach to evaluate if the Z coordinate is positive
or negative, the user has to decide this. When the sign of the Z coordinate is determined,
It is now possible to write (7.4) using matrix notation according to:

X.= AP (7.6)
where
X — & Azm Azy sz P
X.=|Y—¢ | A=| A, A, A, =| P,
Z A Ay A, O

Now, looking at several different points on the phone, (7.6) can be used to evaluate the
first two columns in A:

ch = Awwpzcl + Awypyl
Vi =AyPo + Ay Py
ch = Az:cpzcl + AzyPyl
Zz = AP + AzyPyn

or in matrix notation:

X =Ha (7.7)

where:
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-Xcl | le Pyl 0 0 0 0 ] -Aacac-
}/Cl 0 0 Pa:l Pyl 0 0 Awy
i Z 0 0 0 0 P, P, Ays
X=|Xxo| H=|Py P, 0 0 0 0 =14
. . . . Azm

| Zen | | 0 0 0 0 Py Py | Ay

Here the index n denotes the number of evaluated points in the plane. This equation
system may be solved according to the least square method i.e.:

a=(HTH)  (HTX?) (7.8)

To calculate the third column in A, the fact that the rotation matrix is orthogonal is used.
By the vector product of the first two columns the third column arises:

[sz, A Azz] - [A;vx: Awya sz] X [Ayaca Ayy: Ayz] (79)

Now the rotation matrix is calculated and the directions of the axis for the local coordinate
system can be seen as the columns in the rotation matrix.

Yz

7.2.2 FEvaluation

By using the program listed in the appendix, it is possible to test if the model described
above can be used. The references contains of one model standing strait up facing the
camera and one tilted 30° (see fig 7.3).

The calculated rotation matrix can be seen in (7.10) and the correct transformation matrix
can be seen in (7.11). By looking at the results, this approach can be used to evaluate how
the phone is orientated in space, at least for this simple test case. The deviation from the
correct rotation matrix can be explained by the camera lens distorting the image.

0.98  0.02 0.031
Acaie = | —0.0074 091 0.41 (7.10)
[ —0.045 —0.42 O.89J

1 0 0 ]
Apwe= 10 0.866 0.5 (7.11)
[0 —0.5 0.866J



7.2. Projection

39

(a) Reference 1

Figure 7.3:

(b) Reference 2

Reference models.
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Chapter 8

Analysis and Results

In this chapter the model setup will be explained as well as the boundary conditions. The
result will then be visualised. As mentioned, commercial finite element codes will be used
to perform the analysis. The program used for the model using hexagon elements will be
LS-Dyna v960 and Abaqus explicite 6.3. Abaqus explicite 6.3 will also be used for the
model using tetrahedron elements.

8.1 Boundary conditions

The simulations are performed in such a manner that a 1.5 meters drop test are be done. In
the start of the simulation the cellular phone is just above the ground with an initial velocity
corresponding to a 1.5 meters drop. The initial velocity may be calculated according to
energy conservation:

1
Emv2 =mgh — v =+/2gh

The floor is modelled as a rectangular mesh with rigid properties. This is to correspond
to the iron floor that the phone enters during a physical drop test.

One problem that arise is how to model the pre-loading of the fasteners. In reality, the
frame and front is not only held together using screws, but also by fasteners forced into a
locked position. This means that initial stresses are present which is not taken into account
in the simulation. However, the global behaviour of the geometry will not be affected by
this simplified approach. The fastener may be wived in fig 8.1.

The screws that hold the frame and front together will be simulated as beam element. The
beams are then fastened to the geometry using rigid elements. In fig 8.2 the screw attached
to the frame can be seen.
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Figure 8.1: Fastener with the part frame displayed using framework.

Figure 8.2: Screw displayed when frame and parts of front masked.

8.2 C(Contact definition

The fact that there are contacts involved in the analysis also needs to be treated. In
LS-Dyna v690, two types of contacts were used.

e *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE
e *CONTACT_AUTOMATIC_NODES_TO_SURFACE

The first type of contact was used to simulate the contact between the frame and the front.
The second type was used to simulate the contact between the floor and cellular phone.
For more information concerning contact algorithms, please see Hallquist [2].

In Abaqus explicit 6.3 the easy approach was used. By using:
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e *CONTACT INCLUSIONS, ALL ELEMENT BASED

This type of contact will enhance that everything are in contact with everything. For more
information see Hibbit et al. [3].

8.3 Simulation results

When evaluating simulations like a drop test, the best approach is to examine the simula-
tion and a video clip side by side. By doing so, a great deal of information may be gained
of how the geometry reacts on different cases. Due to the fact that it is very difficult to
extract hard data from a physical drop test (displacements and accelerations) the interest
has to be turned against comparison between the different models and commercial codes.
When compare stresses and displacement some conclusion may be drawn of which model
to use.

8.3.1 Simulation using LS-Dyna

The simulations performed in LS-Dyna v960 are the fully integrated and under integrated
hexagon element model, on a computer based on an AMD Athlon MP 1900+ processor.
The analysis time may be examined in table 8.1 and the different numerical processing
stages can be investigated in table 8.2 and table 8.3.

| | Fully integrated | Under integrated |

Simulation time 2-1073s 2-1073 s
Time increment 3-107%s 3-107%s
Number if processors used 1 1
Computer wall time 2 h 17 min 28 sec | 1 h 2 min 57 sec

Table 8.1: Data for simulation using hexagon elements in LS-Dyna v960.

| | CPU(seconds) | % CPU | Clock(seconds) | % Clock |

Initialization 3.3400E+4-00 0.04 3.6638E4-00 0.04
Element processing | 7.1962E+403 87.24 7.2166E4-03 87.25
Binary databases 1.9803E4-00 0.02 1.9719E+00 0.02

ASCII database 6.3930E-01 0.01 6.5523E-01 0.01
Contact algorithm 1.0350E4-03 12.55 1.0372E+-03 12.54
Contact entities 0.0000E+00 0.00 0.0000E400 0.00
Rigid bodies 1.1304E+01 0.14 1.1066 E+01 0.13

Table 8.2: Time data for simulation using fully integrated hexagon elements in LS-Dyna
v960.
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| | CPU(seconds) | % CPU | Clock(seconds) | % Clock |

Initialization 3.4900E+00 0.09 4.3925E+00 0.12
Element processing | 2.7151E+03 71.88 2.7139E+03 71.88
Binary databases 1.7195E+00 0.05 1.8438E+00 0.05

ASCII database 5.4999E-01 0.01 6.1364E-01 0.02
Contact algorithm 1.0451E+03 27.67 1.0437E+03 27.64
Contact entities 0.0000E+00 0.00 0.0000E+00 0.00
Rigid bodies 1.1289E+01 0.30 1.1329E+01 0.30

Table 8.3: Time data for simulation using under integrated hexagon elements in LS-Dyna
v960.

As mentioned in chapter 4 it can be an advantage to use mass scaling to in that way set a
time step. When using the listed time step the total mass increment may be viewed in fig
8.3

Pementage Increase - lass Staling

Figure 8.3: Mass scaling for simulation using hexagon elements in LS-Dyna v690. Solid
line correspond to under integrated elements and dashed line fully integrated elements

As shown i fig 8.3 the maximum mass scale is about three percent and that may be
acceptable.

When looking at the stress distribution in the geometry during the drop test, animation is
by far the best approach. Here the stress distribution on impact may be viewed to compare
the under integrated model with the full integrated model. This is shown in fig 8.4.

As for the stress distribution, the displacements may also be examined by looking at
animations. By doing so, areas where high relative deformation may occur can be located
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Time = 0.09998

e 2 saran
ssoea2 | B

Hs.a03e.002

Ez.wsbnnz
2.096E-002

Figure 8.4: Stress distribution at impact using hexagon elements. The model to the left
is using under integrated elements and the model to the right is using fully integrated
elements.

and behaviour that may endanger the function of the cellular phone can be detected. The
displacement for the model (a point at the bottom of the phone) can be viewed in fig 8.5

Displacement

Figure 8.5: Displacement using hexagon elements in LS-Dyna. The dashed line correspond
to simulation using fully integrated elements and the solid line correspond to the simulation
using under integrated elements.
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8.3.2 Simulation using Abaqus

The simulation performed using Abaqus Explicit 6.3 is the second order tetrahedron ele-
ment and under integrated hexagon using Intel Xenon CPU 2.2 GHz for tetrahedron model
and AMD Athlon MP 1900+ for hexagon model. The simulation times can be seen in table
8.4.

| | Second order tetrahedron | Under integrated hexagon |

Number of elements 87860 11549
Number of nodes 174975 20427
Simulation time 2-107%s 2-1073
Time increment 3-107%s 0.92-1074
Number if processors used 1 1
Computer wall time 47 h 58 min 14 sec 58 min

Table 8.4: Data for simulation using second order tetrahedron elements and under inte-
grated hexagon element in Abaqus.

The mass scaling of these models are set at the start of the simulation and do not change
during the simulation. The total mass scaling are 3.1 percent for the model using tetrahe-
dron elements and 3.6 percent for the model using hexagon elements. The stress distribu-
tion at impact may be seen in fig 8.6 and 8.7. The displacements for the this models for a
point located at the bottom at the phone may be seen in fig 8.8.

stepl incl1768, t=3.50¢-001

Figure 8.6: Stress distribution at impact using tetrahedron elements in Abaqus.
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Mises Stress {Averaged at Nodes) stepl inc4002, t=3.50e-001

Figure 8.7: Stress distribution at impact using hexagon elements in Abaqus.

Displacement

Displacement Tet second |
— — — — Displacement Hex under -

time

Figure 8.8: Displacement for simulations in Abaqus. Solid line correspond to model using
tetrahedron elements and dashed line correspond to model using under integrated hexagon
elements.
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8.4 Simulation summary

To sum up the analysis it is possible to draw the conclusions that if a number of simulations
is to be performed the hexagon element probably is the best choice. By looking at fig 8.10,
where the dashed line correspond to the simulation using hexagon elements (actually the
fully integrated) and the solid line correspond to the simulation using tetrahedron elements
it can be stated that if more than six analysis is to be performed, the hexagon element
model is to prefer. The big difference in simulation time can be explained from the higher
computer cost using tetrahedral element and in this case, the greater amount of elements
and nodes in the model using tetrahedral elements. By looking at the displacements for the
model it can be stated that the under integrated hexagon model will generate the softest
behaviour.

Time (houres)

200

150

100

50

n (number of simulation)

0 2 4 6 8

Figure 8.9: Simulation time. Dashed line correspond to the model using hexagon elements
in LS-Dyna and solid line to the model using tetrahedron elements in Abaqus.



Chapter 9

Conclusions and Further Work

It is now time to look at the result and draw some conclusions. Another important issue is
what can be done in the future to make the analysis more reliable and more time efficient.

9.1 Conclusions

As has been stated earlier, it is very hard to evaluate the outcome of a drop test simulation
as far as hard data like stresses and displacement. By looking at the simulation side by
side of a video clip of a real drop test the under integrated hexagon element model seems
to give the best result. This model is, as stated earlier softer than the others models. For
the displacement, the second order tetrahedron element model and the fully integrated
hexagon element model seems to give somewhat similar results.

When looking at the simulation times it is evident that if only a few simulations are to be
performed, the model using tetrahedron element has a great advantage over the hexagon
model due to the solid auto meshing feature. The big time difference using second order
tetrahedron element compare to first order hexagon element can be explained by the higher
computer cost using second order element and the fact that the model using tetrahedron
element contains a greater number of elements than the hexagon model. Even thought the
simulation time for the model using second order tetrahedron elements in Abaqus is greater
than the hexagon model, the advantage of auto meshing keep the total project time far
lower than the hexagon model. However, if the worst case scenario is to be located as the
drop case to speak, a large number of simulations has to be done. The dramatically shorter
simulation time for the model using hexagon elements may then be an advantage and the
total project time may actually be shorter using hexagon elements. For the simulations
performed in this thesis the model using hexagon elements becomes more time efficient
after six simulations.

The simulations has been performed on a single CPU. Modern day software can use multiple
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processors which can dramatically shorten the simulation time. To a company, the man
time is more valuable than simulation, leaving the decision hard to make what model to
use.

The projection method described in chapter 7 gives, for the reference pictures, a satisfying
result. To gain an even better result, information of camera lens and so on has to obtained.

9.2 Further work

When doing drop test simulations in the future there are a number of things that needs to
be investigated in order to get more accurate results. First of all the evaluation of the sim-
ulation must be better understood. If it is possible to extract hard data like deformations
and accelerations then it is possible to evaluate the choice of material model. It is difficult
to motivate a very complex material model if it is not possible to evaluate the result.

To shorten the calculation time, perhaps a different approach than explicit time integration
may be investigated. By using the eigenmodes of the structure as a base a different solution
scheme may be used.
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Appendix A

Matlab codes

Here the program for the projection method made in Matlab will be listed.

?%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
? Get Angle

Q By: Anders Harrysson
é%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

Fi=imread (’Phone. jpg’);
F2=imread (’phone2. jpg’) ;
colormap([0 0 0;1 1 1])

disp(’REFERENCE MODEL’)

disp(’Pick five spots on the cellular’)
figure(1)

image (F1) ;

for i=1:5
[(X_in(i),Y_in(i)]=ginput(1);
end

disp(’REAL MODEL’)

93
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disp(’Pick five spots on the cellular’)
figure(2)
image (F2) ;

for i=1:5
[x_in(i),y_in(i)]=ginput (1) ;
end

disp(’The negative z-component are nods nbr:’)

for i=1:2
neg(i)=input(’’);
end

for i=1:4
[X(i)]=X_in(i+1)-X_in(1);
[Y(i)]=Y_in(i+1)-Y_in(1);
[x(1i)]=x_in(i+1)-x_in(1);
[y(i)I=y_in(i+1)-y_in(1);
[z(i)]=(abs ((X(i)"2+Y(i)~"2)-(x(i)"2+y(i)~2)))"0.5;
end

z(neg(1))=-z(neg(1));
z(neg(2))=-z(neg(2));

y=-Y; % Coordinate system for y components is by default
Y=-Y; % reversed orientated compared to calculations

u=[x(1);y(1);z(1);x(2);y(2);2(2) ;x(3);y(3);z(3) ;x(4) ;y(4) ;z(4)];

H=[X(1) Y1) 0 0 0 O
00 X(1) Y(1) 00
0000 X() YD)

X(2) Y(2) 0 0 0 O
00 X(2) Y(2) 00
0000 X(2 Y@

X(3) YB) 0 0 0 O
0 0 X(3) Y(3) 00
0000 X(3) Y(3)

X(4) Y(4) 0 0 0 O
00 X(4) Y(4) 00
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0000ZXWM YDI;
a=(H’*H) " (-1) *(H’*u) ;
a_1=[a(1) a(2) a(5)];

a_2=[a(3) a(4) a(6)];
a_3=cross(a_1,a_2);

disp(’Rotation matrix’)
A=[a_1’ a_2’ a_3’]
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Appendix B

Nonlinear finite element formulation

The finite element formulations was briefly derived in chapter two. However, for the
interested reader, the finite element formulation will in this appendix be discussed more in
detail.

The finite element formulation of dynamic problems involving large deformations can be
written as:

/E,"C’jSkjanL/pOwiilidV:/t?widS—lr/pOwibidV (Bl)
\% 14 S 14

Where the Lagrange strain tensor Ej;, and the time derivate of the virtual Lagrange strain
tensor may be written according to:

. 1 auz 8’U,j 1 8uk 8uk
Bij=3 (an * 8XZ~> 3 (aXia—Xj) (B-2)
Bi=3 (8X]- T 6XZ~> T3 <6XZ- ox, T ax, ox, (B:3)

To save some space during the calculations, a two dimensional approach will be made. To
start, the matrix formate for Lagrange strain tensor and the second Piola Kirchhoff tensor
defines as:

Ell Sll
E = E22 S == 522 (B'4)
2E12 512

For the traction force, body force and the displacement can be written in matrix formate:

o=a] e=n] w=lu] &
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Lagrange strain tensor may be expressed using the displacement according to:

Oy 2 2
(%) + (%)
Ouy 1
E= 0X> + = Ouy 2 + Oug 2 (B6)
2 X5 X3
Quy 4 Ouy
9X2 | 0X3 90w dur | 9 Oup duy
9X; 00X 0X; 0Xo

The first term in (B.6) is the one corresponding to the small strain tensor. When imple-
menting the finite element formulation, it turns out to be useful to introduce the following
two operators:

o)
0X1 O
0 __ o)
V' = 0 5 (B.7)
0 o
0Xo 0X1
and
Ou; O Ous 0O
0X1 0X1 0X1 0X1
u ouy O duy 9
v - 00Xy 80X 080X 80X (B8)

ou; 0 our 9 duas O dus 0

0X1 0Xo 0Xs 0X1 0X1 0Xs 0X9 0X1

It is now possible to write Lagrange’s strain matrix in a nice fashion:

1
E=Vlu+ EV“u (B.9)

It is now time to introduce the approximation of the displacement expressed in the nodal
displacements.

u=DNa (B.10)

By inserting the approximation of the displacement into (B.9) yields:

1
E=(B’+ 5B")a (B.11)

Where

B°'=V'N B"*=V“N
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By using the same approach on the virtual tive derivative of Lagrange strain tensor yields:

E' = (B + B%)c= Bc

Where ¢ is an arbitrary vector.

(B.12)

Calculating B is done in a direct manner, but when B" in general depends on the dis-
placement, this term needs to be taken care of. To do so, it turns out to be useful to

rewrite B* according to:

B"=AH
where 5 5
U1 w2
0X1 0 0X1 0
_ du Jus
A= 0 X, 0 X,

Ouq dul Ous Ouq
0Xo 0X1 0Xo 0Xo

- 9N 0 ON3 9Nnodal 0 T
0X1 90X, te 0X1
AN 0 ON> 9Nnodal 0
0Xo 0Xo te 0Xo
H =
0 ONy 0 9N> ONnodal
0X1 0X1 e 0X1
O 3N1 0 81\[2 aN’nod(zl
L 0X2 0Xa te 0Xo -

To calculate the matrix A the nodal displacements may be used according to:

- Oup
0X1

duy
X,

dus
08X,

dua
L 5x, -

From (3.15) the term dB” S has to be evaluated. This is done according to:

dB"S = H'dA"S = H'RHda

where
S, 0

R- So =

Sll 512 ]

0o S, Sia S

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

To have a complete iteration scheme according to (3.15) the term d.S has to be evaluated.

This comes from the constitutive law. By introducing Hooke’s law according to:
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S =DE (B.18)
By differentiation of (B.18) the following relation arises:

dS = D'dE = D'Bda (B.19)

By now all quantities are defined and the iteration format given by (3.17) may be imple-
mented in finite element code.



