Division of Solid Mechanics

ISRN LUTFD2/TFHF--01/5102--SE (1-120)

ANALYTICAL DIMENSIONING OF CASTING
STRUCTURES IN DRAW DIES

Master’s Dissertation by

Jorgen Larsson

Supervisors

Ingrid Svensson, Div. of Solid Mechanics
Bengt Persson, Volvo Cars Body Components
Nader Asnafi, Volvo Cars Body Components

Copyright © 2003 by Div. of Solid Mechanics, Jérgen Larsson
Printed by KFS i Lund AB, Lund, Sweden, 2003.

For information, address:

Division of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden.
Homepage: www.solid.Ith.se









1. Summary

Today the casting structure in draw dies is dimensioned according to standard guidelines. No
attention is paid to the size of the stamped part and the properties of the blank. The aim of this
study was to derive analytical expressions that can be used during the design of the draw dies.
From required input, geometrical data of the casting structure, punch and blank holder force,
allowable stress or deflection, thickness of the casting structure can be calculated. Different
types of draw dies as well as different stages in a press (stamping) stroke have been
considered.

In an arbitrary point the stress vary with time during a press stroke. Therefore the stroke was
divided into three significant sequences: when the blank holder hits the lower die, when the
punch hits the blank and when the die is closed. The results from the analytical expressions
were compared to the results from finite element calculations.

Both the shape of the part stamped in the draw die and the shape of the draw die itself vary in
a wide range. In the study the extremes, flat dies and V-shaped dies were studied. In the
anaytical expressions, regardless of die type, it seems to be a too coarse approximation
assuming the punch load to be equally distributed over the whole forming area. Instead it is
suggested to introduce the load as equally distributed over the areas with forming radii.

The load on the vertically walls in lower die, punch and blank holder in flat dies, seemsto be
possible to describe adopting a uni-axia stress state. The same applies for the vertically walls
in blank holder in V-shaped dies, but in V-shaped punches and lower dies probably a bi-axial
stress state has to be considered. Many of the expressions can be refined taking a position
dependence of the area over which the stressis distributed into account.

In the section at the bottom of a V-shape, a tri-axial stress state seems to be applicable. A
major part of the load is distributed over the upper half of the cross section. The expression
can be refined by adopting a varying stress distribution.

The deflection of the area between the walls in the forming area, were calculated using
Kirchoff plate theory. | was concluded that the analytical model only is valid if the length of
the shortest side exceeds one tenth of the thickness. The analytical expression was applicable
even if this condition not was fulfilled. Thisis explained in how the loads were applied. In the
derivation of the analytical expression the load was assumed to be equally distributed, whilst
it was applied only at the areas with forming radii in the FE-cal culations.

An approach to dimension the blank holder surfaces with respect to bending was suggested.
However, more dies have to be studied before reliable expressions can be derived.

Finally it should be pointed out that in order to be able to make a definite statement regarding
the validity of the derived expressions, more comprehensive finite element calculations,
including the use of software with possibility to solve advanced contact problems, or
measurementsin real dies, have to be performed.

It is also worth mentioning that, since the applied blank holder and punch loads are
representative for deep drawing operations and the stresses and deflections in common are



low, there seems to be a potentia to reduce weight and cost by reducing the die casting
dimensions.

Keywords: analytical expressions, casting structure, dimensioning, draw dies, finite element
calculations






2. Preface
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4. Introduction

4.1. Nomenclature

AB,C,D,F,G,H,I,J
K,L,M,R a,b,h,l
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Geometrica quantities

Areas projected on the horisontal plane

Wall thickness
Y oung's modulusof elasticity

Applied blank holder force

Blank holder forceactingin region A

Blank holder forceactingin region B

Blank holder forceactingin region C

Vertical component of blank holder forceactingin region A
Vertical component of blank holder forceactingin region B
Vertical component of blank holder forceactingin region C
Applied punch force

Punch forceactingin region A

Punch forceactingin region B

Punch forceactingin region C

Resulting forcedue to shear stress

Vertical component of punch forceactingin region A
Vertical component of punch forceactinginregion B
Vertical component of punch forceactingin region C
Horisontal component of F, and F,

Friction forces

Horizontal forces

Moment of inertia

Product moment of area
Stressinvariant
Stressdeviator invariant

Torsion constant

Torsion moments
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Bending moments
Normal forces
Tension force
Reaction forces
Area

First areaof moment
Stressdeviator tensor

Averageshear stress
Resulting transversal forces
Internal energy
Volume
Vertical forces
Mass
Force per unit length
Coordinates defining thelocation of shear center
Acceleration of gravity
Parametersin Drucker - Prager yield criteria
Numbering of differentitemsindie
Thicknessof casting at theforming areas
Thicknessof blank
Force per unit area
Displacement
Deflections
Coordinates
Coordinates center of mass
Stiffness matrix
Global shapefunctions
Nodal valuevector
Element specific matrix
Constitutive matrix
Boundary vector
Load vector
Normal vectors
Coefficient vector



Anglesdefining V - shape
Deflection dueto torsion

The Kronecker delta

Strains

Angleof twist

Friction coefficient
Poisson'sratio

Density

Stressin blank

Stress tensor

Tensileyield stress
Compressive yield stress
Stressin wall

Stressin wall locatedin region A
Stressin wall locatedin region B
Stressin wall locatedin region C

0,,0,,0, Principal stresses
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4.2. Background

Parts made of steel sheet in car bodies are stamped in a press line, which consists of 5 to 6
presses in a row. In each press a die, with a weight from a few tons to up to 40 tons, is
fastened. When the blank passes through the press line, it successively becomes more and
more refined. Handling of the part between the presses is operated by specia
loading/unloading devices. Typicaly apart isrun in the following order:

» Deep drawing- the part obtains the most of its final shapes.

» Trimming and piercing- the contours are trimmed and holes are pierced

» Flanging- the boundary of the part is bent as a pre-operation to subsequent hemming.

* Restrikeing- certain areas with narrow tolerance are calibrated.
Depending on the shape of the part, numerous combinations of the scheme above occurs.

This thesis deals with the casting structure in draw dies and how to find expressions to design
the structure with respect to the actual conditions. Today the die casting guide lines are based
on estimations and experience without any considerations to shape, size or material quality of
the part. There are two reasons to design the die more individualy. Firstly, there is a potential
for acost saving if it turns out to be possible to reduce the dimensions. However, compared to
other costs in connection to die manufacturing, the potential cost saving related to casting is
rather small. Secondly, the increased use of high strength steel and ultra high strength steel
requires considerable higher press forces compared to those used so far, which meansthat it is
not possible to fully rely on the present guide lines.

4.3. Formulation of the problem

During a press stroke the stress in an arbitrary point varies with time, since the forming
process represents a complicated contact problem. Together with the fact that each die has its
unique design, it is realised that it is fully impossible to derive expressions that are valid for
al diesin al areas at every instant. The problem lies in how to divide the press cycle into
representative time intervals and for each time interval derive those expressions that reflect
the situation for some typical shapes of dies. Anaytica modelling implies that three
dimensional problems are converted into two dimensions, provided that certain conditions are
fulfilled. Such conditions apply for thin walled structures and bodies where one dimension is
large compared to the others. It shall be investigated whether such conditions are applicable
for draw dies.

4.4. Aim

The aim isto derive anaytical expressions, which will alow the die designer to dimension the
casting structure during the design. Based on input such as punch force, blank holder force,
allowed stresses and deflections, size of the part and geometrical quantities, dimensions of the
casting structure are calculated. FE-calculations are performed in order to make comparisons
with the analytical expression to verify their validity. If the derived expressions turn out to be
useable, they are preferably incorporated in a program which handles the cal culations.

4.5. Terminology

* Flat die- Die used to form parts, which approximately can be described as flat, for
instance aroof (see Figure 5.1-5.3).

11



* Forming area- Area, located in lower die and punch, where forming of the blank take
place. Corresponds to the areas indicated in Figure 5.2 and 5.5.

» V-shaped die - Die used to form parts, which approximately can be described with aV-
shape, for instance atrunk lid (see Figure 5.4-5.6).

* Flat bottomed V-shaped die — Same as V-shaped die, except from the bottom, whichis
flat (see Figure 4.5.1)

V-shape Flat bottomed
V-shape

Figure 4.5.1. Schematic cross sections of V-shaped and flat
bottomed V-shaped lower die.

4.6. Restrictions

In many cases holes are made in the walls in the casting structure in order to reduce the
weight. In this work no notice has been taken to this, i.e. the walls are considered
homogeneous.

4.7. M ethodol ogy

The analytical expressions are derived in section 7 and 8. The final expressions for each load
case are framed. In section 9 the validity of the anaytical expressions are evaluated.
Geometrical data from dies are inserted in the analytical expressions and the result is
compared to finite element calculations. This is done for different load cases and different
dies. Directly after each comparison a discussion follows concerning that specific case.
Throughout this work the Catia built-in finite element code Ansolid has been used, which
requires models made as exact solids.

4.8. Presentation of the principal

Volvo Cars Body Components, VCBC, has long experience in tool design, sheet forming,
experimental research, and finite element sheet forming simulation. The sted stamping
industry in Olofstrém began in 1735. The many streams in the area constituted a natural
power source for the stamping operations. Here the metal body components for Volvo's first
car, “Jakob”, were manufactured. 1969 Volvo Car Corporation purchased the plants in
Olofstrom and today VCBC, with about 2500 employees, is Volvo Cars Centre of Excellence
for Forming of Metallic Materials.

12
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5. Description of the analyzed dies

There are not two draw dies that look exactly the same. The shape of the stamped part decides
the shape of the draw die. Two dies with totally different shape were studied- one die with flat
cross section, a roof, and one die with V-shaped cross section, a trunk lid. Common to all
draw dies is that they consist of three parts- blank holder, punch and matrix. The parts of the
flat die and V-shaped die are shown in figure 5.1-5.6. A press consists, roughly spoken, of one
bolster on which the matrix is fastened and two different moveable dlides. The punch is
fastened in the inner slide and the blank holder is fastened in the outer dlide. The fastening is
mostly done using bolt and spacer, which are fastened in the U shaped cut-outs along the sides
shown in the figure 5.1 —5.3. Some kind of guiding between the die partsis required. The two
most common variants are guide pillars and wear plates. In case of draw dies wear plates,
which are plates made of brass with graphite inserts, are used. The wear plates are used to
guide the punch relative the blank holder as well as the blank holder relative to the matrix.
The positions of the wear plates in the flat punch are indicated in figure 5.2. The blank holder
clamps the blank against the matrix during forming whilst the milled contour in the punch and
matrix determine the shape of the stamped part. In order to keep the gap between the blank
holder and matrix under control distance plates are used. The distance plates in the V-shaped
matrix are marked out in figure 5.4. At corresponding positions distance plates aso are
mounted in the blank holder. The flat die assembled is shown in figure 5.7.

3 Forming area

Fig. 5.1.Flat lower die
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3 Forming area

Areafor
fastening of wear
plates

Fig. 5.2. Flat punch™

Distance
plates 16x

Fig. 5.3. Flat blank holder
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3 Forming area

Distance
> plates 14x

6 Cross
section

Fig. 5.4. V-shaped lower die

3 Forming area

Fig. 5.5. V-shaped punch
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Fig. 5.6. V-shaped blank holder

Fig. 5.7. Flat die assembled

17



18



6. Considered sequencesduring a press stroke

The numbering of the areas mentioned below refersto Figure 5.1-5.7 and will do so
throughout this report.

During a stroke the stresses vary with time. It is not sure that all areas in the casting structure
experiences their maximum load at the same instance. As far as the derivation of analytical
expressions concerns, the problem lies in how to choose representative sequences and within
each sequence, derive expressions covering that area exposed to the highest stress.

The blank holder and punch are mounted on two separate synchronised slides. During a stroke
from the maximum open position the blank holder starts to move down. After awhile also the
punch starts to move down. The first contact with the blank occurs when the blank holder
deforms the blank into the draw beads. A draw bead, shown in figure 7.1, is a kind of
obstacle, which prevents material to flow into the forming areain order to avoid wrinkles and
assure stretching. This sequence assumes mainly affect the walls denoted 1.

After the blank has been deformed into the draw beads the blank holder continues until the
distance plates meet. Thereafter the punch hit the blank and the forming takes place. In the
beginning of the forming, the forces acting in the blank are assumed to have a direction
towards the centre of the die (see Figure 7.2.1). The areas denoted 2, are dimensioned
according to this load case.

When die is near to be closed the final shape of the part is finished. At this stage alarge punch
force is required, since all small radii and curvatures are formed. This affects the forming
areas denoted 3 and the walls denoted 4. In addition the distance plates in lower die and blank
holder are in contact, which means that the walls denoted 1 and 5 are subjected to
compression. Regarding V-shaped dies, the area denoted 6, is subjected to tensile stresses.

Table 6.1 shows a summing-up over the sequences mentioned above:

Seguence Area Load Items considered
The blank holder hits the lower 1 Compression | Lower die/ Blank holder
die
The punch hits the blank 2 Bending Lower die/ Blank holder
Thedieisclosed 3 Bending Lower die/ Punch
4 Compression Lower die/ Punch
1,5 Compression | Lower die/ Blank holder
6 Tension V-shaped lower die

Table6.1.

Based on Table 6.1, Table 6.2 shows an overview of the load cases treated in Section 7. Load
cases XX and XX, dieon trestles, are derived in section 8.

Load case Die Dieitem | Area Sequence
I V- Lower die 1 The blank holder hits the lower die
shaped

19



[ Hat Lower die 1 The blank holder hitsthe lower die
[l V- Blank 1 The blank holder hitsthe lower die
shaped holder
v Hat Blank 1 The blank holder hitsthe lower die
holder
Vv Flat Blank 2 | Theblank holder hits the lower die (Diein
holder single acting press with blank holder on
nitrogen springs)
VI Flat Lowerdie | 2 The punch hits the blank
+ blank
holder
VIl V- Lowerdie | 2 The punch hits the blank
shaped | + blank
holder
VIII V- Lower die 6 Thedieisclosed
shaped
IX V- Lower die 4 Thedieisclosed
shaped
X V- Lowerdie | 1,5 Thedieisclosed
shaped
XI V- Lower die 3 Thedieisclosed
shaped
XIl Hat Lower die 4 Thedieisclosed
X1 Fat Lowerdie | 1,5 Thedieisclosed
XV Hat Lower die 3 Thedieisclosed
XV V- Punch 4 Thedieisclosed
shaped
XVI V- Punch 3 Thedieisclosed
shaped
XVII Fat Punch 4 Thedieisclosed
XVIII Hat Punch 3 Thedieisclosed
XIX V- Blank 15 Thedieisclosed
shaped holder
XX Fat Blank 15 Thedieisclosed
holder
XXI V- Lower die Die on trestles
shaped
XXII Fat Lower die Die on trestles
Table6.2.

20
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/.Derivation of analytical expressions valid for
different phasesduring a press stroke

In the following section analytical expressions for different sequences are derived.

7.1. Load cases when the blank holder hits the lower die -

analytical expressions

In this section load cases are treated, which are assumed to reflect what happens when the
blank holder and the lower die initially get in contact. The force transmission is entirely
covered by considering the deformation of the blank into the draw-bead. See Figure 7.1. The
load of the blank holder is equally distributed over the draw beads.

Blank

Lower die

Draw bead

Fig. 7.1. Schematic view of draw bead areain the moment the blank holder hits
the blank.

7.1.1. Lower die- analytical expressions(Load casel and II)

The parameter of interest is the stress in the walls beneath the draw beads. The areatheload is
distributed over is defined as the cross section of the wall beneath the draw beads.
Expressions for calculating the stress in V-shaped lower dies as well asin flat lower dies are
derived.

Load casel, Areal

Figure 7.1.1.1 shows a V-shaped lower die where the walls under the draw beads are
indicated by a thick line. Only the vertical stress component is considered. The horizontal
stress component, giving rise to a force trying to tear the lower die apart, is neglected
compared to the horizontal force due to the punch load, which is derived in section 7.3.1.

It is shown in section 7.3.1, see (7.3.1.6), (7.3.1.27) and (7.3.1.28), that the expressions for the

vertica force components in a die with flat bottomed V-shape, with designations from
Figure7.3.1.1, read

22



Fg, cosfsina(Asina - Bsin )

Fen =Fen Sina = . : (7.1.1.1)
Acosf+Ccosfsina —Bcosa —Ccosasin
. Fg, cosasin f(Asina —Bsin
Fao =Fg, sinfB= B _ Al A) _ (7.1.1.2)
Acosf+Ccosfsina —Bcosa —Ccosasin
FaS =FS, =
Acosfcos’ a + BecosBsinasin 5 — Acosasinasin 8- Bcos® fcosa (7.1.1.3)

-C(sin Bcosa -sinacos )

F
o Acosf +Csina cosS — Becosa — Csin Bcosa

where F,, denotes the blank holder force, Fy;, Fas and Fas denotes the resulting vertical
forces acting on the surfaces with lengths A, B and C in Figure 7.3.1.1, a and [ denotes the

angles defining the V-shape in Figure 7.3.1.1. Using Figure 7.1.1.1, where L denotes the wall
thickness and I, J, K, H and M defines the regions the blank holder load is distributed over,
the expressions for the compressive stress in the walls read

: . . (7.1.1.4)
Fay cos,Bsma(Asma—Bsm,B) 1

(Acos +CcosBsina - Bcosa —Ccosasin3) (2H +1)L

0' -

(2K + )L
F., cosasin S(Asina - Bsin f3) 1

Acosf +Ccosfsina - Bcosa - Ccosasin (2K + J)L

(7.1.1.5)

Acosfcos’ a + Bcosfsinasin f— Acosasinasin B N
Fo, AcospB +Csinacosf - Bcosa —Csin fcosa

"¢ 2ML | -Bcos? Beosa - C(sin fcosa —sina cos3) (7.1.16)
AcosB +Csinacosf - Bcosa —Csin Scosa
1
F
™ 2ML
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Lower die

K
H M 4/&
Fig. 7.1.1.1. Draw bead areain V-shaped lower die

Regarding dies with V-shape, i.e. the corresponding expressions from section 7.3.1, see
(7.3.1.29) and (7.3.1.30), read

FaA = F sina = Fy, cosfsina/(cosasin B+ cosfsina) (7.1.1.7)

FJ® = F2 sin 8 = Fy, cosasin B/(cosasin 8 +cosfsina) (7.1.1.8)

o = Fay _ Fg, COSBsSina 1 (71.19)
" (2H+1)L  (cosasinB+cosBsina) (2H +1)L

_ R Fg, cosasinf 1
Ouwe (2K +J)L  (cosasinf+cosBsina) (2K + J)L (7.1.1.10)
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In the deriving of the expressions in this section it has been assumed that only one stress
component exists and that this component is acting verticaly. o,,, 0, ad o, ae
assumed to be constant within their respective areas and it has also been assumed that the load

is equally distributed over each of the areas covered by the expressions for the different
stresses.

Load casell, Area 1

Regarding flat dies, the form surfaces including the draw bead areas are flat, which means that
the whole load from the blank holder is transmitted in the vertical direction. Figure 7.1.1.2
shows an upper view of alower die with the wall under the draw beads indicated by thicker
lines.

Under assumption that the blank holder load is equally distributed over the draw beads the
expression for the compressive wall stress reads

— I:BH
% =5+ 3) (7.1.1.11)

where the thickness of the walls are constant equal to L and the lengths the blank holder load
is distributed over are designated | and J. In this case the shape of the walls, over which the
load is distributed, for simplicity, has been assumed to be rectangular.

/ Forming area

<
l >

Figure 7.1.1.2. Upper view of flat lower die.

7.1.2. Blank holder - analytical expressions (Load caselll, IV and
V)

The situation is the same as for the lower die, i.e. the stress due to the deformation of the
blank into the draw bead is of interest and the load is equally distributed over cross section of
the walls beneath the draw beads. Expressions for the stresses in V-shaped blank holders as
well asin flat blank holders are derived. In the case of flat blank holders another expression is
derived, namely that which alows for calculating the deflection due to torsion when the dieis
run in asingle acting press.

25



Load caselll, Areal

Figure 7.1.1.1 is applicable in the blank holder case as well, provided that the direction of the
load is altered. Instead of horizontal forces trying to tear the lower die apart compressive
forces are acting in the blank holder. However, just as in the case of the lower die, only the
vertical stress components are considered.

With reference to what has been mentioned above, the expressions for the stresses in a flat
bottomed V-shaped blank holder are the same as for the lower dig, i.e. (7.1.1.4), (7.1.1.5) and
(7.1.1.6). If the blank holder is V-shaped (7.1.1.9) and (7.1.1.10) are applicable.

Draw dies can be run in two different kinds of presses, double action and single action
presses. A double action press consists of to separately moveable dlides, the punch slide and
the blank holder slide, whilst a single action press only has one slide. In a double acting press
the lower die is fastened at the bolster, the punch in the punch slide and the blank holder in
the blank holder slide. In a single acting press the die is run upside-down, meaning that the
lower die isfastened at the slide and the punch is placed at the bolster together with the blank
holder, which is placed on nitrogen springs or air cushion pins. Double action presses is most
commonly used. In the different load cases treated in this work, it is of no importance which
type of press used, except in the load case when the blank holder hits the lower die, which is
covered later in this section regarding flat dies. The two ways to run a press die, applies
irrespective if the dies are V-shaped or flat, but within the frame of this work, only flat dies
are treated.

Load caselV, Area 1

If the die is run in a double acting press, the load is assumed to be transmitted solely in the
vertical direction, just asin aflat lower die. Figure 7.1.1.2 is applicable for flat blank holders
aswell. The only difference is that the forming area is to be replaced with a cut out, to allow
for the punch movement and consequently (7.1.1.11) will be used for thisload case as well.

Load case V, Area 2

Regarding diesrun in single acting presses, Figure 7.1.2.1 shows atypical blank holder.
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Figure 7.1.2.1. Blank holder used in single acting presses.

Before a closer investigation of thisload case is done the concepts of shear center and center
of twist shall be defined.

The center of twist (CT) is the position about which the cross (7.1.2.1)
section rotates due to application of a twisting moment.

The shear center (SC) is the position where application of a
transverse load creates no torsion of the beam. (7.1.2.2)

It can also be shown that for linear elastic materials the shear center and center of twist
coincide[1].

For a U-shaped cross section, shown in Figure 7.1.2.1, the shear center is located to the left of
the waist. This is confirmed in Figure 7.1.2.2 showing a U-shaped profile with one end
clamped and the other end free. The load located close to the center line of the waist, as
indicated, clearly givesriseto aclock wise twisting moment.
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Figure 7.1.2.2. U-shaped profile loaded vertically with
one end clamped and the other end free.

Also if the U-shaped profile is clamped in both ends the tendency of twisting is present, as
seen in Figure 7.1.2.3. The load is applied equally distributed along the whole length at the
position indicated.

To deal with U-shaped cross sections loaded transversal, it seems to be of interest to be able
to determine the position of the shear center. The derivation of the location of the shear center

is done in part B of the mathematical appendix and the result, with designations from Figure
7.1.2.1, reads
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e%_(—H+B)(2D+B)2(—2C4H+2C4B+4HBC3—4C3H2+6DHCZB
-2C?B2D-2HC?D?-8H?C?B-4DH?C%2+8C2B?H + 2B C2D?
+4CB?’DH+7CHB®*-2CD?HB-7CB2H?-4CH2DB+2CB2D?
-B*H*+B*DH +B*H?-DB?H?) /(4(-72H*C?*B*D - 36H?C*D*B
+36H3CD?B-72H2CD?B?+48H3CDB?-24H?C*DB-24H?CBD?
+36H3DC2B-24BCHD*+42B3C2DH +18B2C2D?H + 42B*C H D?
-96B°CDH2+16B2C3DH-24BC*DH+16B?CHD*+7H*CB?
+12H?CD*+12H?2C*D-6H2C*B+16H3CD3*+6H*C2B+6H*D?B
+7H*DB%?+16H3C3D+12H3C?D?-6B3CH*+6B*C*H+7B2C*H
-6BH?D*-6B*H®D+7HD*B2-2C2B?D3*+17CB?D*+ 17D B?C*
-2D?B2C3+4H3C*+4B*HD?+4B*DH?+B2D°+6H D®B3+ H°B?
+4H3D*+4H*C3*+4H*D3®+56CB*DH+B2C°+4C2B*H + 4C B*H?))

(7.1.2.3)

&~

1(-H+B)(2D+B)?(B*D?+C?B3+3C3®B?+14CDB%®-4H*D-D3B?
-C?B2D-17CB?D?-16CH®D+B*DH-17CHB®*-40CB2DH
+36CH?DB+24CD?*HB-6H3C?2-4H3D?-2H*B-9C?B?H
+30CB?H?-14CBH®-12CD?H?+18H2C?B + 6 D?H2B - 7H D? B?
-6DB?H?+4DBH?) /(4(-72H?C?B’D-36H*C*D?B + 36 H>C DB
-72H2CD?B?+48H3CDB?-24H?C>DB-24H?CBD*+36H®D C?B
-24BCHD*+42B3C?2DH +18B2C2D?H +42B3*C H D?-96B*C D H?
+16B2C3DH-24BC*DH+16B>CHD*+7H*CB?+ 12H?C D*
+12H2C*D-6H?C*B+16H°CD*+6H*C?B+6H*D?B+7H*DB?
+16H3C®*D+12H3C?2D?-6B3CH3*+6B3*C*H+7B2C*H-6BH2D*
-6B*H®D+7HD*B2-2C2B2D®+17CB?D*+17DB?C*-2D?B2?C?
+4H3C*+4B*HD?+4B*DH?+B2D°+6H D®*B3+ H°B%2+ 4H3D*
+4H*C3*+4H*D3+56CB*DH+B2C°+4C?B*H + 4C B*H?))

(7.1.2.4)

When the expressions for the shear center were derived, the assumption was that the cross
section would behave like in Figure 7.1.2.3. Here the clamped ends correspond to the location
of the nitrogen springs or air cushion pins. However, during the work of this thesis the
origina plan to verify the analytical expressions with measurements in physica dies, was
atered to verify the expressions with finite element calculations. According to the finite
element calculation, presented in section 9.1.2, the sections of the blank holder twist
independently, in a way corresponding to Figure 7.1.2.4, i.e. in the opposite way to what is
indicated in Figure 7.1.2.3. The split lines between the sections are indicated in the plan view
in Figure 7.1.2.1 together with the lengths denoted | and J. Since the input, boundary
conditions and the magnitude and location of load, is user defined, an uncertainty exists of the
true behavior and therefore shear center calculations is, despite the result from the finite
element calculation, included in thiswork.
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Figure 7.1.2.3. U-shaped profile loaded vertically
with both ends clamped.
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Figure 7.1.2.4. Twisting of U-shaped cross section
according to finite element cal culation.
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Instead of using the shear center, the deflection due to torsion is calculated in the following
manner. If the thickness is small compared with the width of the waist and flanges the
expression for the angle of twist, ¢ , reads[2]

_am+v)

? EK,

(7.1.2.5)

where M; denotes the torsion moment, L the length of the section subjected to torsion and K; a
geometric quantity, the torsion constant, which for a section consisting of n thin walled strips
reads [2]

K, = %th’li (7.1.2.6)
i=1

where t denotes the thickness and | the length of the strip. Assuming the side with length | in
Figure 7.1.2.1, with the ends clamped, being subjected to torsion under the conditions stated
in Figure 7.1.2.4, then angle of twist, in radians, at the half of the length of the section can be
expressed as

%ZMt(lﬂ/) (1+v)1 Fe _ 3 1
Al = = 2(1+3)78° C+D+H) (7127

0

It has been assumed that the torsion moment, M, is constant through the whole section, which
implies that the section is assumed to be fully supported along the whole length at the center
of twist. Finally, using geometrical arguments, the deflection o from Figure 7.1.2.4 is
caculated

S=H —bsin(arcsin%— (1+v)

I Fey 3 1
E 2(| +J)a|33 (C+D+H)j (7.1.2.8)

7.2. Load cases when the punch hits the blank - analytical
expressions (Load case VI and VII)

Load case VI and VII, Area 2

In this section that load case is treated, which is assumed to reflect what is happening in that
moment when the punch hits the blank. The aim is to calculate the deflection of the blank
holder and the lower die due to bending forces, which arise when the blank is dragged
towards the center of the die. It is assumed that the blank is clamped between the lower die
and the blank holder. The force transmitted from the punch, is applied as an equally
distributed force over the cross section of the blank, acting normal to this (see Figure 7.2.1).

In order to determine the deflection, indicated in section A-A in Figure 7.2.1, only the

indicated geometry is considered, i.e. reinforcement walls and vertical walls are neglected.
Since the distance plates are in contact, deformation arises only due to bending with respect to
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the z-axis. With other words, the load case is considered as bending of a beam clamped in
both ends. In [3] following expression found

o R A (7.2.0)
384El, 384El, o
6 »l lg C »
| , |
|4
! ! A 4
| e i
': v A
|| 2
view A A
Section A-A
Deformation profile
_/
/ A
Upper view |
Section A
1T view A Y

Fig. 7.2.1. Deformationsin blank holder and lower die when the
punch hits the blank.

Here o denotes the deflection, Q the load per unit length, o the yield stress of the blank, t the
thickness of the blank, | the length of the section, E Y oungs modulus of elasticity and I, the
moment of inertia with respect to the z-axis. See designations in Figure 7.2.1. That part of the
section subjected to bending consists of two rectangular profiles. Due to the non-symmetry,
the shear center does not coincide with the line of action of the applied force. The expected
torsion is however prevented, since the distance plates are in contact. Besides, the torsion
moment is small, since the distance between the shear center and the line of action, i.e the
moment arm, is small. Under these circumstances, the parameter of interest is I, which is
calculated by adding the contributions from the rectangular profiles. With help from (B.5) and
the designationsin section A-A, the moment of inertiais calculated as

. _Blr+C)

7.2.2
= (722)
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whichinserted in (7.2.1) yields

4 4 4
_ Ql _ otl _ atl3 : (7.2.3)
384El, 384El, 32EB(A’+C?)

Regarding V-shaped profiles, by considering the two extremes shown in Figure 7.2.2, it is
assumed that both the moment of inertia and the length vary sinusoidal with the angle.

A
A 4

YV

112

Fig. 7.2.2. Variation of geometry with angle in profile
subjected to bending.

Except from that, the type of load case vary, from clamped in both ends to only one end
clamped. The expression for a beam with one end free and an equally distributed load read [ 3]

5= ESEll (7.2.4)

where J is measured at the free end. If aso the transformation of the load case is assumed be
sinusoidal, a suggested expression for the structure in Figure 7.2.2 reads

{afiro3))
oS {a-o3)

o=
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7.3.Load cases when the die is closed - analytical
expressions

In the following are load cases treated, which are assumed to reflect the situation when the die
is closed or close to be. Considering the lower die, the load is transmitted from the punch and
the blank holder, which are assumed to be rigid. When the punch is considered, the load is

transmitted form the lower die, which in this case is assumed to be rigid. Consequently the
lower die is assumed to be rigid when the blank holder is considered.

7.3.1. Lower die - analytical expressions (Load case VIII, IX, X,
X1, XI1, XITl and X1V)

Both the influence from the load transmitted from the blank holder and the punch are
considered. The blank holder load is assumed to be equally distributed over the distance plates
and so is the punch load over each area segment.

Load case VIII, Area 6 Load case | X, Area 4

In dies with V-shape forces are transmitted from the punch acting horizontally as well as
verticaly, the former trying to tear the lower die apart approximately at the section S-S in
Figure 7.3.1.1 and the latter by compressing the walls. In the current load case only the
horizontally acting forces are needed. It is firstly necessary to determine the portion of load
transmitted from the upper die and secondly determine the area over which the load is
distributed. To solve the first problem the section shown in Figure 7.3.1.1 is considered. Three
unknowns, Fa, Fg and Fc¢, imply that three equations are required to solve the problem:
horizontal equilibrium of forces, vertical equilibrium of forces and equilibrium of moment
with point O as moment centre. It is assumed that the shape of the part is rectangular which
means that the line of action of Fa, Fg and F¢ islocated at midpoint of A, B and C.

[z F =0 -F,cosa+F,cosB=0

(7.3.1.1)
[ZFZ:O] FASina’+FC+FBSin,8—FP:O (7312)
A
> Mg =0 -Fas
+F (cosﬁ(Acosa BC ’Bj ﬁ(Asma'+C+BSI ’BD
—FC(Asina+Ej+Fp[Asma+C+Bsn’gjzo
2 2 (7.3.1.3)
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Fig. 7.3.1.1 Cross section of lower die.

A

Solving the system of equations yields

Asinag -Bsing
F, =Frcosf , :
-Bcosa-Csinfcosa + Acosf3 + Ccosfsina (7.3.1.4)
F, = F.cosa __Adna-Bsng :
-Bcosa-Csinfcosa + AcosfB+ Ccosfsina (7.3.1.5)
Fe =-F,(-AcosBcos(a)?-BcosSsinasin+ Asinfsinacosa +
Bcos(8)? cosa+ CsinfBcosa-CcosfBsing) /
(-Bcosa-Csinfcosa+ AcosB+ CeosBsing) (7.3.1.6)
The horizontal force can be expressed using Fa or Fg
F, = F, cosa = F; cosf = F,cosacosf(Asina-Bsing)/
(Acosf — Becosa-Csinfcosa + Ccosfsing) (7.3.1.7)

If the cross section is a simple V-shape, i.e C=0 then only two force equations are required.
Using (7.3.1.1) and (7.3.1.2) with Fc=0 yields

F, = F,cosfl(cosasing + cosfsina) (7.3.1.8)

Fg = Focosal(cosasing + cosfsing) (7.3.1.9)

From the expressions above and Figure (7.3.1.1) the horizonta forceis cal cul ated.
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F., = Frcosacosf/(cosasing + cosfsinga) (7.3.1.10)

The horizonta force, Fy, and the vertical force, Fy, are assumed to affect the die in different
ways, the former by trying to separate under influence of stresses acting in the x-direction and
the latter by giving rise to compressive stresses in the z-direction in the walls. In order to
obtain an expression for the stresses acting in the x-direction Figure 7.3.1.2 is considered.
Under assumption that Fy is equally distributed over the length L, which is the length that
corresponds to the extension of the form surfaces, and half the thickness B the expression for
the stress in the x-direction reads

2F,,
g, =
BL (7.3.1.11)

Fig. 7.3.1.2. Section S-Sreferring to fig. 7.3.1.1

Except from the stress in the x-direction, stresses are assumed to arise in the y- and z-
directions as well, and this is due to constrains preventing the Poisson contraction. The
stresses, which consequently will be tensile, are obtained as

o,=0,=Esyv=0,v (7.31.12)

Since the stress state consists of three components some kind of criteria, which tells when
yielding occurs, is required. An example of such criteriais that stated by von Mises, valid for
mild steels. In this case it is dealt with cast iron, which is isotropic, but has different yield
limits depending if the load is tensile or compressive. The simplest criterion that consider the
hydrostatic dependence is proposed by Drucker and Prager, in which the hydrostatic stress
state varies linearly with the deviatoric, given by

3J, +ki,-m=0 (7.3.1.13)
Generdly the yield criteriais stated as

Floy.0,,0,)=0 (7.3.1.14)
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(7.3.1.14) shall be interpreted as a contour surface to a function of three variables, the
principal stresseso,,o,,0,. Instead of using the principa stresses the yield surface can be

described with help from the invariants 1;, J, andcos36, since it can be shown [4] that the
principal stresses uniquely determines these variables. Using tensor notation 1, and J, are
defined as

l, =0y ; JZZ%SUSH where S; =0; _%Jij

(7.3.1.15)

l1, J» andcos36 has geometrical interpretations in the stress space according to Figure 7.3.1.4
and by using these variables the hydrostatic influence, determined by |4, is separated from the
deviatoric, determined by J, andcos36. J, contains information about the magnitude of the
deviatoric stresses whilst cos36 informs about the direction. The deviatoric plane is defined

by 11 = constant and with (7.3.1.13) in mind ,/3J, =constant results, i.e. the trace in the

deviatoric plane is described by a circle, since no notice is taken to the variablecos36. The
deviatoric plane and the linear relation between the hydrostatic and deviatoric stresses are
shown in Figure 7.3.1.5. With this information it is concluded that the yield surface is
represented by acircular cone in the stress space, see Figure 7.3.1.6. [4]

Space diagonal =
hydrostatic axis Deviatoric plane=
91 planenormd to the
P(0,,0,,03) 4 hydrostatic axis.
e P
N 6
> 0—3 N
— |
ON =_1
‘ ‘ \/5 02 03

W = 23,

Figure 7.3.1.4. Interpretation of 11, Jand cos368 in stress space.
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o, Meridian for 3J,
an arbitrary 6 A

A
A 4

g, o,

Figure 7.3.1.5. Drucker-Prager criterion. Deviatoric plane to the left and
meridian plane to the right.

Figure7.3.1.6. Drucker-Prager criterion in the stress space-

| order to obtain a better understanding of the model, a stress state with only two components,
o.ando, , isconsidered.

Bi _ —
| " =0, =0, *t0,

(7.3.1.16)
_ o +o -
o, —— 3 L 0 0
' o,to
[Silj3I ]: 0 JW — 3 & 0
g, +t0o
0 0 -= 3 A

- - (7.3.1.17)

To make the derivation more clear following tensor expression is devel oped
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S;S; =S4Sy +S,S, *S5,;S; = SuSe *+ SySy *+ SuSe *

j X =X

Sy Sy *+SyS,, *+ S,2Sy: + SuSy +S,S, + 5,5,

(7.3.1.18)
Applying (7.3.1.18) to the stress state in question yields
2 oY (2 o\ (o, 9,)
S;S, = o, 2| + —o, -2 + Iy W=
3 3 3 3 3 3
EUXXZ +20,°--0,0,
3 3 (7.3.1.19)
and
_ |3 _ [ 2 2
V33, = ESij —\/axx +o,"-0,0,
(7.3.1.20)

If (7.3.1.16) and (7.3.1.20) are inserted in (7.3.1.13) following expression is obtained:

2 2 —
\/UXX +to, -0,0, +cr(aXX +0W)—,B—

Jo2+0,%-0,0, +a(o, +0,)-B=0 (7.3.1.21)

which represents a off-centre ellipse in the in the 0,0, - planeas shown in Figure 7.3.1.7. In

(7.3.1.21) it has been used that the stress components correspond to the principal stresses,
since no shear stresses are present. It is seen that the material is able to carry a heavier load
compressive compared to tensile mode before yielding occurs, as desired when to model the
behaviour of cast iron.

ag
0o}

.0 /_7 >

(0.0

Figure7.3.1.7. Biaxia stress state.

Before (7.3.1.13) can be used to determine whether the stress state is within the allowed area
or not, the parameters k and m have to be determined. It can be done by using the uniaxial
tensile yield stress g, and the uniaxial compressive yield stresso, separately in (7.3.1.13)

where after two equations are obtained.
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g, = K , 0, -k (7.3.1.22)
1+m 1-m

If solved for k and m the result reads

k=-27% - 200 (7.3.1.23)
Ut + UC Ut + UC

Returning to the current triaxial load case, it is necessary to determine I; and J,. With help
from (7.3.1.15) isit concluded that

g = + +

| =0, =0, %0, %0, (7.3.1.24)
i o, +o,+0 i
g, ——= 3W z 0 0

ne Oyto, to,
[s; ]- 0 e 0
0 0 O, t0,+0,

i 3 (7.3.1.25)

If (7.3.1.23), (7.3.1.24) and (7.3.1.25) with help from (7.3.1.18) are inserted in (7.3.1.13) the
initial yield criteria reads

\/afx 0,0, -0,0,+0,, -0,0,+0,

(UC -0, )(axx to, + Uzz)_ 20,0, _

o, t0o,

\/012 -0,0,-0,0;% 022 —0,0;t U§
(0.-0)o,+0,+0))-20.0, _,
g. * 0 (7.3.1.26)

In (7.3.1.26) the fact that the stress components corresponds to principal stresses has been
used.

Load case | X, Area 4

The verticaly acting load gives rise to a compressive load in the walls. This can be derived
from the expressions for Fp and Fg stated by (7.3.1.4) and (7.3.1.5)

Fa = Fysina =Fcosfsing - Asna - Bsing :
-Bcosa-CsinfBcosa + Acosf + Ccosfsina (7 3.1 27)
Fs =Fg Sin 8 =F.cosasin . AdnarBanS :
-Beosa-Csinfcosa + AcosB+Ceosfsing (7.3.1.28)
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The contribution from Fc is given directly by (7.3.1.6). If the form is a smple V-shape
(7.3.1.8) and (7.3.1.9) are used to obtain

F,, = F,sina = F,cosBsinal(cosasing + cosBsing)

(7.3.1.29)

Fs =Fg sin = F,cosa sin f/(cosasing + cosfsing)

(7.3.1.30)

Figure 7.3.1.8, which shows the lower die seen in the press direction, indicates the areas over
which the forces are distributed. Since it is assumed that Fya, Fys and F¢ affect three different
areas equilibrium yields

Fua = 0w (APA - nA(I - B, )(J - B, )) (7.3.1.31)
Fie = 0ws (APB ~Ng (E ~Bs )(F —Bg )) (7.3.1.32)
Fe =0 (A —nc(G-B.)(H - B.)) (7.3.1.33)

where na, Ng and nc denotes the number of framesin area Apa, Apg and Ac respectively.
If these equations are solved for the wall thicknesses following expressions are obtained
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Figure 7.3.1.8. Lower die seen in the press direction
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I:VA
2 = Aen
BA:I+J+ (I +Jj |13+ O
2 2 n,
(7.3.1.34)
I:VB
2 — A
BB:E+F+ (E+Fj__EF+am
2 2 Ng
(7.3.1.35)
Fe A
2
BC:G+H N [G+Hj _laH + T
2 2 Ne
(7.3.1.36)

With this approach the thicknesses of the walls are dependent of the design of the casting
structure, which seems to be reasonable.

Load case X, Areal and 5

When the dieis closed the load transmission from the blank holder isimagined to occur at the
distance plates. This means that the main task for the blank holder is to prevent wrinkles and
in the case the blank needs to be stretched, draw beads are required. In most cases the distance
plates are located at or near a point where two walls meet. It may be near one of the outer
sides or close to the cavity. Figure 7.3.1.10 shows the most common variants. Since each
distance plate is assumed to carry the same load, the stress in the verticaly walls is
determined from

J:l
W
nB(A+C) (7.3.1.37)

where Fgy denotes the blank holder load, n denotes the number of distance plates. The
designations from fig 7.3.1.10 have been used. Apart from the stress it is of interest to
determine the displacement of the walls, since this affects the surface pressure. With help
from Hooke's law the expression for the displacement reads

z

o
u,=—H
E

(7.3.1.38)

where E is the modulus of elasticity and H the height shown in Figure 7.3.1.9.
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Fig. 7.3.1.9. Definition of the height H
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Cavity area
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Fig. 7.3.1.10. Different possibilities for positioning of distance
plates.

Load case XI, Area 3

Except from the stresses in the walls it is aso of interest to determine the deflection in the
area between the walls, which isillustrated in Figure 7.3.1.11. The problem is transferred to a
plate problem with all four boundaries clamped. Under assumption that Kirchhoff plate theory
isvalid, i.e. the plate is thin meaning plane stress condition is valid, the equation to be solved
can be shown [5] to read

Aw(x, y):(az i ](OZWJZW]:

x> oy’ | ox*  ay?
a'w a'w 64W_12(1—V2)
ot Cocay oyt B O
X X0y 0oy (7.3.1.39)

which can be reformulated

2 a°’M,, 9°M
a szx + 2 Xy + 2yy + q - O
2 oxoy 9y (7.3.1.40)

The quantities are defined in appendix A.



All sides clamped

Fig. 7.3.1.11. Plate used to calcul ate deflections.

(7.3.1.40) with al sides clamped is solved in the mathematical appendix part A with the result

L - 15qfL-v?)

A*B*

32Et?

7A’B? - 2A%B%v +10A* +10B*

(7.3.1.41)

uandq
a A |-
— ——
A 4 | |//| y

Fig. 7.3.1.12. Designations and positive directions

u denotes the deflection at the centre of the plate and q is a equally distributed load (force per

unit area). The

designations are explained in Figure 7.3.1.12. It was concluded in the

derivation of (7.3.1.41), that it seems to predict deflections well in plates where the length of
the smallest side corresponds to one tenth of the thickness. If the plate is thicker the
expression has to be used with care.

Load case XII, XIIl and X1V, Areal, 3,4and 5

Regarding flat dies, they are assumed to be exposed only to stresses in the z-direction. In
order to derive an expression for the stresses in the wallsin the lower die due to the load from
the punch, the load is assumed to be equally distributed over the vertically walls. Following
the same procedure as in the derivation of (7.3.1.34), (7.3.1.35) and (7.3.1.36), the expression

reads
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_G+H (G+H
== +

j —GH+w (7.3.1.42)

Here Ac denotes the area of the punch, defined in Figure 7.3.1.8. Since the body considered is
flat, Apa and Apg are not taken into account. Regarding stresses in the walls in flat lower dies
due to load on the distance plates transmitted from the blank holder, the same expressions,
(7.3.1.37) and (7.3.1.38), derived for V-shaped lower dies, is applicable. Also the expression
for calculation of the deflection in the area between the walls in V-shaped dies, (7.3.1.41), is
applicablefor flat dies.

7.3.2. Punch - analytical expressions (Load case XV, XVI, XVII
and XVII1)

Forces acting on the punch when the die is closed arise from the lower die. This means that
many of the expressions derived in section 7.3.1 is applicable in this section as well.

Load case XV and XVI, Area3 and 4

Regarding V-shaped dies, the forces acting on the punch when the die is closed, are shown in
Figure 7.3.2.1. The correspondence to the forces trying to tear the lower die apart is the
horizontal compressive components of the forces acting on the punch. Since cast iron is able
to carry a higher load compressive compared to tensile, and the area over which the
compressive load is distributed is larger than the corresponding area in the lower die for the
tensile load, a load case similar to that derived in section 7.3.1 regarding forces trying to tear
the lower die apart, is omitted regarding the punch.

Fp

Fa
Fs

Fc

Fig. 7.3.2.1. Forces acting on the punch when the dieis closed.
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(7.3.1.34), (7.3.1.35) and (7.3.1.36) are applicable also for calculations of stressesin the wall
due to the lower die load and so is (7.3.1.41) regarding deflection in the area between the
walls.

Load case XVII and XVIII, Area 3and 4

In a flat die the conditions regarding the forces acting on the punch are the same as in the
lower die, which means that the expressions used in section 7.3.1 is applicable. Regarding
forces acting compressive at the vertically walls due to the lower die load, (7.3.1.42) is
applicable. (7.3.1.41) applies for calculation of deflection in the area between the walls.

7.3.3. Blank holder — analytical expressions (Load case XIX and
XX)

When the dieis closed the load transmission from the lower die is assumed to take place only
at the distance plates. Of interest is, except from being able to calculate the stress in the walls,
the possibility to calculate the deflection, since this affects the surface pressure on the blank.

Load case XI X and XX, Area 1 and 5
In order to calculate the stress and deflection in the walls beneath the distance plates,

(7.3.1.37) and (7.3.1.38) derived in section 7.3.1 are applicable for V-shaped as well as flat
blank holders.

a7
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8. Derivation of analytical expressions for some other
situations of interest

8.1. Two blanks accidentally at the same time

Sometimes two blanks accidentally are placed in the die at the same time. Since the gap
between the upper and lower die corresponds to the thickness of one blank, very large forces
arise in regions with nearly vertical surfaces. Neither a finite element calculation has been
carried out nor a derivation of an analytical expression. The reason for thisis that the problem
requires software more advanced than the used. However, a suggested approach is to consider
the friction forces, F;, according to Figure 8.1.1. N; denotes the normal forces, R the resultants
and F, the punch force. Four unknown require four equations

Fy = i,
F. =

2 = M, . . (8.1.1)
F cosa+F,cosB+N,sina+N,snB=F,

-F sna+F,snf+N,cosa-N,cos5=0

from which all acting forces can be obtained. The horizontal force, trying to split the die, is
then obtained from horizontal equilibrium.

p

l F
Ry
Fi
N1
R>
[\ 2
h

B

Figure 8.1.1. Forces acting on a V-shaped punch when two blanks accidentally are put in
thedie

8.2. Dieon trestles (Load case XXI and XXI1I)

In this section that load case is treated, which covers what happens when the die is placed on
trestle, for example in connection with maintenance. Experience has shown that if the die is
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long, problem may arise to put the upper and lower die together, due to displacement of the
guidings. The problem mainly arises in dies where guide pins are used. Draw dies uses wear
plates, but this load case aso serves as an indication on the general bending stiffness.

The deflection at mid-span for a simply supported beam is given as[3]

3
5= (82.1)
384EI,

Here o denotes the deflection, W the mass of the part, | the length of the part, E Youngs
modulus of elasticity and |, the moment of inertia with respect to the y-axis. In order to
calculate the moment of inertia use of Figure 8.2.1 is made.

The distance between the walls and the height of the cross section is assumed to be constant.
Symmetry is said to exist with respect to the xz- and yz-plane. The influence of the walls
perpendicular to the bending plane is neglected. In order to calculate the moment of inertia,
knowledge about the neutral axis is required. Since the neutral axes passes through the center
of mass, the calculations starts with finding an expression for the position in the z-direction.
The center of massislocated at that point where the moment of the whole area equals the sum
of the moments of all elements, i.e.

JD n n
BC+H+A+—+J—D+F—=h =
( ( ) > > > ]th

2 2
B$+H_+A{H —Ej +[£+J2Dj[h—ij+|:nh
2 2 2 2 2 2 4

where n denotes the total number of pockets with width D. The pocket located at the center
line shall not beincluded. In Figure8.2.1 n = 4.

(8.2.2)
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Section A-A

Fig. 8.2.1. Cross section of die used in analysis of bending with respect to the y-axis.
Only one half is shown.

With help from the paralle axis theorem, (B.7), the expression for the moment of inertia for
the section reads

cB? BY BH? H > AB® B 2
+BClz ——| + +BH| — - + +AB H-—-— +

e e -
DJ® JD J > n(DJ® J 2

I, =2 +—| h-—- +— +JD| h—-=- +

y 24 2[ 2 Z‘Pj 2{ 12 [ 2 Z‘Pj]
n( Fh h)>
—_ + Fh -
2[ 12 (Z‘P 2}]

(8.2.3)

If (8.2.2) is solved for z, and inserted in (8.2.3), the final expression for the deflection at mid-
gpan is obtained after insertion in (8.2.1)
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1
n|-Fh®*+Fh
12

1 1 1 1 1 1 1
= +>H2+ -= +| = += -ZJ|+= 2
B[ BC 2H A[H 2B]J [ JD JnDJ[h 2\]] 4Fnh

2 2 2 L
1 1 1 2
+H+A)+= + = +=
B(C+H+A)+-JD+_JnD+_Fnh
(8.2.4)

A second alternative regarding the casting structure exist, which is shown in Figure 8.2.2.

C.L: v
A
] B NP A
i v < A > B
ry i
! H
YL — T S I PO I R N Y.
h .D Jl.c 2
n2 - = - ' ‘L p
y ] nl A ¥
: ; B

Fig. 8.2.2. A second alternative to cross section of die used in analysis of bending with
respect to the y-axis. Only one half is shown.

In this case the expression for the center of mass reads

(B(C+H +A)+J2D+Fn7_1h]ztp =

2 _ 2
B §+H—+A{H —Ej +JDD(h—ij+M
2 2 2 2 2 4

and the expression for the moment of inertia

(8.2.5)
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CB +BC(z[p—Ej , BH +BH(E—Z@j , AB
12 2 12 2 12

v e DJ? J 2Y n-1( En? h)?
+— +JD| h—-—- +— +Fh z, ——
2[ 12 ( 2 Z‘Pj ] 2 {12 (Z”’ 2) ]
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+AB[H —g—z[pj +

(8.2.6)
and after insertion, finally the deflection at mid-span
— 2 A3 1.gs
6.—384QI /| E 6CB +2B
1 L2 1 1 AN e o n2
B(ZBC+2H +A(H 2|3D+2JnD[h 2JJ+4F(n 1h*
C _EB

1 1
B(C+H+A)+-InD+ F(n-1)h

1
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1 1, 1 1 R T
1H_B[2BC+2H +A[H ZB]]+ZJnD(h 2J]+4F(n 1) h

1 1
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1
+6AB3+2AB

1 1

2 2 2 2 2

2 1 1
B(C+H+A)+_InD+_ F(n-1)h

1
+n|--DJX+JD
12 7+

1 1, 1 1 1) 1 ,
h_lJ_B(zBC+2H +A[H 2B]]+2JnD(h 2J]+4F(n 1) h

2 1 1
B(C+H+A)+§JnD+§F(n—1)h
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1 1 1 1 13,1
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el \2 2 2 2 2°) 4

|
NI

1 1
B(C+H+A)+ InD+ F(n-1)h

(8.2.7)
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O.Evaluation of the analytical expressions using
finite element calculations

In the finite element calculations the Catia built-in finite element solver Ansolid has been
used. Without exception ten-node tetrahedral elements have been used. The bodies have been
considered one by one. For example when the load from the blank holder on the lower dieis
considered, only the mesh of the lower die is used and the influence from the blank holder is
considered as an applied load. This means that it has not been dealt with contact problems. If
not otherwise stated, surfaces towards bolster or slide have been clamped in the z-direction
and the wear plates clamped in the x- and y-directions. Throughout the analytical calculations
aswell asin the FE-caculations, following values have been used

» Poisson’sratio v=0,28

+ Density p = 7200 kg/m®
e Youngsmodulus of elasticity  E = 165 GPa

» Blank holder load Fgu = 1.2 MN
* Punch load Fp=6MN

« Acceleration of gravity g=9.81 m/s’

The material parameters are valid for spheroidal graphite iron (ref, Volvo standard VOV
1107,391). The applied loads are representative for deep drawing operations. The results from
the FE-calculations are shown in colour maps. In the analytical calculations the inserted
values are taken from the CAD-models.

9.1. Load cases when the blank holder hits the lower die-

evaluation

In this section the results based on the expression derived in section 7.1 are accounted and
compared with finite element calculations.

9.1.1. Lower die—evaluation (Load casel and I1)

Theload is applied in two different ways depending on the shape of the lower die. If the lower
dieisflat, a body corresponding to the lower die is merged with the lower die in those areas
where the load transmission is assumed to occur. Figure 9.1.2.4 illustrates an example. The
load from the blank holder is applied as a contact load. The method merging a body
corresponding to a blank holder to the lower die is not applicable regarding V-shaped dies,
since such approach would give rise to erroneous stress distributions. Merging two bodies
with inclined surfaces, makes an applied vertical load to be transmitted vertically. Instead the
load from the blank holder is applied as a pressure over the draw bead areas, i.e. the load is
applied perpendicular to the surface of the draw beads. The difference between the
approachesis shownin Figure 9.1.1.1.

Load casel, Area 1
Regarding V-shaped dies, in the analytica expressions derived in section 7.1.1, only the
vertical stress component is considered. The result from these expressions are compared to the

von Mises stress from the finite element calculations in order to find out if it is acceptable to
consider only the vertical stress component.
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\ //)
/

Blank holder and lower die Load form the blank holder
merged. Load applied on the blank applied as a pressure on the lower
holder.

Figure 9.1.1.1. Different stress distributions in the lower die depending on
how the load from the blank holder is applied.

Figure 9.1.1.2 shows the V-shaped lower die and the areas where the load from the blank
holder is transmitted. In this case draw beads are located only at the inclined surfaces. With
use of (7.1.1.9) and (7.1.1.10) the stresses in the walls beneath the draw beads are calculated.

R Fg, COSBsina 1 B
Oyp = = - , =
(2H +1)L  (cosasinB+cosBsina)(2H +1)L
6 O 1 o
1.20[10" cos527sin 45 L MPa=10MPa (9.1.1.2)

(cos45°sin52° + cos52°sin 45°) (2640 [20)

I = Fgy COSa'sin 1 _
Ouwp = = - - B
(2K +J)L  (cosasinB+cospsina) (2K +J)L (9.1.1.2)
1.2010° cos45°sin52° 1 o

: ; MPa =17 MPa
(cos45°sin52° + cos52° sin 45°) (2 (480 [40)

Since the draw beads only are located in the inclined areas, | and J have been set equal to

zero. o, corresponds to the wall stress at the left hand side and o,,, corresponds to the wall
stress at theright hand sidein Figure 9.1.1.2.
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Draw beads

Figure 9.1.1.2. V-shaped lower die with the location of draw beads marked out.

Commentsload casel, Area 1

The result of the finite element calculation is shown in Figure 9.1.1.3. g,,, isthe stressin the
walls with negative x-component and o, is the stress in the walls with positive x-

component. It isimmediately concluded that the stress varies within each of the areas, mainly
4-12 MPa regarding o,,, and 10-14 MPa regardingo,,, . However, the results from the

analytical expressions are in fair agreement with the finite element calculations.
Load casell, Area l

Regarding flat lower dies, the load in the finite element calculation is applied as a pressure in
the flat draw bead areas, which givesriseto astressin the walls, mainly vertically.

Figure 9.1.1.4 shows a flat lower die with the location of the draw beads indicated by thick
lines. In order to calculate the stress due to the load from the blank holder (7.1.1.11) is applied

Fo _  1200°
2L(1 +J) 250(1900 1170)

Oy = MPa (9.1.1.3)

Figure 9.1.1.2. V-shaped lower die. The black lines indicates the position of the draw
beads on which the load from the blank holder is distributed
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I
Figure 9.1.1.3. Von Mises stresses in V-shaped lower die the moment after
the blank holder hit the lower die

Commentsload casell, Area 1

The result from the finite element calculation is shown in Figure 9.1.1.5. The stress takes the
same value in the walls irrespective of location, which is expected for a simple load case like
this. The fact that the stress level is raised in the horizontal areas in connection to the walls
under the draw beads, and the difference between the analytical and numerical calculations, 4
MPa compared to 2 MPa, is probably explained by the way the load is applied. In the model
used in the finite element calculations no draw beads exist. Instead the load is applied on the
radius encompassing the form area. See Figure 9.1.1.6. If the load would have been applied
more vertically, as in the case of draw beads, the agreement between the calculations would
have been much better.
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Figure 9.1.1.4. Flat lower die. The black lines indicate the position of the draw
beads on which the load from the blank holder is distributed.

9.1.2. Blank holder —evaluation (Load caselll, IV and V)
Theload is applied according to what has been mentioned in section 9.1.1.

Load caselll, Areal

Regarding forces acting compressive at the vertically walls due to the load from the lower die,
Figure 9.1.2.1 shows a V-shaped blank holder and the areas there the load from the lower die
is transmitted. These areas correspond to the areas indicated in the lower diein Figure 9.1.1.2.
Since the expressions to be used, geometry and load is the same as in section 9.1.1 the results
arethesameasin (9.1.1.1) and (9.1.1.2), namely 10 MPaand 17 MParespectively.
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Figure 9.1.1.5. Stress distribution in adie with flat cross section due to
the load from the blank holder in the draw beads.

/ / / ___— Avplied load
-
—

No draw bead in the model

Figure 9.1.1.6. Since no draw beads exist in the model, the load is applied in
the radius instead.
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Draw beads

Figure 9.1.2.1. V-shaped blank holder. The black lines indicates the position of the
draw beads on which the load from the lower die is distributed

P
YON MISES

Criterion

Figure 9.1.2.2. Von Mises stresses in V-shaped blank holder in
the moment after the lower die and blank holder has got in
touch.
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Commentsload caselll, Area 1

Figure 9.1.2.2 shows the result from the finite element calculation. ¢, corresponds to the
stress in the walls with negative x-coordinate and o, corresponds to the stressin the walls

with positive x-coordinate. The analytically calculated value for g, is 10 MPa (see (9.1.1.1))
and for 0,517 MPa (see (9.1.1.2)). The values corresponding to og,,,in the finite element
calculation varies mainly between 6 and 19 MPa and for 0,5 the stress varies between 6 and

40 MPa. The localy higher stresses that vary between 40 and 65 MPa are probably not
dependent of the thicknesses of the wall, but a consequence of the position of the draw bead,
which is close to the edge. If the influence of the position of the draw bead is not considered,
a comparison between the results shows upon a fair agreement. However, there is a potential
in refining the model by consider the variation of the stress with the position in the z-direction
and also by consider more than the stress component in the vertical direction.

Load case |V, Area 1

In flat dies, the load in the finite element calculation is applied as a pressure in the flat draw
bead areas, which givesrise to astressin the walls, mainly vertically directed.

Figure 9.1.2.3 shows aflat blank holder with the location of the draw beads indicated by thick
lines. Since (7.1.1.11) is applied with the same values as in (9.1.1.3) in this case as well the
resultis4 MPa.

Figure 9.1.2.3. Fat blank holder. The black lines indicate the position of
the draw beads on which the load from the blank holder is distributed.

Commentsload case |V, Area 1l



The result from the finite element calculation is shown in Figure 9.1.2.4. The stress varies in
theinterval 2-4 MPa, which isin agreement with the result from the anal ytical expression.
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Figure9.1.2.4. Stress distribution in adie with flat cross section due to the
load from the lower die blank holder in the draw beads.

Load case V, Area 2

Figure 9.1.2.5 shows a blank holder, used in a single acting press supported with nitrogen
springs, deformed due to load in the draw beads. The section indicated is used in the
calculations. The deflection due to torsion is caculated using (7.1.2.8) and the resulting
vertica deflection in the middle of the section is

J0=H -bsn arcsini—(lﬂ/)l— Feu ai L
b E 2(+J) B*(C+D+H)
6
300 - 405 & arcsin[sooj_(u 0.28) 1360 | 12010° . 3 1 _
405 165000 2 1360+1250 50° 175+175+ 300

0.005mm
(9.1.2.1)
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Figure 9.1.2.5. Blank holder in single acting press subjected
to torsion.

—|  Palette |
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|
o
@

-.107
-.132
-.156
-.180

|

Figure 9.1.2.6. Deflections in z-direction due to load in the
draw beads
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Commentsload case 'V, Area 2

As can be seen in Figure 9.1.2.6, 0.06 mm from the finite element calculation shall be
compared with 0.005 mm from the analytical calculation, i.e. a difference approximately
equal to afactor 10. An explanation to the lack of agreement between the results probably lies
in the behavior of the ends. In the derivation of the analytical expression it was assumed that
the ends are clamped, which is not the case according to the finite element calculation and
since the ends are subjected to torsion as well, alarger deflection results.

9.2. Load cases when the punch hitsthe blank — evaluation
(Load case VI and VII)

The deflection was calculated using (7.2.3). The stress in the blank was set equal to 600 MPa
and the thickness equal to 1.5 mm. In this case the stress has been chosen to correspond to the
yield stress for UHSS (Ultra High Strength Steel).

Load case VI, Area VI

Together with geometrical parameters for the flat die used in the calcul ations, the result reads

_Qf _gtl* _ atl* 600151625
384EI, 384El, 32EB(A®+C?) 320165000 55(295° +460°

)mm:Qme

(9.2.1)
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Fig. 9.2.1. Deflectionsin aflat die in the moment the
punch hits the blank.

Commentsload case VI, Area 2

As can be seen from Figure 9.2.1, 0.043 mm from the finite element calculations, shall be
compared with 0.2 mm, i.e. a difference of about a factor five between the calculations. It
seems to be a too coarse approximation only considering the sections marked out in Figure
7.2.1. Especially the forming area contributes to make the cross section stiffer. In the FE-
calculation the lower die and the blank holder were prevented to move independently to each
other, which probably they will in reality. More dies have to be analysed using FE-
calculations with possibility to solve contact problems, before any statement can be made how
to refine (7.2.3).

Load case VII, Area 2

After (7.2.3) has been applied on the |eft side on structure shown in Figure 9.2.2, the result for
the deflection at midspan reads

_ QA ottt gttt 600 (1.5[1650°*
384El, 384El, 32EB(A°+C®) 320165000 50(720° +1000°

) mm = 0.02 mm
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| Palette

Displacenm.
X Yalue
MM

.056
«451E-01
.344E-01
.236E-01
128E-01
.205E-02
.872E-02
.195E-01
.303E-01

—.041
.518E-01

Commentsload case VI, Area 2

In this case it differs a factor three between the results, but in contradiction to the previous
load case, the deflection according to the FE-calculation is larger compared the anaytically
calculated.

9.3. Load caseswhen thedieis closed - evaluation

In this section load cases are considered when the die is closed. During forming the areas
containing radii are exposed to the forces necessary to deform the blank. In order to simplify
the cal culations the body not considered is assumed to be rigid. This means, for instance when
calculating the deflection under the distance plates, if the lower die is considered, that the
blank holder is assumed to berigid. In this manner the worst case is treated.

9.3.1. Lower die— evaluation (Load case VIII, I X, X, XI, XII, XII

and X1V)

Regarding the lower die, the load from the punch dlide is in the FE-cal culations transmitted to
the lower die in two different ways depending on type of die. In the case of flat dies a solid
body, corresponding to the punch, is merged with the lower die in the areas where the load
transmission is assumed to occur. At the top of the merged body, which corresponds to the
area between the punch slide and the punch, a contact load is applied. The benefit from such
approach is that the stress distribution in the boundary between the punch and lower die better
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reflects the reality compared to if the load would have been applied as an equally distributed
pressure over the form surfaces in the lower die. Regarding the V-shaped dies a pressure load
is (load normal to the surface) applied at the form surfaces. (7.3.1.8) and (7.3.1.9) are used to
calculate the applied pressure. The load over the distance plates, which is assumed to be the
same for each plate, is applied as a contact load. Both the load from the punch and the load
from the blank holder are applied at the same time.

With reference to what has been mentioned earlier, the loads acting at the V-shaped lower die
are shown in Figure 9.3.1.1.

85700 N (14x)

Load

transmission Load

from punch transmission
from punch

Fig. 9.3.1.1. Load acting at V-shaped lower die
when the dieis closed.

Load case VIII, Area 6

In order to determine the stress due to the horizontal force transmitted from the punch viathe
blank, trying to separate the lower die when the die closes, use of (7.3.1.10) is made.

F,, = F.cosacosfl/(cosasing + cosfsing) =

6 . . (9.3.1.1)

600" cos45° cos52° / (cos45°sm52° +c0s52°sin 45°) N =2631646.32 N
Knowing the horizontal force, (7.3.1.11) and (7.3.1.12) are used to calculate the stress
components

_2F, _ 2[2631646.32

O, =61.34MPa
BL 6001430 (9.31.2)

g, =0,=0,V=61340028=17.18MPa

Finally (7.3.1.26) is used to find out if yielding occurs or not.
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\/afx -0,0,~-0,0,+0, ~0,0,+0,

(0}"Cﬂ)&7m +CTW +‘72)_'20}01
+ =

g, * 0, (9.3.1.3)
\61.34% -61.34[17.18- 61.34[17.18 +17.18° —17.18[17.18 + 17.182
, (414-380)(61.34 +17.18+17.18) - 2 (414 (880 _
414 + 380

-348

The negative result tells that the stress state is well contained within the yield surface. To
make it possible to compare the analytical result with the FE-calculation it is necessary to
convert the stress state to the von Mises criterion which is given as

3),-0,=0 (9.3.1.4)

o,, denotestheinitial yielding stressand /3J, isgiven by (7.3.1.20). Thus the stress state is
caculated as

— 2 _ _ 2 _ 2 _
J3J, = \/axx 0xOy ~040,+0, ~0,0,+0, = (9.3.1.5)
\61.34% -61.34(17.18- 61.34(17.18+17.18” -17.18[17.18 +17.18° = 44MPa

A section from the FE-result corresponding to section S-S in Figure (7.3.1.1), i.e. in the
bottom of the V-shapeis shown in Figure 9.3.1.2.

YON MISES
Criterion

HPA

= en
Ao~
o

71

5
5
5
5
425
5
5
5
5

P
=2}

o0
w1

=~ = g W .
S W o W

Fig. 9.3.1.2. Cross section corresponding to section S-Sin Figure 7.3.1.1,
i.e. a the bottom of the V-shape.
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Commentsload case VII I, Area 6

It is concluded that the analytical calculations is in fair agreement with the FE-calculations.
See fig 9.3.1.2. Apart from small local areas with stress levels about 75 MPa the stress varies
between 15 and 52 MPa in the upper half of the section. In the deriving of (7.3.1.11) it was
assumed that only the upper half carried the load. To obtain a better agreement with the FE-
calculation it is possible to assume that the stress decreases over the section according to some
suitable function. In that case the right hand side of (7.3.1.11) has to be expressed as an
integral. However, it is of greater importance to find out how the distribution varies with the
load and the thickness of the section. Finally it must be kept in mind that the lower die at the
bottom in the FE-calculation is constrained to any movements in the z-direction while it in
reality is only constrained in the negative z-direction. The constraints in the FE-calculations
may introduce additional stresses.

Load case | X, Area 4

In order to determine the stress in the walls due to the punch load and since it dealt with adie
with a simple V-shape, (7.3.1.29) and (7.3.1.30) are inserted in (7.3.1.34) and (7.3.1.35)
respectively to obtain an expression for the wall thickness given geometrical data, punch load,
and tension. In order to make a comparison with the FE-cal cul ation the expressions above are

solved for o, andg,g, which yields

O =F, tana/((tana +tan B)-n(13 + B2 - B, (1 + 3))+ A, ) =
610° tan 45° /((tan 45° + tan52°)(- 6(380 (250 + 40% — 40(380 + 250)) + 802500)) M Pa =

7MPa
(9.3.1.6)

O = F, tan B((tana + tan B)(- n(EF + BZ - B, (E+F))+ A ) =
610° tan 52°/((tan 45° + tan 52°)(- 6(430 (155 + 407 — 40(430 + 155)) + 608080)) MPa =

10MPa
(9.3.1.7)

Average values of the size of the casting structure have been inserted. The result from the FE-
calculation is shown in Figure 9.3.1.3.
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Commentsload case | X, Area 4

o, given by (9.3.1.6) and 0,5 given by (9.3.1.7) act in the areas indicated in Figure 9.3.1.3.

It is concluded that the assumption that the stress distributions are constant in their respective
area are not true. In the area valid for o, the stresses vary between a few MPa to 28 MPa

and locally even higher. These values are to be compared with the predicted value of 7 MPa.
The stresses for the area represented by o, vary between afew MPato 32 MPawith locally

higher values and the predicted value is 10 MPa. It seems to be a too coarse assumption
assuming the load to be equally distributed over the whole forming area. Instead it is
suggested to distribute the load equally over the forming radii. If necessary the expression
probably can be refined by taking abi- or tri-axial stress state into account.

Load case X, Areal and 5

With respect to what has been mentioned in section 7.3.1, the stress state in the walls due to
the load on the distance plates from the blank holder is calculated from (7.3.1.37). In this
caculations the stresses in the areas at the sides with z=740 mm and z=810 mm are
considered. As can be seen from Figure 9.3.1.1 and Figure 9.3.1.3, there is difference in
geometry between the areas. In the area with z=740 mm is aternative c applicable with C
substituted for C/2 and the same is valid for the two walls closest to the center line at z=810

73



mm, whilst alternative c with C=0 is valid for the outer walls. Starting with the area for z=740
mm and the distance plates closest to nearest the center line at z=810 mm theresult is

Fau 1.2110°

MPa=4MPa (9.3.1.8)

Ow = nBlA + %) ~ 14740(400 + 200)

For the outer distance plates at z=810 mm is aternative ¢ with C=0 applicable which yields

Fe, _ 1.2000°
JW = =
nBA 1440 #00

MPa=5MPa (9.3.1.9)

The corresponding displacements are calculated with help from (7.3.1.38) which yields

Uy =22 H =2 740mm=002mm
™ "E T 16500
g, 4
U, gioimer — —=H = 5810mm = 0.02mm (9.3.1.10)
' E = 165010
U, s100uter — ﬂ H= 3 810 mm = 0.02 mm
' E 165010

Commentsload case X, Areal and 5

From Figure 9.3.1.3 it isimmediately concluded that the stress levels vary in the walls. At the
distance plates at the height 740 mm the stress varies from a few to about 20 MPa and locally
higher. For the distance plates at height 810 are the corresponding values a few MPa to 16
MPa and locally higher. This indicates that the stress due to the punch aso influences the
areas under the distance plates and the adopted description is too simple. The difference in
stress between the analytical and FE-calculated values is reflected in the displacements, 0.02
mm from the analytical expression compared to 0.03-0.045 from the FE-calculations. It
should be noted that the shown displacements in Figure 9.3.1.4 are the magnitude of the
displacement vector, which means that the displacements in the walls not necessarily are
parale to the z-direction.

Load case XI, Area 3

In order to calculate the deflection in the area between the walls Figure 9.3.1.4 is considered.
The two areas having the largest deflections have a maximum deflection of 0.146 mm, but
after the deflections of the surroundings, which are about 0.087 mm, have been subtracted, the
maximum deflection of the area between the walls is 0.146-0.087=0.059 mm. The thickness
varies from 56 to 68 mm and the size of the plate is 255x460 mm. This means, as has been
mentioned earlier, that the derived expression may not give a reliable result since the
thickness exceeds one tenth of the shortest length of the sides. In the FE-calculation a load of
14 MPais applied. In (7.3.1.41) the load is calculated with help from the expression for Fg
,(7.3.1.9), i.e. the load is assumed to be equally distributed over the whole area, not only the
areas with radii. Finally it is assumed that the plate is deformed mainly normal to the surface.
Starting with the cal culation of Fg
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Fg = F.cosal(cosasing + cosfsing) =
6 ° 9.3.1.11
.6 [10° cos45 | N = 4.27010° N ( )
€0s45°sin52° + c0s52° sin45°

When the force is known, theload is calcul ated

6
Fe _42700° MPa = 6.23MPa (9.3.1.12)
S 685200

and finally the deflection using (7.3.1.41)

, - 1sd-v?) A'B*
32Et° 7A’B? - 2A’B? +10A° +10B°

1506.231-0.28?) 460" (255"
32M165M0° [62° 7 [460% [255° — 2 [A60° [255% [0.28 + 10 [460* +10[255*

mm = 0.02 mm

(9.3.1.13)

Comments load case XI, Area 3

A deflection of 0.02 mm from the analytical expression compared to 0.059 mm from the FE-
calculation means a difference of a factor three, which is not acceptable. The explanation is
found in the discussion above. What may reduce the error is the fact that it is not sure that the
displacement vector from the FE-calculation is normal to the surface. If this is the case, the
component normal to the surface will be less than 0.059 mm.
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Fig. 9.3.1.4. Deflections when the dieis closed.

Load transmission

Load transmission from from punch

punch at the depressions
(7x)

75000 N (16x)

Fig. 9.3.1.5. Load acting on the
lower die
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Load case XI1, Area 4

Figure 9.3.1.5 shows the loads acting in a flat lower die when the die is closed. Just as in the
case of V-shaped diesisthe load from the blank holder transmitted only at the distance plates.

Using (7.3.1.42) and solving for the stress acting at the walls due to the punch load yields

— FP
~ A+n(G(B-H)+B(H -B))
6010°
2241360 +12(490(40 - 380) + 40(380 - 40))

JW
(9.3.1.14)
MPa=15MPa

Commentsload case XI1, Area 4

As can be seen in Figure 9.3.1.6 the analytically calculated result is mainly in agreement with
the FE-calculation. Differences are found in the area where no force transmission takes place
and the conclusion is that the expression reflects the stress state well as long as the punch load
is distributed over the whole forming area. If thisis not the case, the area under the locations
where the punch load is transmitted has to be used.

Load case XIIl, Arealand 5

With reference to (7.3.1.37) and Figure 7.3.1.10, alternative a is the most suitable description
and the stress in the walls due to the load on the distance plates is calculated as

N 1.2010°
" nB(A+C) 16[20(300+ 440)

MPa=3MPa (9.3.1.15)

and the deflection, using (7.3.1.38), as

ag, 3
u, =—YH = 3
E 165110

640 mm = 0.01mm (9.3.1.16)

Commentsload case Xl 11, Areal and 5

The result from the FE-calculation is seen in Figure 9.3.1.6. The FE-caculation predicts a
dlightly higher stresslevel, 2-8 MPa, depending on location. Thisis due to the influence of the
punch load and it is suggested that a parameter that take this into account is incorporated in
(7.3.1.37). Regarding the deflections the agreement is satisfactory. See Figure 9.3.1.7.
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Fig. 9.3.1.6. Stress distribution in the lower die when the dieis
closed

Load case XV, Area 3

(7.3.1.41) can be used to calculate the deflectionsin flat lower dies as well, but firstly the load
giscaculated

6
F :ﬂMpa: 2 68 MPa (9.3.1.17)

gq= _P
S 2241360

Insertion in (7.3.1.41) yields

_15q(1-v?) A .
32Et®  7A’B? -2A’BV +10A* +10B*
2 4 4
15[2.68(1- 0.28?) 440° [360 e 0009mm

32[165010° [90° 7[440” [B60” — 2 [440° [360” [0.28 +10[240" +10[360"

(9.3.1.18)
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Fig. 9.3.1.7. Deflections when the dieis closed

Commentsload case XIV, Area 3

The calculation above was performed regarding the area with the largest deflection in Figure
9.3.1.7. The deflection in the surroundings shall be subtracted from the deflection at the center
to obtain a value which can be compared to value from the analytical expression. This means
that 0.044-0.033=0.01 mm shall be compared to 0.009 mm, an unexpected small difference,
since the thickness of 90 mm implies that the range of validity is exceeded according to what
has been mentioned in section 7.3.1. It was concluded in appendix A, that the derived
expression predicts too large deflections, when the thickness exceeds about one tenth of the
length of the shortest sides. The explanation to the result is probably found in how the load is
applied. In the FE-calculation the load is applied along the depression, i.e. more concentrated
compared to the equally distributed load in the analytical expression, and this yields a larger
deflection which in this case happens to contribute to make the results agree.

9.3.2. Punch —evaluation (Load case XV, XVI, XVII and XVIII)

The load is, just as in the case of the lower die (see section 9.3.1), applied in two different
ways depending on the type of cross section. Regarding flat punches, a solid body
corresponding to the lower die is merged with the punch in those areas where the force
transmission is said to take place. At the top of the merged body, i.e. the bottom of the lower
die, a contact load is applied corresponding to the reactive forces from the bolster. Of the
same reasons as mentioned regarding the lower die (see section 9.3.1) the load over the punch
isapplied as a pressure in dies with a V-shaped cross section.
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Load case XV, Area 4

Figure 9.3.2.1 shows where the load is applied in a V-shaped punch.

Load transmission
from lower die

Load transmission
from lower die

Fig. 9.3.2.1. Load acting at V-shaped punch when the dieis closed.

The situation is the same as in section 9.3.1, regarding the lower die, and (7.3.1.34) and
(7.3.1.35) are used once more in order to calculate the stress in the walls due to the load from
the lower die.

Oyn = Fytanal((tana +tan B)-n(13 + B2 - B,(1 +3))+ A,)) =
610° tan 45° /((tan 45° + tan52°)(- 4(330 (305 + 402 - 40(330 + 305)) + 546375)) = (9.3.2.1)
11MPa

Gy = F,tan Bl((tana + tan B)- n(EF + B? = B,(E + F))+ Ay )) =
6110° tan52°/((tan 45° + tan'52°)(- 4315245 + 407 - 40(315 + 245)) + 370570)) = (9.3.2.2)
23MPa

Commentsload case XV, Area 4

Considering Figure 9.3.2.2, g,,,= 11 MPa corresponds to the half where the stress in the
outer wall equals 25-30 MPaand o,,; = 23 MPa corresponds to the other half where the stress

in the outer wall equals 10-15 MPa. Therefore it is tempting to assume that the load mainly
affects the wall at the opposite side to the side where the load is applied. In order to

80



investigate the assumption closer the structure shown in Figure 9.3.2.3 is considered. In this
case al sections have the same lengths, but the calculations can equally well be performed
using different lengths. Force and moment equilibrium yields
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Fig. 9.3.2.2. Stresses in V-shaped punch when the dieis

closed
(1) Fa-v,+v, =0 (9.32.3)
V2
F
(—’) TA2+H1_H5=O (9.3.24)
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(My) M, =M, +(H, - H5)L[1+ %} —vlﬁ —VSL(\/E —%} =0 (9.3.25)

| i

I \== Hi 2 My Ms (Fe s

2 Fig. 9.3.2.3. Structure used to analyse
the force distribution in a punch.

Since there are six unknowns another three equations are required. Several approaches exist to
solve this kind of problem and in this case an energy method will be used. The structure is
divided into smaller parts according to Figure 9.3.2.6 and for each part the elastic energy is
calculated. The energy for the whole structure is calculated by summing up the contributions
from each part. Considering a beam according to Figure 9.3.2.4 and assuming the cross
section to be thin, i.e. only one stress component exists, and the material linear elastic, the
expression for the internal energy contribution due to bending reads

Ex _ _eM?
med:l v = jZE dv = H Z)yZdex{Z_/j\yzds}_lﬁﬁ()dx(g.&za)

The internal energy dueto uniaxial tension is

2 1 (PY
U, :J dv ZIE[§) dv _j——d (9.3.2.7)
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Fig. 9.3.2.4. Beam used to derive the
expressions for theinternal energy.

As can be seen from Figure 9.3.2.6 all segments are subjected to bending and tension. In order
to make a comparison between the magnitudes of the energies, Upeng is divided by Utens

M. (x)
Upes _ 2E1, _MZ(X)S _
U

3 2
= ﬁ’ S= bh:| = —12(PL) bh =
12

M, =PL, | e

1P P
2E S
1217

h2

z

(9.3.2.8)

tens

>>1

The conclusion is that if abeam is subjected to both bending and tension only the contribution
from bending has to be considered, provided that the force which gives rise to moment is of
the same order as the tensile force. All segments are loaded in the same way and therefore an
expression is derived for the bending energy, which can be used for al parts. Considering
Figure 9.3.2.5 the expression for the reaction forces reads

L,E I,

X v
MA @4‘_> MB

Fig. 9.3.2.5. Typica segment in the structure analyzed
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Fig. 9.3.2.6. Free body diagram of the structure shown in Figure 9.3.2.3



R,=R,=—A 8 (9.3.2.9)

With use of this expression for the moment at an arbitrary position reads

M, -M
M(X)=M, -R,x=M, —%x (9.3.2.10)

If (9.3.2.10) is inserted in the expression for the internal energy, (9.3.2.6), the following is
obtained

LV C D M,-M, Y. L
U—! 2bEIZ dX—ZEIZJ;(MA—_AL ij dX_E(Mi-'_Mé+MAMB)(9'3-2-11)

which can be used to derive expressions for the internal energies for each part according to
Figure 9.3.2.6.
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2
M1+H1L+Hl_v1£+(FA—V1_H1j£_H1+Vl
J2. 2 J2 )2 2
2
M1+H1L+ Hl_V1£+(FA_Vl_H1j£_ H1+Vl —_
J2. 2 J2 )2 2
£ _ViH, N
H1+Vl+ 3 \/E |_
2 J2
U = L
§=—
6El _ _
M1+H1L+|_Il Vl£+(FA—V1 Hle_HlJer
7z 2 7 )27z
M1+H1L+ Hl_VlL-I-(FA_Vl_Hle_ H1+Vl —_
N 7 )27z
F _Vl_Hl
H1+V1 3 \/E
+ L
2 V2 (9.32.13)

Except from (9.3.2.3), (9.3.2.4) and (9.3.2.5) another three equations are required to solve the
six unknowns. The remaining relations are obtained by using Castigliano’s hypothesis.
Considering the left hand end in Figure (9.3.2.3), the ends are clamped which yields following
boundary conditions:

oU =0 = Nodisplacement horisontally
OH,
ouU . .
aT:O = Nodisplacement verticdly (9.3.2.14)
1
ouU .
=0 = Nodopeat theend point
oM,

In the third boundary condition use of the differential equation of the deflection curve has
been made.

2
d \szﬂ = o= _ M (9.3.2.15)
dx* El dx ‘ El

z

6=—"=——=[—"dx (9.3.2.16)
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aU — a(Ul+lJ2a +U2b +U3 +U4) —

0= =
oH, oH,

2
<
+
HI
=
+
Z
+
/—'bﬂ
Z
+
I
I_
+

H, vlk)(“ 1 )+
ﬁ 2 22
H
M, +H,L+ Hl_v1£+(FA—V1_H1]£ (1+ij+

72 2 2 )2\ 2

2 - —_
L M1+H1L+Hl VL, FA_vl HoLY,, 1),
6EI J2 2 J2 )2 2.2

Vo Le MVl (o VimHOL_H+V L
1 1 \/E 2 A \/E 2 \/E

M +H1L Hl_Vl£+ FA_Vl_Hl L +
J2 2 J2 )2
M1+H1L+H1_Vl£+ FA_Vl_Hl L H +VL(1+LJ+
7 2 7z )20
MoeH Lo PV L VimHOL HH
2 2\ )2
F_Vl_Hl
H1+Vl+ 8 \/E L
2 V2

(9.3.2.17)
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AYA oV,
H, -V, L 1 1
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S SR 6
2\/_[M +H |_+H\/_V ; (FA—V—lJ_EHlj%]—
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J2 2)42
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4\/§(M1+H1L+Hi/§\/1%+(FA Vi 2H j%—Hi/Evl L]—
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V2 J2 )2
- - +
M1+H1L+Hl V1_+(FA—Vl HlJL—Hl VlL(ij—
V2 2 V2 )2 2 \42
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V,-H
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- +
M +H L+Hl Vl£+[FA_Vl Hl]E_Hl Vl —_
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aU — a(le-'-UZa +U2b +U3+U4) —

0=
M, oM,
M, +4M, +H,L)+H,L+6 M, +H L+H VL),
f 2
(M1+Hl|_)+6[|v| +H |_+ % [ j ]+
M, +H L+l 1L 1* (9.3.2.19)
L 2 2 2
6El
+
M1+H1L+|_| Vi Ly Fr— L |L_H -
2 2 2
V, -H
3 F - 1 1
H1+Vl 3 '\/E
+ L
2 V2

Solving the system of equations consisting of (9.3.2.3), (9.3.2.4), (9.3.2.5), (9.3.2.17),
(9.3.2.18) and (9.3.2.19) yields

_1F,[58+81/2)

Y4 110+4742
_1F,[130+130V2)
° 4 110+4742
_31LF,[1+42)
Y 2110+4742 (932.20)
v o 1 LF, (134 +141¢2)
6 110+4742
_ 5 F,[55+9v2W2
12 110+4742
1 F,(385+237v2 2
T 12 110+4742
and
Vi =-0,47 (9.3.2.21)
5

(9.3.2.21) states that, if the conditions are like in Figure 9.3.2.3, then the vertically directed
reaction force at the side opposite to the side where the load is applied is approximately two
times larger than the force at the same side. Under assumption that (9.3.2.21) reflects the force
distribution between the two sides in Figure 9.3.2.1 it is possible to determine the distribution
of Fya and Fyg given by (7.3.1.29) and (7.3.1.30).

90



I:VA = FVQ + Fvi = 0’47Fvi + Fvi = 1’47FV|,5’-‘\ (93222)
Fe = Fp +Fe = Fp +047Fp =147F

The superscripts refer to the position where the actual portion of the load acts. For example
F, refersto that portion of F, which acts at the same side asF,; . The corrected loads are

then calculated as

N Fba _ Fg  047F,
Foa=—-tFRa- = +
147 147 147 147
V*B :&4_ F,, - Foe _ Foa + 0,47F 4
147 147 147 147

(9.3.2.23)

If the expressions for F,, and F, (7.3.1.29) and (7.3.1.30) respectively, are inserted in

(9.3.2.23) and F,, and F areinserted in (7.3.1.34) and (7.3.1.35) and solved for the stress
following expressions are obtained

0,6401078 F, (0.106292517 [10° cosa sin B + 0.49957483[10° cos Asin 0’)
a. =
e (cosasin B+ cosBsina) (A, +n(-13 +1B, + JB, - B))
0,64107° BO0O° (0.106292517 [10° cos45°sin52° + 0.4995748310° cos52°sin 45°)

(cos45°sin52° + c0s52° sin 45°)(546375 + 4(- 330 (305 + 330 (40 + 305 (40 - 407 )
(9.3.2.24)

MPa =13 MPa

_ 064010°°F, (0.106292517 110° cosarsin 3 + 0.49957483110° cos Bsina)
- (cosasin B +cosBsina) A, +nl- EF +EB, + FB, - BZ))
0,64010°° (5 110°(0.106292517 [10° cos45° sin 52° + 0.49957483[10° cos52°sin 45°)

(cos45°sin52° +00552° sin 45°)(370570 + 4(- 315 (245 + 315 (40 + 24540 - 40° ))
(9.3.2.25)

Ows

MPa =22 MPa

It is concluded that almost no changes occurred compared to (9.3.2.1) and (9.3.2.2), since Fa
and Fg in this case are of the same order. In the analytical expression, it has been assumed that
the load is equaly distributed over the whole forming area, whilst the load in the FE-
calculation only has been applied at the forming radii. This may explain the difference in
stress at the wall at the side corresponding to the up-side of the trunk lid, since the forming
radii are located at the boundary (see Figure 9.3.2.2). It is more difficult to give an
explanation to why stress is lower in FE-calculation compared to the analytical result at the
opposite wall. Therefore a closer analysis of the principal stressesis recommended, in order to
determine if a description considering more than one stress component has to be adopted.

Load case XVI, Area 3

(7.3.1.41) is used to calculate the deflection in the area between the walls in V-shaped
punches. Firstly, it is necessary to calculate the force, which is done using (7.3.1.9)
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F, = F, cosa /(cosasin 8 +cosBsina) =

610° cos45° /(cos45°sin52° + 00s52°sin45°) N = 4,27 10° N

Secondly the load per unit areais determined

6
Fo _42700° o — 6.84MPa
S~ 624000

Finally, the deflection is calculated using (7.3.1.41)

u_15q(1—|/2) A*B* _
32Et° 7A’B” - 2A’B? +10A" +10B
1506.84(1- 0.28?) 360* (395"

mm
32M65010° [60° 7[360° [395° — 2[B60° [B95° [0.28 +10[B60* +10 395"

0.063mMm

Commentsload case XVI, Area 3

From Figure 9.3.2.7 it is seen that the deflection normal to the surface is 0.202-0.225 mm.
The deflection in the surroundings has to be subtracted in order to make a comparison with
the calculated value, which yields 0.068-0.067 mm. The analytical result and the FE-
calculation are in good agreement, which is unexpected since it was concluded in appendix A,
that the analytical expression over estimates the deflection when the thickness exceeds
approximately one tenth. In this case the average thickness is 60 mm. The explanation lies
probably in how the load is applied. In the analytical expression the load is assumed to be

(9.3.2.26)

(9.3.2.27)

(9.3.2.28)

equally distributed whilst it is concentrated to the forming radii in the FE-model.
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Displacem.

Yalue

.6/5E-01
.045
225E-01
000

Fig. 9.3.2.7.Deflection when the dieis closed.

Load case XVII, Area 4

Regarding flat punches, Figure 9.3.2.8 shows the areas where the load transmission is
assumed to occur. The load is applied via a solid body, corresponding to the lower die,
merged with the punch at the contact areas. At the bottom of the merged body, corresponding
to the interface between the lower die and bolster is a contact load applied. This arrangement
is assumed to reflect the effect of the reaction forces from the bolster.
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Just as in the case regarding flat lower dies, (7.3.1.42) is valid for calculation of the stress in
the walls in flat punches due to the load from the lower die, which if solved for the stress
reads

o, = Fe
" A+n(G(B-H)+B(H -B))
6010°
2180800 +16(390(40 - 350) + 40(350 - 40))

(9.3.2.29)

MPa=13MPa

Load transmission
from lower die at
the depressions

Load transmission from lower die

Fig. 9.3.2.8. Load acting at punch with flat shape when the dieis closed.

Commentsload case XVII, Area 4
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Theresult, shown in Figure 9.3.2.9, isin fair agreement with the analytical result.
Load case XVIII, Area 3

YON MISES

Criterion

MPA

/8.651 >
23.000
20.700
18.401
16.

13.

Fig. 9.3.2.9. Stresses in punch due to load from the lower die

Knowing the punch force and the area over which it is distributed, the force per unit areais
calculated

F 610°

il MPa=275MPa (9.3.2.30)
S 2180800

q:

(7.3.1.41) is now used to calculate the deflection in the frame at the centrein fig. 9.3.2.10
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’ _15q(1-v?) A*B* _
32E°  7A’B” - 2A°B? +10A" +10B°
15[2.75(1- 0.28?) 360°* [395*

mm
32M165M0° M3% 73607 [B80? — 2 [B60% [B80? [0.28 +10[B60* +10B80*
0.007 mm

(9.3.2.31)

Palette

Displacem.
Z Yalue
MM

.705E-03 >
080
.592E-01
-383E-01
-175E-01
-330E-02
-241E-01
—.045
-658E-01
.866E-01
-.107
-.128

Fig. 9.3.2.10. Deflection due to the load from the lower die.

Commentsload case XVIII, Area 3
In order to make a comparison with the results from the FE-calculation, the deflection in the

surroundings has to be subtracted. This means that 0,056-0,046 shall be subtracted from
0,0866-0,0568 which yields 0,03-0,01 mm. Once again it is concluded that the thickness of
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the casting, ~90 mm, compared to the dimensions of the frame is too thick to allow the shear
stresses to be neglected, which means that (7.3.1.41) is not applicable. The absence of the
expected overestimation is explained from how the load is applied. In the analytical
expression the load from the lower die is assumed to be equally distributed, whilst it in the
FE-model is distributed over those areas with forming radii, which means that the load locally
is higher in the FE-model.

9.3.3. Blank holder —evaluation (L oad case XI X and XX)

When the die is closed the load from the lower die is assumed to take place only at the
distance plates. In the FE-calculations the load transmitted from the lower die, is distributed
equally over the distance plates. Over each distance plate the load is applied as a contact
pressure.

Load case XI X, Area1land 5

Using (7.3.1.37) on the part of the die indicated in Figure 9.3.3.1, yields the following stress
inthewalls

_ Fyy  _ 1200°
ag.., = =
" nB(A+C) 14[%0(365 +365)

MPa=3MPa (9.3.3.1)

where aternative ¢ from section 7.3.1 has been used. The deflection is calculated using
(7.3.1.39)

u, =—%H-= 3 ~317mm =6010"° mm (9.3.3.2)
E 165010

Comments load case XI X, Arealand 5

Regarding the stress 3 MPa from the analytical expression, it shall be compared to 2,4-9,6
MPa from the FE-calculation. It is seen in from Figure 9.3.3.1 that the stress is in fair
agreement with the analytical expression in the lower half of thewall. If the stress distribution
shown in the figure turns out to be representative for this load case, it is possible to adopt a
description where the stress varies with the height. Figure 9.3.3.2 shows the deflection, which
varies between 0.0051-0.0074 mm. This is in fair agreement with 0.006 mm from the
analytical expression flat though the stress distribution is not uniform. If a non-uniform stress
distribution is used in the analytical model the deflection is calculated using

— duz — f — f I:BH
E,=—Lt=u, = jszdz = J'—dz (9.3.3.3)
dz 5 ) S(z)E

where §2) indicates that the area over which the stress is distributed is a function of the
position in the z-direction. It is also concluded, by comparing the distance plates |ocated close
to the sides with the others, that the position of the distance plates has a clear influence on the
stresses and deflections.
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Distance plate considered in the ' Palette
calculations

YON MISES
Criterion
MPA

085
.000
800
.600
400
1,200 -
001
4,801
.601
401 -
201
»103E-02

Fig. 9.3.3.1. Stressin V-shaped blank holder due to the load from the lower die
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Falette

Displacem.
Z Yalue
MM

.208E-01
.186E-01
163E-01

014
119E-01
L963E-02 -
.740E-02
517E-02
L294E-02
.713E-03
- . 152E-02

Fig. 9.3.3.2. Deflection in V-shaped blank holder due to the load from the lower die

Load case XX, Arealand 5

Following the procedure concerning V-shaped blank holders, (7.3.1.37) is used to caculate
the stress in the walls in flat blank holders due to the load from the lower dieg,

_ Fy  _ 1200°
g.., = =
" nB(A+C) 16[40(245+ 490)

MPa=3MPa (9.3.3.4)

where aternative b from section 7.3.1 has been used. The deflection is calculated using
(7.3.1.39)

U= =3 480mm=9110° mm (9.3.3.5)
E 165010

Commentsload case XX, Areal and 5

Just as in the results regarding V-shaped blank holders, it is concluded that in the lower half
of the wall, the FE-calculation isin fair agreement with the analytical expression. This means
that 2,4-3,6 MPafrom fig. 9.3.3.3 shall be compared with 3 MPa. In the upper half of the wall
the stress locally takes values about 6 MPa. With regards to the deflection 0,009 mm from the
analytical expression it shall be compared to 0.012-0.014 mm in Figure 9.3.3.4.
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_F?| Pamnel;w
YON MISES

Criterion

i
i
I

=)

i
.195E-02

Figure 9.3.3.3. Stress in flat blank holder when the dieis closed

A even better agreement will probably be achieved if a non-uniform stress distribution is
used. As indicated in (9.3.3.3) the deflection in such cases is calculated by integrating the
strain.
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Displacem.

Z Nalue
[y}

.763E-03
.881E-03
.252E-02
LA17E-02
.581E-02
. 746E-02
.910E-02
L107E-01
.124E-01

e
A57E-01

Figure 9.3.3.4. Deflection in flat blank holder when the dieis closed

9.4. Dieon trestles—evaluation (L oad case XXI and XXI1I)

Load case XXI
Starting with aflat lower die, following values applies

h =600 mm

| =3160mm
n=4

A =155mm

B =50mm
C=155mm (94.1)
D =300mm
J=90 mm
F=40mm

H =600 mm
W =106929 N

which inserted in (8.2.4) yields

101



& =0,027 mm (9.4.2)

J_T Palette |
Displacenm.

Z Yalue
il

.286E-01
257E-01
229E-01

B
020
B

A71E-01

142E-01
A113E-01
.847E-02
.5HIE-02
2T1E-02

Figure 9.4.1. Deflection in aflat lower die due to — 171E-03
its own weight when stored on trestles.

Commentsload case XXI

As expected, the result is in agreement with the finite element calculation, since the shape of
the lower dieis similar to the shape used in the derivation, see Figure 9.4.1.

Load case XXI|

The same calculations carried out for aV-shaped lower die using (8.2.7) with
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h =235mm
| = 2905 mm
n=6

A =190mm
B =50 mm
C=190mm (9.4.3)
D =225mm
J=60mm
F=40mm

H =235mm
W =90252 N

yields

5=0.24mm (9.4.4)

Palette

Displacenm.
Z Yalue
MM

.456E-03
.649E-02
.134E-01
204E-01
2/3E-01
.343E-01
A412E-01
.482E-01
.ob1E-01

-.062

-.069

Figure 9.4.2. Deflection in aV-shaped lower die
due to its own weight when stored on trestles.
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Comments load case XXI |

The inserted values applies to the lowest section, i.e. a x=0. As can be seen when the
anaytical result is compared with the finite element calculation (see Figure 9.4.2), (8.2.7)
over estimates the deflection by a bit more than a factor three. The explanation probably lies
in geometrical differences. Due to the V-shape the load as well as the moment of inertia varies
with the position along the x-axis, whilst it in (8.2.7) is assumed that the load is equally
distributed and the moment of inertia constant. By taking the variation of moment (load) and
moment of inertia into account when integrating the differential equation of the deflection
(see (9.3.2.15)), an expression for the deflection is obtained, which probably would yield a
better agreement.
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10.

Results

The outcome from the comparisons between analytical calculations and FE-calculations,

made in Section 9, are summarised in Table 10.1. A summing-up of the load casesis shown in

Table 6.2.
Load Analytica Analytical result FE result Figure
case expressions
I (7.1.1.9),(7.1.2.10) | 10 MPa, 17 MPa 4-12 MPa, 10-14 MPa | 9.1.1.3
I (7.1.1.11) 4 MPa 2 MPa 9.1.15
11 (7.1.1.9),(7.1.2.10) | 10MPa, 17MPa | 6-19 MPa, 6-40 MPa | 9.1.2.2
\% (7.1.1.11) 4 MPa 2-4 MPa 9.1.24
V (7.1.2.8) 0.005 mm 0.06 mm 9.1.2.6
VI (7.2.3), (7.2.5) 0.2 mm 0.045 mm 921
VI (7.2.3), (7.2.5) 0.02 mm 0.055 mm 9.2.2
VIl (7.3.1.10), 44 MPa 15-50 MPa 93.1.2
(7.3.1.11),
(7.3.1.12),
(7.3.1.20),
(7.3.1.26)
IX (7.3.1.29), 7 MPa, 10 MPa 0-28 MPa, 8-32 MPa | 9.3.1.3
(7.3.1.30),
(7.3.1.34),
(7.3.1.35)
X (7.3.1.37), 4 MPa, 5 MPa 0-20 MPg, 0-16 MPa | 9.3.1.3
(7.3.1.38) 0.02 mm, 0,02 mm 0.03-0.045 mm
Xl (7.3.1.9), (7.3.1.41) 0.02 mm 0.059 mm 9.3.14
X1l (7.3.1.42) 15 MPa 12 MPa 9.3.1.6
X111 (7.3.1.37), 3 MPa, 0.01 mm 2-8 MPa, 0.01 mm | 9.3.1.6,
(7.3.1.38) 9.3.1.7
XIV (7.3.1.41) 0.009 mm 0.01 mm 9.3.1.7
XV (7.3.1.29), 13 MPa, 22 MPa 25-30 MPa, 10-15 9.3.2.2
(7.3.1.30), MPa
(7.3.1.34),
(7.3.1.35),
(9.3.2.21),
(9.3.2.23)

XVI (7.3.1.9), (7.3.1.41) 0.063 mm 0.068 mm 9.3.2.7
XVII (7.3.1.42) 13 MPa 5-13 MPa 9.3.2.9
XVIII (7.3.1.41) 0.007 mm 0.01-0.03 mm 9321

0

XIX (7.3.1.37), 3 MPa, 0.006 mm 2.4-9.6 MPa, 9331

(7.3.1.38) 0.0051-0.0074 mm | 9.3.3.2
XX (7.3.1.37), 3 MPa, 0.009 mm 2.4-6.0 MPa, 9.3.3.3
(7.3.1.38) 0.012-0.014 mm 9.3.34

XXI (8.2.4) 0.027 mm 0.029 mm 94.1

XXII (8.2.4) 0.24 mm 0.069 9.4.2
Table 10.1.
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11.

In this work analytical expressions have been derived. Based on knowledge of punch force,
blank holder force, thickness and yield stress of the blank and geometrical quantities, the
casting structure can be dimensioned with respect to certain load cases. These load cases are
assumed to reflect the significant sequences during a press stroke. Dies with aflat profile and

Discussion

aV-shaped profile were studied.

A concentrated summing-up of the comments made in connection to the resultsin section 9 is

madein Table 10.1.

Load case

Comments

The results from analytical calculations are in fair agreement with the
results from the FE-cal cul ation.

The analytical expression seems to be usable, but since no draw bead
exists in the CAD model, the load in the FE-cal culation was applied on
the radius surrounding the forming area. This means that the blank
holder load not only was transmitted in the vertical direction, which
yielded alower stress in the considered walls (see Figure 9.1.1.6)
compared to the result from the analytical expression.

In the lower half of the walls the results from the anal ytical expressions
arein fair agreement with the results from the FE-cal culations. However,
in the area close to the position of the draw bead, the stresslevel is
considerable higher. Thisis explained from a high surface pressure and
ismore related to the positioning of the draw beads, than the dimension
of the walls themselves. The used model can be refined considering a
horizontal force contribution as well and a stress distribution that vary
with position.

The results from analytical calculations are in fair agreement with the
results from the FE-cal cul ation.

The deflection due to torsion is 10 times larger in the result from the FE-
calculation compared to the result from the analytical calculation. The
explanation probably lies in the boundary conditions. In the anal ytical

expression the ends are clamped, whilst the result from the FE-
calculation shows upon torsion of the ends aswell. A suggestionisto
add a parameter in the analytical expression, which takes this effect into
account.

VI

It seems to be atoo coarse approximation, only considering that parts of
the cross section indicated in Figure 7.2.1. The analytical expressions
predict a5 times larger deflection than the FE-calculation. The result
from the FE-calculation indicates that other parts than the considered
contributes to make the cross section stiffer. However, the deflection

may be larger in reality than the result from the FE-calculation, since the

blank holder and lower die, to some extent, are able to move
independently. More dies have to be analysed before a definite statement
regarding the analytical expression can be made.

VI

The same expression, (7.2.3), asin load case VI has been used, but in
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contradiction the deflection according to the analytical expression is
approximately three times smaller compared the deflection according to
the FE-calculation. This indicates the need for more simulations or
measurements before reliable expressions can be derived.

VIl

The analytical expression assumes the stress only to be distributed over
the upper half of thewall, i.e. theareaL x B/2 (see Figure 7.3.1.1).
According to the result from the analytical expression, the stressin the
lower half at most regions does not exceed 15 MPa. In the upper half the
stress level mainly varies between 15-50 MPa. The analytical expression
seems to be useable, but can be refined considering the stress no to be
equally distributed over the cross section.

Regarding area 4, it seems to be a too coarse approximation assuming the
load to be equally distributed over the whole forming area. It is
suggested to distribute the load equally over the forming areas instead.
The expression can probably be refined by adopting a bi-axial stress
state.

The predicted stresses from the analytical expressions are too low
compared to the FE-calculation. Thisis due to the influence of the punch
load in area 1 and 5, which is neglected in the analytical expression. The

influence can be taken into account by introducing a parameter
dependent on the punch load and the distance between forming area and
distance plate.

Xl

Some uncertainties regarding the result exist. The thickness of the
casting exceeds 1/10 of the length and width. This means, according to
what has been mentioned in Appendix A, that the range of validity of the
analytical expression is exceeded. On the other hand, in the FE-
calculation the load is not distributed over the whole area, as has been
assumed in the derivation of the analytical expression, but in those areas
containing forming radii. Such load distribution may contribute making
the result become | ess erroneous.

X1l

The analytical model seems to be applicable, since forming radii is
spread over the maor forming area. In the area without forming radii, the
FE-calculation predict alower stress and the conclusion isthe same asin

the case of V-shaped dies, load case I X.

Xl

Seeload case X.

XV

Seeload case X|.

XV

See commentsto load case | X. Besides, acloser analysis of the principal
stresses is recommended in order to determine an analytical expression
that takes more than one stress component into account.

XVI

See load case X|

XVII

Seeload X1

XVIII

See load case X|

XIX

The results from the analytical calculations are in fair agreement with the
results from the FE-cal culation, with respect to stresses aswell asto

deflections. | probably possible to refine the expression by letting the
area, over which the stress is distributed over, depend on the position.

XX

Seeload case X1X

XXl

The results agree

XX

Due to the V-shape the load as well as the moment of inertia varies with
the position along the x-axis, whilst it in (8.2.7) is assumed that the load
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is equally distributed and the moment of inertia constant. By taking the
variation of moment (load) and moment of inertia into account when
integrating the differential equation of the deflection (see (9.3.2.15)), an
expression for the deflection is obtained, which probably would yield a
better agreement.

Table11.1

It must be kept in mind that the die items, lower die, punch and blank holder, were considered
one by one. This implies that the load distributions were user defined. No consideration was
taken to the complicated force transmission between the die items. Before any effort is made
to refine the anal ytical expressions, it is therefore suggested to perform FE-calculations on the
studied dies as well as other dies that take contact problems into account.

It is aso worth mentioning that, since the applied blank holder and punch loads are
representative for deep drawing operations and the stresses and deflections in common are
low, there seems to be a potentia to reduce weight and cost by reducing the die casting
dimensions.

A vyidd criterion that takes the hydrostatic dependence in cast iron into account was
suggested. In this, which was proposed by Drucker and Prager, the deviatoric stress state
varies linearly with the hydrostatic. However, in the software used in the FE-calculations in
thiswork, only von Mises yield criterion was implemented.

The comparisons between the results from the analytical expressions and the results from the
FE-calculations show upon some indications. Regarding dimensioning of the walls located
directly under the draw beads, area 1, with respect to the load case when the blank holder hit
the lower die, the uni-axial stress state used in the analytical expression seems to be
applicable. This applies to blank holders and lower dies irrespective of die type. The stress
level close to the draw bead is higher than the analytically calculated value. Thisis explained
from a high surface pressure and is more related to the position of the draw bead relative the
boundary than the dimension of the wall.

For that case when the die is run in a single acting press, the blank holder is placed on
nitrogen springs or air cushion pins. Since the blank holder is subjected to torsion, expressions
for derivation of the position of the shear center were derived. However, the FE-calculation
indicated that the moment axis not were located in the shear center. Instead the torsion
occurred about the contact point at the springs / pins. In the analytical expression the ends of
the section subjected to torsion were assumed to be clamped, which was not the case in the
FE-calculation. This yielded an approximately 10 times higher deflection in FE-calculation.
Anyway, the derived expression is judged to be usable if a parameter dependent on geometry
can be incorporated.

When it comes to dimensioning of area 2 when the punch hits the blank, it is hard to make a
statement regarding the reliability of the analytical expressions. It seems to be a too coarse
approximation, only considering the blank holder surfaces to contribute to the stiffness (see
Figure 7.2.1). There are numerous of variants of casting structures, which makes it hard to
derive analytical expressions. Besides, to some extent the blank holder probably will move
independently of the lower die. In the FE-calculations performed in this work the blank holder
and the lower die were prevented to move independently. Data from simulations incorporating
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contact problems or measurements are required before reliable analytical expressions can be
derived.

Concerning dimensioning of the walls under the forming area, area 4, the load throughout this
work has been assumed to be equally distributed over the whole forming area as far as the
analytical expressions concerns. In the FE-cal culations the load has been applied only on the
forming radii, which probably reflect the reality better. From the results it is concluded that
the load only influence a limited area close to where it acts. In the analytical expressions shall
therefore not the load be distributed over the whole forming area, but the area containing
forming radii. A uni-axia stress state seems to be applicable for lower die and punch in flat
dies. For V-shaped dies there is a need for being able to determine the distribution over the
vertical walls given an applied load. Such expression was derived for the structure shown in
Figure 9.3.2.3 with the result stated in (9.3.2.21). Neither this expression nor the differences
between how the load is applied in the analytical expression and the FE-calculation, fully
explains the lack of agreement. Regarding area 4 in V-shaped lower dies and punches, it is
therefore suggested to investigate the possibilities to incorporate a model that take a bi-axial
stress state into account.

The calculation of deflection in the forming area, area 3, was done using an expression based
on Kirchoff plate theory. Thistheory isvalid for thin platesi.e. plane stress. In Appendix A it
was concluded that the theory works well for plates where the shortest side exceeds one tenth
of the thickness. The anaytical calculations showed upon fair agreement with the FE-
calculation for all studied dies, despite that the thickness in the studied dies exceed one tenth
of the thickness. The explanation probably lies in the load distribution. In the analytical
expression the load was assumed to be equally distributed, whilst the load only was
distributed over the areas with forming radii in the FE-calculations. The fact that the loads in
the FE-cal culations only were |ocated to areas with forming radii seems to compensate for the
expected under estimation using the analytical expression.

A load case when the die is closed, which applies for V-shaped lower dies only, is that which
covers the forces trying to split the die in area 6. The suggested tri-axial stress state seems to
work well. The stress was assumed to be distributed equally over the upper half of the cross
section and the expression can be refined if position dependent distribution is adopted.

The force transmission between blank holder and lower die when the dieis closed takes place
at the bottom plates. This affectsthe wallsin area 1 and 5. The adopted analytical model, only
taking a uni-axial stress state into account, seems to be usable regardless of die type. The
anaytical expression can be refined by introducing a position dependence on the area in
which the stress acts. This would allow the stress to increase with a decreasing distance to the
distance plate. In addition, in the lower dies the influence from the load in the forming area
has to be considered to make the analytical expression agree with the FE-calculation. This can
be done by introducing a parameter that is dependent on the punch load and the distance
between the boundary of the forming area and the distance plate.

The derived analytical expressions for calculation of deflection of the die when stored on
trestles worked well for the flat die, but not for the V-shaped die. By incorporating the
variation with the position regarding the load as well as the moment of inertia when
integrating the differential equation of the deflection curve, (9.3.2.15) the expression will be
usable.
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The aim was to derive expressions to be used during the die design and this work ends with an
example on a suggested program structure for dimensioning of a V-shaped lower die.
Required input is punch load, blank holder load, yield stress and thickness of the blank,
geometrical quantities of the casting structure and allowed maximum stresses and deflections
of the casting structure.

Dimension the thickness of the wall in area 1 with
respect to when the blank holder hits the lower die
using (7.1.1.9) and (7.1.1.10).

A 4

Dimension the thickness of thewallsin area 1 and 5 with respect to
when the dieis closed using (7.3.1.37).

A 4

Regarding area 1, chose the largest of the thicknesses calculated in the
expressions above

A 4

Check, using (7.3.1.38), if the prescribed deflection is exceeded. If exceeded,
dimension area 1 and 5 with respect to prescribed deflection

A 4

Dimension area 6 using (7.3.1.10), (7.3.1.11), (7.3.1.12),
(7.3.1.20) and (7.3.1.26).

A 4

Dimension area 2 using (7.2.3) and (7.2.5)

\ 4

Dimension area3 using (7.3.1.9) and (7.3.1.41).

A 4
The casting structure is dimensioned. Check if the prescribed
deflection is exceeded using (8.2.4). If the deflection is exceeded,
dimension with respect to this load case.
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13. Mathematical appendix
13.1. Part A-Platewith equally distributed load

The task is to determine the deflections of a plate with an equally distributed load. The
problem is originally three dimensiona but here the Kirchoff plate theory is adopted, which
means that the problem is transformed in to two dimensions at the expense of the range of
validity of the solution. The resulting differential equation to be solved according to this

theory reads [5]

2 2 2
M, , ,0°M,,  O'M,

+g=0 Al
ox” oxay ay’ q A

where M, and My, are the bending moments per unit length, M,y the twisting moment per unit
length and q is a transverse load (force per unit area) measured positive in the positive z-
direction, c.f. the Figure A.1. The moments are defined as

t/2
M, = jzaxxdz
-t/2
t/2
M, = jzawdz (A.2)
-t/2
t/2
M, =M, = jzaxydz

-t/2

VA
y Oyz
X A m
A?-XZ |:>
g A M
-, My oy | 7 "
o T M

Figure A.1. Definitions of stresses and moments
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When deriving (A.1) the shear strains y,, and y,, were set to zero but oy, and gy, were used to
maintain equilibrium. To get rid of this contradiction oy, and oy, were assumed to be small and
plane stress was adopted. The consequence is that this theory isonly valid for thin plates.

To solve (A.1) an approximate solution strategy was chosen, i.e. the finite element method.
Before this method can be used, some manipulations of (A.1) have to be performed: firstly
establish the weak form of the differential equation, secondly make an element wise
approximation over the plate of the unknown variable and finally choose the weight function
according to the Galerkin method. When this is applied to (A.1) under the assumption of
linear elastic isotropic material behaviour and with the plate thickness set to constant, the

resulting finite element formulation is given by [5]

UBTf)BdS]a :§NT(VM +dM—”mjd| ~$(ON)" M di + [N"qdS
S | dm | A

which can be written in a compact format as
Ka=f, +f, (A.4)
using K, i.e. the stiffness lower die, as

K :jBTBBds (A.5)
S
the boundary vector fy,

dMm,,
f, = jIBNT[an +d—mjdl —f(mN)Tanou (A.6)

and f| the load vector, as

f, :jNqus (A.7)
S

In the derivation of (A.3) the unknown deflection w was approximated as
w=Na (A.8)
N denotes the globa shape functions and a the nodal values given by
ul
u2
N=[N, N, - Ny ], a=| (A.9)
undof

and ndof is the number of degrees of freedom. B is defined as
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S
dx?
* * 62
B=0ON, O= oy (A10)
62
0Xxoy
and D as
3E 1 v 0
D=\ Alv 10 (A.11)
12(1-v 1
00 E(1—u)

where E denotes the modulus of elasticity, t the plate thickness, | the boundary and v
Poisson’s ratio. The interpretation of Vi, m, n, My, and My, is clarified from Figure A.2 in
analogy with Figure A.1 and equation (A.2).

y
Onz m Vi,
7y 7y
X
Onm —> Mpm
o > <+
Onn n

nn

Fig. A.2. Definitions of stresses and
moments in an arbitrary section

The plate is represented with rectangular elements according to Figure A.3 [6]. Each element
has 12 degrees of freedom where uz, us, U7 and uyp denote deflections and u,, us, Us, Ug, Us, Ug,
upiand up, rotations. The deflections are measured as positive in the positive z-direction. The
rotations are defined by dw/dn and if the coordinate system shown in Figure A.3 is chosen
the rotations can be calculated as

dw
& = Ug, Ug, Ug, Uy,

dw
—— = Uy, U, Ug, Uy,

dy

(A.12)
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The rotations defined as positive are shown in Figure A 4.

dl a | -
U2 A i A Ug
A Yy A
A y
8
t * > Uil .
U1o u7 b
u WX Y o
3 »
A A |Us
A 4
u
Ly ¥ > Y
u
U1 2 Usg

Fig. A.3. Rectangular 12 degrees of
freedom plate element.

Fig. A.4. Definition of rotations

Now, when the type of element to build up the plate has been chosen the next step is to derive
an expression for the element stiffness lower die, K, and the element load vector, f°. When

these are known, they are assembled using topology data to the global stiffness lower die, K,
and the global load vector, f|. After this has been done, (A.4) is used together with specified
boundary conditions to obtain a linear system of equations. The fina step is to solve this
system of equations for the unknown degrees of freedom, a, which specifies the deflections
and rotations in each node.

Following the procedure outlined above, it is necessary to firstly approximate the deflection
over one element corresponding to the global approximation (A.8). Since the element has 12
degrees of freedom a polynomial containing 12 terms has to be used which yields the
approximation
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W=a, + @, X+ A5y + A, X +a Xy +agy” +a, X +agx’y +agxy’

3 / ) (A.13)
+a10y +allX y+a12xy
which rewritten in lower die form reads
W:Nu,ﬁzll x y x* xy y2 xX* x%y xy? y* Xy xy3]
al
a, (A.14)

a=
‘712

The unknown constant coefficients o, are undesirable, but by expressing these coefficients in
terms of the deflection in the nodal points, they do not enter the calculations. This is done in
the C-lower die method as follows [5]. With (A.12) and A.4 in mind the nodal values are
expressed with help from (A.14) as

a®=Ca  (A.15)

where
ul
e u2
a = . (A.16)
l"112
and

-a -b a* ab b* -a® -a*bh -ab* -b® a’b ab®
0o 1 0O -a -2 O a’ 2ab 3p* -a* -3ab?
-1 0 2a b 0 -3a? -2ab -b? 0 3a’b b3

1

0

0

1 a -b a® -ab b? a® -a’b ab®> -b® -ah -ab’

0 O 1 0 a -2b 0 a’ -2ab 3p? a’ 3ab?
C= 0O -1 0 -2a b 0 -3a* 2ab -b? 0 3a’h b* (A17

1 a b a ab b’ a’ a’b ab®* b’ a’b ab®

0O 0 1 o0 a 2b 0 a’ 2ab  3p* a° 3ab’®

0O -1 0 -2a -b 0 -3a* -2ab -b? 0 -3 -b®

1 -a b a* -ab b* -a® a’b -ab®* b® -ab -ab’

0 O 1 0 -a 2b 0 a’ -2ab 3p? -a® -3ab?

0 -1 0 2a -b 0 -3a> 2ab -b> 0 -3’ -b® |
)
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where the coordinates according to Figure A.3 have been inserted. Solving (A.15) for a
yields

a=C™a® (A.18)
which inserted in (A.14) gives an expression without e for the deflectionsin one element as
w=NC™a®=N°®a° (A.19)

where N°® denotes the element shape functions. There is no need for calculating the element
shape functions explicit. Instead (A.5), (A.10), (A.11), (A.17) and (A.19) are used to calculate
the element stiffness lower die K®.

<= [8BBraA= [ ON° | Biinas= [ Dffic )| Blfckis-
S S S
| ((éﬁjc-le B(ﬁﬁjc*ds =c™' (éN)T DONdSC™ = (A.20)
S S

c' j T(ﬁﬁy D [ NdxdyC ™

a-b

ab/x T *
Carrying out theintegral | J'(D Nj D O Ndxdy following lower dieis obtained

-a-b
[0 00 0 0 0 0 0 0 0 0 0
000 0 0 0 0 0 0 0 0 0
000 o 0 0 0 0 0 0 0 0
000 -2 0 - 0 0 0 0 0 0
3(|/2 —1) 3(1/2 —1)
3 3
000 0 22 0 0 0 0 0 237 23b
3V +1 QV+1 v+
000 - 0 4ab 0 0 0 0 0 0
37— 2 -1
42% 42%
000 0 0 0 0 - v 0 0 0
V2 -1 3p2 -1
£+ 2a% _ 2a3va
3 3 3 42
g0 00 0 0 0 0o - 0 i 0 0
3p2-1 3p2-1
_ab® _2ab®  2ab%
4a% 3 3 3
000 0 0 0 224 0 - 0 0 0
vZ -1 3p? -1
3 3
000 0 0 0 0 - _gabv 0 - Aab 0 0
3p? -1 v? -1
6[263b3 +ﬂ B asbv]
3 9 5 5 3,3
000 0 22’ 0 0 0 0 0 - _2ah
3v +1) V2 -1 3 -1
[_ 2%° _ab®  ab®
3 3,3 9 5
000 0 2ab 0 0 0 0 0 _2ab
3 +1) ﬁv—l V2 —1]
where
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3 3

DN=—2[1xyx2xyy2x Xy xy* y x3yxy3]=

, 0 (A.22)

0002006x2y 0 0 6x O
000002 0 0 2x 6y 0 6x
000020 0 4x 4y 0 6% 6y?
was used. Thus to obtain K©, the lower die in (A.21) has to be pre-multiplied with C™' and

post-multiplied with C™. Thefinal expression will not be shown because it would occupy too
much space.

The next task is to determine the element load vector f°, which is caculated in the same
manner as global load vector given by (A.7) i.e.

fe=[N"qas=[(NC™) qus=qC™ [N"dS=qC™ j TNdedy (A.23)
S

S S -a-b

where it was assumed that the load q is constant over the whole area. After the integrations
and lower die operations have been carried out the result is

(A.24)

Now when the element stiffness lower die, calculated with help of (A.21) and (A.17), and the
element load vector, (A.24) are known, these are used for each element in the structure, to be
assembled in a systematic manner by using topology data, to obtain the global stiffness lower
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die, K, given by (A.5) and the global load vector, f|, given by (A.7). But before this can be
done the plate has to be divided into elements. This is shown in Figure A.5 where also the
global node numbering is shown.

® ® ® A
25, 26, 27 22,23, 24 19, 20, 21
em. 4 em. 3
[ © ® B=4b
10, 11, 12 7,8,9 16, 17, 18
em. 1 em. 2
® ® ® \ 4
1,23 4,5 6 13, 14, 15
’ A=4a R

Fig. A.5. Two dimensional mesh.

The connection between global and local numbering is determined by the topology data. This
means for example, considering element 2, that the local nodes 10, 11 and 12 (ref. Figure A.3)
corresponds to the global nodes 7, 8 and 9. Only considering the element (7,7) in the global
stiffness lower die the local lower die element (10,10) shall be added. Continuing with
element 3 it is observed that the global nodes 7, 8 and 9 corresponds to the local nodes 1, 2
and 3. Consequently the local lower die element (1,1) shall be added to the global lower die
element (7,7). Proceeding with element 1 and 4 it is realized that the global lower die el ement
(7,7) will contain four terms. When this assembly process has been carried out for al nodes
and elements the resulting global stiffness lower die K will have the size 27x27. The same
procedure gives the global load vector the size 27x1.

Two load cases will be treated:
* All four edges clamped.
» Three edges clamped and the fourth free.

Beginning with the case when all four edges are clamped, the boundary conditions correspond
to all degrees of freedom along the edges set to zero, since a clamped condition imply neither
deflection nor slopes. It can be shown that in order to obtain an unique solution, proper
boundary conditions have to be applied and that these lead to a partitioning of K when solving
for the unknown degrees of freedom [5]. Thisis done by extracting those rows with the same
number as the degrees of freedom with prescribed boundary values and the columns with the
same numbers as the extracted rows from the calculations. In this case it implies that all the
rows and columns shall be extracted except from those corresponding to the degrees of
freedom number 7, 8 and 9. With (i) referring to the elements in stiffness lower die, K®, and

element load vector, f°, the partitioned lower dies reads
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(11) +(4,4)+ (7,7) + (1020) (1,2)+(45)+(7.8)+(1011) (1,3)+(4,6)+(7.9)+(1012)
K =|(21)+(54)+(87)+(1110) (22)+(55)+(88)+(1111) (23)+(56)+(89)+(1112)|=
(31)+(6,4)+(9,7)+ (1210) (32)+(6,5)+(98)+(1211) (33)+(6,6)+(9,9)+(1212)
[ (7a’b? - 2a’b? +10a* +10b*) 0 0 ]
30a°b*(v? -1)
oy 0 _ 4f5a? +b? -bv) 0
45ably? - 1)
0 0 _ 4(a2 -a’v + 5b2)
I 45ably? - 1)
(A.25)

(11) +(42) +(7.2) + (102)] [4abq
f=|(22)+(E1)+(B1)+@11)|=| O (A.26)

It is to be noted that no use has been made of (A.6) since this vector only influences the
boundary where, in this case, al the degrees of freedom are prescribed. The last step is now to
solve the system of equations

u7
Klug [=f  (A.27)
u9
which yields
_120q(t-v?) a‘b’
! Et>  7a’b? -2a%b® +10a* +10b*
u, =0 (A.28)
u, =0

The fact that the deflections us and uy are equal to zero, which isinterpreted as that there will
be no slope at mid point, is in agreement with the expectations. Instead of expressing the
deflection in terms of the length of the sides in one element, a and b, it is more convenient to
expressit in terms of the sides of the whole structure, A and B, according to Figure A.5.

_15q(1-v?) A*B*
32Et®  7A’B? -2A’B?v +10A* +10B*

(A.29)

7

Since the structure only consists of four elements, it implies that the finite element solution
will differ from the true. However, there is no need for the exact solution. The main thing is
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that the approximate solution predicts the deflection at mid point well. To investigate this
closer, the derived solution was evaluated for typical dimensions of A and B in a die, and
compared with the results when more elements were used. The results are specified in Figure
A.6.

A=400 mm, B=300 mm, g=-10 MPa, E=210000 M Pa, v=0.3

Nbr. of elements U; (mm) U, (mm)
4 t=30 mm -0,3635 t=80 mm -0,1917
16 -0,3399 -0,1792
32 -0,3228 -0,1702

Fig. A.6. Comparison of deflection between different
meshes and thicknesses.

With the application of draw dies in mind, the differences between the meshes are to be
considered as small. However, it may not be forgotten that plane stress was assumed to be
valid and that the problem was considered as a plane problem. Therefore, finite element
calculations with ten-node tetrahedral elements were performed. Using the same input as in
Figure A.6, it was possible to make a comparison between a three dimensional solution and
the more simple Kirchoff theory adopted here. The result of the finite element calculations are
shown in Figure A.7 and A.8.

|?| Palette

Displacem.

Z Yalue
[yl

.000
—.343E-01
—.686E-01

-.103

137

172

.206

.240

et

.309

.343

0

Fig. A.7. Deflections in a 30 mm plate consisting of 2288 ten-node tetrahedral

elements. Input asinfig. A.6.
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Faletia

Displacem.

Z Yalue
M

000
417E-02
.834E-02
125E-01
167E-01
209E-01

-.025
i A S
.334E-01
.3/6E-01
417E-01

Fig. A.8. Deflections in an 80 mm plate consisting of 3669
ten-node tetrahedral elements. Input asin fig. A.6.

By comparing Figure A.6-A.8, it is concluded that the two dimensional model works well for
t=30. Surprisingly is the 16-element mesh in better agreement with the three dimensional
solution than that with 32 elements. When the plate with t=80 is considered it turns out that
the two dimensional model fails. It seems that the two dimensional model works well at |east
for structures where the shortest dimension is larger or equal to one tenth of the thickness.

The last case to treat is when three edges are clamped and the fourth is free. This load case
can serve as a base for analysis of the deflection of blank holder and blank holder plate, but is
not treated in this work. Under assumption that the side containing the degrees of freedom 4,
5 and 6 at mid point to be free (ref. fig. A.5), the only differences in the boundary conditions
are that the degrees of freedom 4 and 5 no longer are equal to zero. Of symmetrical reasons
the degree of freedom 6 is still expected to be equal to zero. Since u, and us, which are located
on a boundary, now are unknown, the expression for the boundary vector f, from (A.6) hasto
be considered. The boundary is however free and this implies that no stresses act on it and

nm

dM
consequently are V,,,
dm

and M, equal to zero. This means that f, does not enter the

calculationsin this case either. The lower die corresponding to (A.25) reads
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(11)+(44) (1,2)+(45) (110)+(4,7) (112)+(4.8) (112)+(4.9)
(54) (22)+(55) (2,10)+(5,7) (2,11) (5 8) (212)+(59)
( (

A
1

where explicit expressions have been omitted due to their size. Continuing with the load
vector it reads

i (12)+(42) T 22ab
(22) + (52) 5ab2
f=|(@2)+(42)+(72)+(102) |=q 4ab (A.31)
(21) + (52) + (82) + (11,1) 0
BY)+(6)+(@)+@21)] | o |

Solving the system of equations

Klu, |=f (A:32)

yields

u4 = -480 (600 b8 v* - 800 b8 v - 400b8v?+ 800 b8 v — 200 b® - 399 b® v° a?
+1792b®v*a?-5688b° viaZ+ 902b® a2v?+ 6087 b° v a? - 2694 b a2
+5460b* v4a* - 15820 b* v a* + 6900 a* b* v + 15820 b* v a* - 12360a* b*
— 19500 b2 v a® + 25000 b2 a® v2 + 19500 b2 a® v — 25000 b? a® + 12000 a8 v 2
-12000a®%) g a’ b* / (t* E (21700b** + 11904 b® a’ v - 1148320b°® a° v
+ 1275640b° a® - 1800 b* a® v2 — 302400b* a® v + 694200b* a® + 10000 a'?
+132000b2 al® + 1100b° v a2 + 62500 b° a2 v? - 342300b° a? v
+278700b™° a? — 3311 b8 v* a* + 9720 b® ab v2 + 198454 b a* v?

- 807376 b%a* v + 970329b® a* + 21700b*? v2 - 43400 b*2 v - 152000b? a'®
+ 22960 b° v 3 a®))
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u5 = 1200 (-1600a° + 280 b1° - 1716 b* a® v* + 3812b* a® v - 3780b% a®v
+1600a'®v2+280b°v3-280b°y2-280b°%y —412h8v*a?+ 984 b8 v3 a2
- 1560b%v2a?-984hb8v a?+ 181 b%a*v°-824bfa*v*-3812b*av
+3780b%adv3+520h%2atv2-520b% a8+ 3524b%v3a*-3705b°v a*
- 3380a°b*v?+1972b%a” - 3038b° a’ v2 + 3862h° a* + 5096 a° b*) b* g a? / (
t3 E (-302400b* a® v + 62500 b'° a?v?2 + 198454 b a* v2 - 43400 b*2 v
+ 11904 b8 a* v - 1148320b°% a® v + 10000a*2 + 1100 b° v 3 a? + 21700 b*? v 2

+ 1275640b° a® — 342300b'° a? v + 278700b*° a® - 3311 b8 a* v4 + 21700 b*?
- 152000b% al®v - 807376 b% a*v + 970329h® a* + 9720b% a® v2 - 1800 b* a8 v?

+ 22960 b°® a® v + 694200 b* a® + 132000b? al?))

u7 =—600(342b8v*-764b8v3+80b8v2+ 764b% v —422b% + 81 b%a?v°®
+871b%v*a%-5906hb® v3a?+4402b% a?v?+5825b% v a? - 5273 b® a2
+2854b*a*v4-11068b* v a*+ 13160a* b* vZ + 11068 b* v a* - 16014 a* b*
- 14740b% a® v + 12940b% @ v2 + 14740b2 a® v — 12940 b? a® + 3400 a8 v 2
- 3400a%) a*q b* / (t* E (-302400b” a® v + 62500b*° a® v2 + 198454 b° a* v?
— 43400b® v + 11904 b® a* v3 - 1148320b°% a® v + 10000a'? + 1100 b%v 3 a2
+ 21700 b2 v2 + 1275640b° a® - 342300b*° a?v + 278700b° a? - 3311 b8 a*v*

+21700b* - 152000b? a'®v — 807376 b% a* v + 970329b8 a* + 9720b% a® v?
—1800b* a® v2 + 22960 b® a® v3 + 694200 b* a® + 132000b? a'?)), us = 1200 (

-1600a'° + 280 b1° - 1716 b* a® v* + 3812 b*a® v3 - 3780h%? a®v + 1600a° v?
+280b°v3-280b1°v2-280b°y — 412b%v*a%+ 984 b8 v3a? - 1560 b8 v? a?
-984b8v a2+ 181b%a*v®-824h®a*v*-3812b*a’v + 3780b%a®v?
+520b?a®v?-520h%a®+ 3524 b8 v3a*- 3705b%v a* - 3380a° b*v?
+1972b® a® - 3038 b° a* v + 3862b° a’ + 5096 a® b*) b*q a® / (* E (
-302400b* a® v + 62500b° a? v2 + 198454 b® a* v2 — 43400 b*? v

+11904b% a* v3 - 1148320b°% a® v + 10000a'? + 1100 b*° v3 a2 + 21700 b*? v 2
+ 1275640b° a® — 342300b*° a? v + 278700b*° a® - 3311 b® a* v* + 21700 b*?

- 152000b% a¥v - 807376 b® a*v + 970329b® a* + 9720 b® a® v2 - 1800b* a®v?
+ 22960 b% a® v 3 + 694200 b* a® + 132000 b2 a'?))

127



us = 120 b3 g a? (-14000a' + 350 b™° + 6840 b* a® v - 24380b* a® v 3
+38100b? a®v + 14000a* v? + 350 b1 v3 - 350 b1°v2 - 350 b1°v - 65 b8 v* a2
+630b%v3a%+3000b8v2a?-630b8yv a?-73b%a*v®+314bfa*v?
+24380b*a® v — 38100 b2 a® v + 35600 b? a8 v2 — 35600 b? a® — 9836 b° v 3 a*
+9909b% v a* + 21200a° b* v - 2935b8 a? + 8354 h® a* v2 - 8668 b® a’
- 28040a°b?) / (t* E (-302400b* a® v + 62500b™ a®v* + 198454 b° a’ v2
— 43400b* v + 11904 b8 a* v3 - 1148320b°% a® v + 10000a'? + 1100 b°v 3 a2

+21700b%? v2 + 1275640b° a® — 342300b'° a? v + 278700b*° a? - 3311 b8 a* v*
+21700b*? - 152000b% a'®v — 807376 b a* v + 970329b® a* + 9720b® ab v?

- 1800b* a8 v?2+ 22960 b a® v + 694200 b* a8 + 132000 b? al%))

u9 =0
(A.33)

Ug = 0 means that there is no slope in the x-direction at the mid point, which was expected of
symmetrical reasons. The degree of freedom of interest is us, which rewritten in terms of A
and B reads

u4:—235’18(812258v4—2(2)i858v3—£g638v2+232858\;—£3258—6§§2656A2v5
+2;386V4A2—§;11£:ZBGV3A2+?;§(13886A2\)2+66;)5837686\) A2—31237467886A2
+11;6852184A4v4—1?;935852184V3A4+116732854A4B4v2+f69§§184v A“—;l‘r’ggA“B“
—f:;;BZAGv%;’EgBZAGv%IgiBZAGV—ziggszAM;;‘ZAsvz
_2307458A8]qA4 B4 / (t3E(_246722134B4A8V +4igi§g4BlOA2V2
¥ 8222?3;8 B ATV 2(?;721552 Fus 13?372 B% Aty - Eff;:s BE A%y
¥ 102&23276A12+ 41531204810V3A2+4115;12§)m812v2+ 210‘?3974155?2'36A6
- 4?222,34810 A+ 4?3?1;504810 A 1633%16 B ATV 415;12;04 :
 se104% A~ 1008765 AV * 16777165 A sz B AV
07152 AV 1045765 AV 071805 A 53000~

(A.34)
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Different number of elements yields different deflections according to Figure A.9. If the
calculated value in Figure A.9 is compared with the result from a three dimensional mesh,
Figure A.10, it is concluded that the solution is acceptable despite of the very coarse two
dimensiona mesh.

A=400 mm, B=300 mm, g=-10 MPa, E=210000 M Pa, v=0.3
Nbr. of elements Uz (mm)
4 =30 mm -1,2422
16 -1,3208
32 -1,3432
Fig. A.9. Comparison of deflection between
different meshes.

Palette

Displacem.
Z ¥alue
MM

Fig. A.10. Deflectionsin a 30 mm plate consisting of 2449 ten-node
tetrahedral elements. Input asin fig. A.9.

13.2.  Part B-Determination of shear centre of U-shaped

profileswith different lengths of the flanges

This section deals with determination of the shear center of U-shaped profiles with different
lengths of the flanges. In order to be able to determine the shear center, knowledge about the

129



position of the center of massis required. Considering Figure B.1, the position of the center of
mass in the y- and the z-direction, yi, and z, respectively, are determined using the principle
of moments

[0 o[

2 2
Yo = C+H+D
(B.1)
1BC 1H? 1B
+—+ -—
I e Gy
% C+H+D
(B.2)

where O has been used as moment axis. Since the density of the body is uniform the
expressions of the center of mass are pure geometrical properties.

< D >
A | B
I
| 4
/'y e —] T »F1
|
Tz i z
A I v A
z <& ST
B B .
i
y : >V
'y : #Ty th
X € :
v/ v h—————— = ~S—— -
SC
< C >
o P

Figure B.1. The U-shaped cross section used in the
derivation of the shear center.

Next the moments of inertia, Iy and |, about the y- and z-axis respectively, defined as
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l, = j 22ds (B.3)
A

|, = j y2dS (B.4)
A

and the product moment of area, defined as

|, = [ yzdS (B.5)

where S denotes the area, are determined. If (B.3), (B.4) and (B.5) are carried out for the
rectangular cross section shown in Figure B.2 following results are obtai ned.

| :b_h3
Y12

hb*
| =— B.6
: =15 (B.6)
I, =0

A

»
L

Figure B.2. Rectangular cross section with the axes y-y and z-z, passing through the
center of mass, indicated.

Since the cross section of a U-shaped profile can be imagined to consist of three rectangular
Ccross sections, the moments of inertia and product area moment for the whole structure can be
determined using the parale-axis theorem. The theorem is used when the quantities
mentioned above are required with respect to other axes than those passing through the center
of mass. With designations from Figure B.3, the parallel-axis theorem reads [2]
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| =1,+b’S (B.7)

Figure B.3. Illustration a and b used in the parallel axis theorem

Employing (B.4) on the structure shown in Figure B.1 yields

2 2

cB? BY BH?3 H D B? B ?
ly = 12 +BC(ztp—2]+ +BH(—ztp]++BD(H—2—ztp]

12 2 12
(B.8)
B C3 C > HB® B BD?
= + —~ +B- +— + -—— | +
) Bc(z B Ytp] 12 BH(y‘p 2] 12
2
D
+BD(B+2_ytpj
(B.9)
B C H B
= fm ) (B por (G w2 Jor
B\/D
{2 oo
(B.10)

There is aso need for another quantity named the first area of moment, which with
designations from Figure B.1, is defined as

S, = [zdS
A

(B.11)
S, =[yds
A
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The expression for the average shear stress, T, over the cross section, whose thickness in this
case is uniformly equal to B, acting in the y-direction at a distance & from the upper flange,
see Figure B.1, can be shown to read [7]

(S,1, =S,I1,,)T, +(S,1, - S,1 )T,

s B(lylz_ljz)

(B.12)

Here Ty and T, denote transversal forcesindicated in Figure B.1. With reference to Figure B.1,
S and S; for the piece with length ¢ (having an areaequal to A)) are calculated as

s, = (H —g— ztp]EB (8.13)
s, :(D+B—ytp —%]55 (B.14)

Since the shear center is that point the line of action of a applied load has to pass through, not
to give rise to torsion, the effect of the shear stresses in the cross section can replaced with
resulting transversal forces, denoted Ty and T, in Figure B.1. In order to determine the
horizontal position of the shear center, denoted e, in Figure B.1, static equivalence about point
Pyields

T,e, =F (H -B) (B.15)

7y

where F, denotes the resulting force in the upper flange due to the shear stresses. By choosing
the point P there is no need for calculating the resulting forces in the lower flange and in the
waist, since their lines of action are passing through this point. F; is calculated as

08 Df(s{(H _E_Z‘lez —(D+B—ytp —gjfBlyijzdf
Fo=[T()Bdé= |

(B.16)

_12
I, —12

where use has been made of (B.12), (B.13) and (B.14). In (B.12) T, has been set equal to zero,
since no horizontal force is applied in this case. As can be seen after (B.16) has been inserted
in (B.15), Ty is cancelled out, which confirms that the shear center is a quantity only
dependent of the geometry. After the integral in (B.16) has been carried out and the
expressions for the center of mass and the moments of inertia and product moment of inertia
has been inserted, the expression for g, is cal cul ated
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ey:
3
—4(—H +B) (2D +B)?(—=2C*H +2C*B +4HBC3® -4C®H%? +6 DH C*B

-2C?B?D —2HC?D? -8H?C?B -4DH?C? +8C?B?H +2B C? D?
+4CB°DH +7CHB® -2CD*HB -7CB°H? -4CH?D B +2CB? D?
-B*H®*+B*DH+B*H?*-DB*H?) /(-72H?C?B*D - 36 H*C*D*B
+36H3CD?2B-72H2CD?B%2+48H3CDB?-24H?C3DB-24H?CBD?
+36H3DC2B-24BCHD*+42B3C?DH +18B?C?D?H + 42B3 C H D?
-96B3*CDH?+16B?C*DH-24BC*DH+16B2CHD3*+7H*C B?
+12H2CD*+12H?C*D-6H2C*B+16H3CD®+6H*C2B+6H*D?B
+7H*DB2+16H3C®D+12H3C?D?-6B*CH®+6B*C*H +7B?C*H
-6BH?D*-6B*H®D+7HD*B2-2C2B?D3*+17CB?D*+ 17D B2C*
-2D?B2C3+4H3C*+4B*HD?+4B*DH?+B2D°+6H D*B3+ H°>B?
+4H3D*+4H*C3+4H*D+56CB*DH +B?C°+4C?B*H +4C B*H?)
(B.17)

€, is determined in a similar manner to e, but in this case it is assumed that only a horizontal
load is applied. Static equivalence yields

T,e, =F (H-B) (B.18)

where F, under current conditionsis calculated as

p+? D+§(EB[D+ B—g—ytpjly —EB(H —S—thjlyz]TydE
Fo= [ T(e)Bds= [

(B.19)

Finally solving (B.18) for e, yields

&=
1
4("H+B)(2D+B)*(B°D*+C°B’+3C°B*+14CDB*~4H'D-D’B"

-C?B?°D-17CB?D?-16CH*D+B*DH-17CHB*-40CB?DH
+36CH?DB+24CD?HB-6H3C2-4H3D?-2H*B-9C?B2H
+30CB?H?-14CBH®-12CD?*H?+ 18H?C2B+6D?*H?B - 7H D?B?
-6DB?H*+4DBH?®) /(-72H*C?B?°D - 36 H*C?D?B +36H*CD?B
-72H?CD?B?+48H3CDB%2-24H?C3DB-24H?>CBD3+36H3*DC?B
-24BCHD*+42B3C?DH+18B?C?D?H +42B*CHD?-96B*C D H?
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+16B?C3*DH-24BC*DH+16B2CHD3*+7H*CB?+12H2C D*
+12H2C*D-6H?C*B+16H3CD3+6H*C?B+6H*D?B + 7H*D B?
+16H3C®D+12H3C?D?-6B3CH®*+6B3C®*H+7B?C*H -6BH?D*
-6B3H°D+7HD*B?-2C2B?D3*+17CB?D*+17DB?C*-2D?B?C?
+4H3C*+4B*HD?+4B*DH?+B?D°+6H D®*B3+H°B%2+4H3D*
+4H*C®+4H*D3+56CB*DH +B*C°>+4C?*B*H +4CB*H?)
(B.20)
In order to check how well the values from the derived expressions agree with data from hand

books, the values for a U-bar with the dimensions 80x50x6 is compared with the values
resulting from (B.17) and (B.20) [2]. The result is shown in Figure B.4.

KTH Calculated
=Y 18,21 mm 18.51 mm
€ 40 mm 39,69 mm

Fig. B.4. Comparison between values from the derived
expressions and hand book [2].

The U-section used in the derivation of (B.19) and (B.20) consists of purely rectangular
elements, whilst the waist and flanges in the U-bar in the handbook are connected with radii.
This explains the difference between the values in Figure B.4.

135




	JorgenL_p12.pdf
	Jörgen Larsson.pdf

