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Abstract 
This Master’s Thesis was done in collaboration with the division of solid Mechanics at 
University of Lund and Sony Ericsson Mobile Communications AB. The objective for the 
assignment was to adopt a material model that describes one of the thermoplastic materials 
that Sony Ericsson currently uses. This was done to, in a more accurate way than present, 
anticipate fault in the construction before starting the manufacturing process. In this Master’s 
Thesis, different kinds of rate-dependent constitutive models were investigated. The purpose 
was to find out what properties that can be simulated and what cannot. The focus of the 
investigation of material models was towards models that are implemented in ANSYS. 
 
After a strictly theoretical examine of suitable material models, tensile tests were performed 
in order to understand the qualitative behaviour of the thermoplastic material. Constant dis-
placement rate tension tests were performed on all test specimens for comparison with the 
simulated tensile test results from finite element analysis. A displacement controlled applica-
tion was chosen because of the critical necking phase. Due to the lack of test equipment that 
could measure the cross section area decrease, we had to find this area dependent stress-strain 
data by comparing simulated data with data from tensile tests. 
 
There are only two material models available in ANSYS that are suitable for modelling large 
strain rate-dependent plasticity, namely the Perzyna model or the Peirce model. Both of the 
models must be used in combination with isotropic hardening plasticity. The isotropic 
hardening plasticity is described by an input of a true stress-strain curve. Peirce model did not 
describe the thermoplastic material in a satisfying manner, hence this model was excluded. 
 
There are very limited ways of calibrating the constitutive models in ANSYS. To simulate the 
viscous behaviour of the investigated thermoplastic, the viscosity parameters must be adapted 
in the Perzyna model. All made tensile tests at the different strain rates were simulated in 
ANSYS with the selected parameters, until satisfying results were achieved. 
 
The Perzyna model describes the mechanical behaviour well, for the investigated strain rates. 
The overall test results show satisfactory agreement with the simulated results, with the only 
exception for static condition where the agreement between real tests and simulations were 
not totally satisfying in the softening region. This is due to the limitations in the plastic mate-
rial model. 
 
Tensile tests, with ordinary test specimens are suitable for analyzing material behaviour. Un-
fortunately this test technique can only describe material behaviour in one dimension. There-
fore a verification test was needed, that could describe the whole stress field. This test was 
made in the same way as an ordinary tensile test process, but with a slightly modified test 
specimen. The simulated results showed a high agreement with the tensile test results. This is 
a proof of that the Perzyna model can describe more complicated geometries at a higher strain 
rate for the investigated PC/ABS plastic, more accurately, than with the presently used 
material model. 
 
 
 



 



 

Contents 
1 Introduction.......................................................................................................................................... 1 

1.1 Presentation of Sony Ericsson Mobile Communications AB ....................................................... 1 
1.2 Background to the assignment ...................................................................................................... 1 
1.3 Objectives ..................................................................................................................................... 1 
1.4 Restrictions ................................................................................................................................... 1 

2 Presentation of thermoplastic materials............................................................................................. 3 
2.1 History........................................................................................................................................... 3 
2.2 The characteristics of the plastics ................................................................................................. 3 

3 Introduction to large deformations .................................................................................................... 4 
3.1 An introduction to Cartesian index notation and tensor algebra ................................................... 4 
3.2 Description of motion of deformation........................................................................................... 5 

3.2.1 Deformation gradient ........................................................................................................... 5 
3.2.2 Strain tensors........................................................................................................................ 6 
3.2.3 Stretch tensors...................................................................................................................... 8 

3.3 Rate of deformation tensor............................................................................................................ 9 
3.4 Stress tensors............................................................................................................................... 12 

4 Constitutive models............................................................................................................................ 14 
4.1 Material frame indifference......................................................................................................... 14 
4.2 Elasticity at finite strain .............................................................................................................. 16 

4.2.1 Hypo-elasticity................................................................................................................... 16 
4.2.2 Hyper-elasticity.................................................................................................................. 17 

4.3 Plasticity theory........................................................................................................................... 18 
4.3.1 Yield criterion .................................................................................................................... 18 
4.3.2 Hardening rule ................................................................................................................... 19 
4.3.3 Flow rule ............................................................................................................................ 22 

4.4 Hypo-elastic-plastic constitutive model ...................................................................................... 22 
4.5 Rate-dependent plasticity ............................................................................................................ 23 

4.5.1 Viscosity models................................................................................................................ 24 
5 Material testing................................................................................................................................... 26 

5.1 The stress-strain curve ................................................................................................................ 26 
5.2 The plastic behaviour .................................................................................................................. 28 
5.3 Data from the material supplier................................................................................................... 29 
5.4 The tensile test ............................................................................................................................ 30 

5.4.1 Test preparation ................................................................................................................. 30 
5.4.2 Testing procedure............................................................................................................... 31 
5.4.3 Results of tension tests....................................................................................................... 31 

6 Calibration of the constitutive model ............................................................................................... 33 
6.1 Numerical simulation of the uniaxial tensile testing of PC/ABS................................................ 34 

6.1.1 Element type ...................................................................................................................... 34 
6.1.2 Mesh................................................................................................................................... 35 
6.1.3 Necking simulation ............................................................................................................ 35 
6.1.4 Boundary conditions .......................................................................................................... 36 

6.2 Modifying the input data............................................................................................................. 37 
6.3 Determination of viscosity parameters........................................................................................ 39 

6.3.1 The parameters mand γ ................................................................................................... 39 
6.4 Results......................................................................................................................................... 41 

7 Verification of the material model .................................................................................................... 48 
7.1 Tensile test of plate with hole ..................................................................................................... 48 
7.2 Simulation of test specimen with hole ........................................................................................ 49 

7.2.1 Element type and mesh ...................................................................................................... 49 
7.2.2 Loads and boundary conditions ......................................................................................... 49 
7.2.3 Results................................................................................................................................ 50 

8 Conclusions ......................................................................................................................................... 55 
9 References ........................................................................................................................................... 56 



 

 



 1

1 Introduction 

1.1 Presentation of Sony Ericsson Mobile Communications AB 
In 2001 the company Sony Ericsson Mobile Communications AB was established by tele-
communications leader Ericsson and Sony Corporation. The company is equally owned by 
Ericsson and Sony.  
 
Sony Ericsson is responsible for product research, development and design, as well as market-
ing and sales, distribution and customer’s service. The company’s global corporate manage-
ment is based in London. Approximately 3,500 employees are working around the world. The 
company’s President is Katsumi Ihara, and Executive Vice President is Jan Wäreby. 
 
The new company’s first joint product was announced in March 2002 and now has a complete 
portfolio covering all target groups. The combine strength of Sony and Ericsson, and its 
strong consumer-focused and application-led strategy, make the company a leading player in 
the mobile communications industry [21]. 
 

1.2 Background to the assignment 
The cellular telephone market is in an expanding phase. Nowadays consumers use the phone 
in many different environments and in a reckless way, influencing the demands on strength of 
the phone. Without taking this into account before the production, this may cause great ex-
penditure and negatively impact the company’s reputation. Currently, a diverse collection of 
plastic materials are widely used for reduction of weight and manufacturing costs. 
By using FE calculations to predict the characteristics of the phone in an early phase many 
expensive errors can be avoided. Today there is no accurate material model used at Sony 
Ericsson that supports simulations of thermoplastic materials exposed to large deformations. 
The background for the assignment is therefore to investigate and find the most suitable 
constitutive model implemented in ANSYS that supports large deformation, for the thermo-
plastic material Sony Ericsson presently uses. 
 

1.3 Objectives 
In this Master’s Thesis, different kinds of constitutive models for thermoplastic materials 
were investigated. Currently Sony Ericsson uses a material model that is not satisfying 
regarding high strain rate applications. The objective of the project was to determine the 
properties of the thermoplastic materials, by performing material testing. The experimental 
results were adapted to an existing material model in ANSYS, with restrictions taking into 
account. The FE-simulations of a test specimen were compared with the result from real ten-
sile tests. 
 

1.4 Restrictions 
The analysis does not accommodate material characteristics pertaining to the thermal behav-
iour of the materials or effects of creep. Short term time dependent properties of the specified 
thermoplastic material, were however considered for the adoption. There are a few material 
models available in ANSYS that may be suited for the specified thermoplastic. Unfortunately, 
the limited time in a Master’s Thesis does not allow implementing own derived models. 
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In this thesis the structure of the thermoplastic material is assumed to be isotropic before and 
after the material has been deformed, which may affect the accuracy of the result. 
 
Some parts in this thesis have been omitted due to the request for secrecy; this explains the 
normalized values on the axes for all represented graphs, throughout this work. 
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2 Presentation of thermoplastic materials 

2.1 History 
The material in its natural manner has been known in China and Egypt for many thousand 
years. Still, this material should be taken as new and undeveloped in many aspects. As early 
as in the 19th century, the chemists learned how to make use of natural macro molecules and 
ennoble them into half synthetics plastics. The discovery of cellulose nitrate, in the 1860 was 
a breakthrough for the plastics [15]. 
 
In the beginning of 20th century L Baekeland discovered phenol and formaldehyde 
(Bakelite). After that followed, from the middle of 1920 polyester plastic and polystyrene, 
among others were discovered [15]. 
 
In the 1930s, there was an intensive research on polymers, mainly in Germany and USA. 
Following this successful research, acrylic plastic (Plexiglas) and polyamide (Nylon) made 
their entrance. Nylon made a breakthrough during the Second World War, when it replaced 
the more expensive silk parachutes [7]. 
 
In modern time, the development of plastic materials is undergoing rapid progress and new 
materials are continually introduced. The reason why plastics have been so widely used 
mainly depends on its low weight and low manufacturing costs. 
 

2.2 The characteristics of the plastics 
Traditionally, plastics are divided into thermoplastics and thermosets. In the thermosets, 
molecule chains are transversally linked into a three dimensional network. The hardening 
process starts first after a heat treatment or after adding a setting agent. The hardening process 
is not reversible and the plastic is therefore not recyclable, as the thermoplastics are. Thermo-
plastics, on the other hand, consist of long chains of monomers from the polymerization proc-
ess. The common machining capability for this plastic is injection molding and extrusion. 
 
Both of the plastics mentioned above, are suitable for addition of filling material, which 
change the properties of the material radically. The addition substance can be pigment, elasti-
cizer, armoring, external flame retardant among others. 
 
One of the thermoplastic materials that Sony Ericsson is currently using is PC/ABS, an 
amorphous polycarbonate and acrylonitrile-butadiene-styrene thermoplastic polymer blend. 
PC/ABS has many manufacturing advantages when it comes to injection molding and 
extrusion. It has excellent filling capability for long and complex parts, without influencing 
the mechanical properties significantly. The plastic has excellent ductility, also at sub zero 
temperatures and it has a good heat resistance. Other engineering features of PC/ABS are the 
impact toughness and the relative rigidity it gives the product [10]. Sony Ericsson mostly uses 
PC/ABS for the shell of cellular telephones. The shell among other parts of the cellular tele-
phone is produced by injection molding. 
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3 Introduction to large deformations 
When the strain exceeds more than a few percent a theory for large strain and large rotation 
must be used, since the geometry has deformed to an extent where the geometry change can 
not be neglected. 
Many applications of thermoplastic materials are subjected to deformations that can not be 
approximated as small. To describe thermoplastic materials when subjected to large strain 
or/and large rotations, more advanced theory needs to be considered [3]. Tensor notation is 
often used in tensor algebra to rewrite complicated expressions in a very compact fashion. 
Throughout this Master’s Thesis only Cartesian tensors will be considered. 
 

3.1 An introduction to Cartesian index notation and tensor algebra 
To more easily understand the mathematical expression used in this master thesis, an 
introduction of tensor algebra will follow. The described theory in chapter 3.1 is taken from 
[19], if nothing else is indicated.  
 
A first order tensor ia  can be rewritten into a column matrix and be expressed as 
 

 [ ] 32,1,

3

2

1

oriwhere
a
a
a

ai =















=  (3.1) 

 
In what follows, Latin indices, unless otherwise specified, assume the values 1, 2 or 3. There 
are some conventions in index notation that will be mentioned below. 
 
If the same index is repeated twice, it is called a dummy index and otherwise it is called a free 
index. An example of the summation convention is the product aibi 
 
 332211 babababa ii ++=   (3.2) 
 
It should be pointed out that the same index can appear not more than twice, otherwise the 
choice of index has no influence. 
 
The second order tensor ijB can be expressed in matrix format as 
 

 [ ]















=

333231

232221

131211

BBB
BBB
BBB

Bij   (3.3) 

 
Kronecker delta ijδ which plays an essential role in index notation and tensor algebra is de-
fined as 
 

 




≠
=

=
jiif
jiif

ij 0
1

δ   (3.4) 



 5

Using the Kronecker delta and the summation convention the following can now be expressed 
 
 ikjkij BB =δ   (3.5) 
 
Tensors must behave in a certain manner when exposed of translations and rotations. The 
different grades of tensors used in this thesis, are defined as 
 
 tensororderzerobb ′=    (3.6) 
 
 tensororderfirstxAx jjii ′=    (3.7) 
 
 tensorordersecondATAT kjlkliij ′=   (3.8) 
 

3.2 Description of motion of deformation 

3.2.1 Deformation gradient 
The expressions in chapter 3.2, are if not stated otherwise, taken from [18]. The loads acting 
on a body, makes it move from one position to another. This motion can be defined by 
studying a position vector in the deformed and undeformed configuration. At time 0=t , be-
fore any motion, the position vector of a particle is described by the coordinates iX  in the 
undeformed configuration. The position of the particle in the deformed configuration at time 
t  is described by the position vector ix , see Figure 3.1. 

 
The material deformation gradient maps a material point from the undeformed configuration 
into the deformed configuration and can be expressed as [16] 
 

 
j

i
ij X

xF
∂
∂

=  (3.9) 

 

Figure 3.1: The undeformed and deformed configuration. 

ix

iX
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A conversion between jdX and idx can now easily be made 
 
 jijijiji dxFdXordXFdx 1−==  (3.10) 
 
which describes how the relative position vector jdX  in the undeformed configuration has 
transformed to the position vector idx in the deformed configuration. 
 
The deformation gradient ijF  contains information of the volume change, the rotation and the 
shape change of the deformed body. The volume change can be expressed as 
 

 ijF
dV
dVJ det

0

==  (3.11) 

 
where 0V  is the original volume in the undeformed configuration and V is the current volume 
in the deformed configuration. The determinant J  of the second order tensor ijF  is called the 
Jacobian. 
 
The determinant of the tensor is an invariant, i.e. independent of the chosen coordinate sys-
tem. If 1=J  for all iX , the volume of the deformed and undeformed configuration are identi-
cal and the deformation is said to be isochoric. 
 

3.2.2 Strain tensors 
To describe the motion of the body in more detail, it is of interest to obtain quantities that 
only depend on the deformation of the body and not the rigid body motion; such quantities are 
called strain tensors. 
 
The deformation of a body is related to the change of distance between some particles. Due to 
motion of the body the vector idX , between two closely spaced particles in the undeformed 
configuration, changes into the vector idx  between the same particles, see Figure 3.2. 

 
The length of vector idX  is denoted by dS  and the length of vector idx  is denoted by ds . 
These two measures tell something about the deformation of the body; rigid body motion 
means that dSds =  i.e. 
 

Figure 3.2: Points P and p refer to the same 
particle; points Q and q refer to the same particle. 

idx
idX
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 iiii dxdxdsdXdXdS == 22 ;  (3.12) 
 
According to (3.10a), it follows that 
 
 kjkj dXCdXds =2  (3.13) 
 
where 
 

 ikij
k

i

j

i
jk FF

X
x

X
xC =

∂
∂

∂
∂

=  (3.14) 

 
The tensor ijC is termed the right Cauchy-Green deformation tensor and, moreover, it is noted 
that it is symmetric, i.e. kjjk CC = . 
 
A comparison of the lengths ds  and dS  is interesting in order to characterize the deforma-
tion, with (3.12) and (3.13) it follows that 
 
 jiji dXEdXdSds 222 =−  (3.15) 
 
where 
 

 ( ) 









−

∂
∂

∂
∂

=−=−= ij
j

k

i

k
ijkjkiijijij X

x
X
xFFCE δδδ

2
1

2
1)(

2
1  (3.16) 

 
is termed the Lagrangian strain tensor. 
 
In (3.16), the derivatives are taken with respect to iX , but it is also possible to obtain an 
expression for 22 dSds − , which involves derivatives with respect to ix . Insertion of (3.10b) 
into (3.12a) yields 
 
 kjkj dxcdxdS =2  (3.17) 
 
where 
 

 
k

i

j

i
jk x

X
x
Xc

∂
∂

∂
∂

=  (3.18) 

 
is termed Cauchy’s deformation tensor. 
 
The left Cauchy-Green deformation tensor is introduced as 
 
 jkikijij FFcb == −1  (3.19) 
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3.2.3 Stretch tensors 
Another measurement of deformation of a body is the elongation or shortening of the distance 
between two close particles. Such a measure is provided by the so-called stretch. 
 

 
dS
ds

=Λ  (3.20) 

 
where dS  and ds  have been defined earlier. 
 
To relate the stretch to the different deformation measures, the unit vector iN , in the direction 
of idX  is introduced 
 

 
dS
dXN i

i =  (3.21) 

 
From (3.13), (3.20) and (3.21) it appears that 
 
 jiji NCN=Λ2  (3.22) 
 
As seen in (3.22) the right Cauchy-Green deformation tensor is related to the square of the 
stretchΛ , therefore it is of interest to seek a deformation tensor which is linear in the stretch. 
Therefore the following expression is introduced 
 
 ijij CU =  (3.23) 
 
This tensor ijU  is named the right stretch tensor. 
 
In the same manner using the left Cauchy-Green deformation tensor an analogous left stretch 
tensor can be defined as 
 
 ijij bV =    (3.24) 

 
The polar decomposition theorem of Cauchy will be used below. It states that there exists two 
unique symmetric positive definite tensors ijU  and ijV , the right and left stretch tensor, and an 
orthogonal tensor ijR  such that 
 
 kjikijkjikij RVForURF ==  (3.25) 
 
where ijR  is the rotation tensor. 
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3.3 Rate of deformation tensor 
From (3.16) the Lagrangian strain tensor ijE is introduced and it has been shown that this ten-
sor provides a complete description of the deformation of the body using the material de-
scription, independent of rigid body motions. 
In some cases it is not the total change of deformation that is of importance, but rather the 
time rate with which these changes occur. When the constitutive equations are formulated in 
rate form like elasto-plasticity this situation arises. Therefore it is necessary to establish a ten-
sor, which describes the rate with which deformation occurs. The theory throughout chapter 
3.3 is taken from [18], if nothing else is indicated. 
 
Once again consider the length ds  of the vector idx connecting two neighbouring particles in 
the deformed configuration, see Figure 3.2. This length is given by (3.12b). The material de-
rivative of this expression gives 
 

 ( ) ( )
Dt
dxDdx

Dt
dsDds i

i=  (3.26) 

 
If ijF  is expressed in material coordinates, i.e. ),( tXFF kijij = , the material derivative of 
(3.10a) then gives 
 

 ( ) ( )
Dt
dXD

FdX
Dt

DF
Dt
dxD j

ijj
iji +=  (3.27) 

 
The vector jdX is independent of time, so the expression above can be reduced to 
 

 ( )
j

iji dX
Dt

DF
Dt
dxD

=  (3.28) 

 
To evaluate the term DtDFij / , the material coordinates are adopted and it follows that 
 

 ( ) ( )
j

iki

jj

kiijij

X
v

t
tXx

XX
tXx

tt
F

Dt
DF

∂
∂

=







∂
∂

∂
∂

=










∂
∂

∂
∂

=
∂

∂
=

,,  (3.29) 

 
where (3.26) was used. This implies that (3.28) can be rewritten as 
 

 ( )
j

j

ii dX
X
v

Dt
dxD

∂
∂

=  (3.30) 

 
If the velocity is expressed in terms of Eulerian coordinates, i.e. ( )txvv kii ,= , it follows that 
 

 kj
k

i

j

k

k

i

j

i F
x
v

X
x

x
v

X
v

∂
∂

=
∂
∂

∂
∂

=
∂
∂  (3.31) 
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(3.30) then takes the form 
 

 ( )
jkj

k

ii dXF
x
v

Dt
dxD

∂
∂

=  (3.32) 

 
which with (3.10a) becomes 
 

 ( )
k

k

ii dx
x
v

Dt
dxD

∂
∂

=  (3.33) 

 
The spatial velocity gradient ijL is defined by 
 

 
j

i
ij x

vL
∂
∂

=  (3.34) 

 
Then (3.33) can be written as 
 

 ( )
jij

i dxL
Dt
dxD

=  (3.35) 

 
By introducing (3.35) into (3.26), it follows that 
 

 jiji dxLdx
Dt
dsDds =

)(  (3.36) 

 
The unit vector in direction idx is given by dsdxn ii /= , which allows (3.36) to be written as 
 

 jiji nLn
Dt
dsD

ds
=

)(1  (3.37) 

 
To rewrite this expression recall (3.20). It follows that 
 

 
Λ

Λ
=

Λ
=

ds
Dt
DdS

Dt
D

Dt
dsD )(  (3.38) 

 
Insertion into (3.37) gives 
 

 jiji nLn
Dt
D

=
Λ

Λ
1  (3.39) 

 
It appears that the material derivative of the stretch in the direction given by the unit vector in  
in the deformed configuration is related to the spatial velocity gradient ijL . 
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It is always possible to split ijL  into a symmetric part ijD  and an unsymmetrical part 

ijW according to 
 
 ijijij WDL +=  (3.40) 
 
where 
 

 tensorndeformatioofrate
x
v

x
vD

i

j

j

i
ij 











∂

∂
+

∂
∂

=
2
1  (3.41) 

 
and 
 

 tensorspin
x
v

x
vW

i

j

j

i
ij 











∂

∂
−

∂
∂

=
2
1  (3.42) 

 
Now it is possible to establish the relation between the rate of deformation tensor ijD  and the 

material derivative ijE&  of the Lagrangian strain. Next, (3.16) gives 
 

 ( )kjkikjkiij FFFFE &&& +=
2
1  (3.43) 

 
In order to determine the quantity kjF& , (3.29), (3.31) and (3.34) are used to give 
 

 kjikkj
k

i

j

i
ij FLF

x
v

X
vF =

∂
∂

=
∂
∂

=&  (3.44) 

 
This expression together with (3.43) and (3.40) gives the sought relation 
 
 ljklikij FDFE =&  (3.45) 
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3.4 Stress tensors 
The expressions in this section are if not stated otherwise, taken from [18]. To establish the 
equations of motion, consider a body in its deformed configuration and make a section 
throughout the particle P. The normal in  to the section is directed outwards of the body, cf. 
Figure 3.3. 

On the incremental area dA  surrounding the particle, the incremental force idP  acts and the 
traction tensor it  is then defined as 
 

 
dA
dPt i

i =  (3.46) 

 
If another section trough the same particle is taken, a different traction tensor will in general 
be obtained. Therefore, the traction tensor is a function of the direction jn , i.e. 
 
 )( jii ntt =  (3.47) 
 
If a direction parallel with one of the ix -axis is chosen, a certain traction it  tensor is obtained. 
Consequently there exists three certain traction tensors, one for each ix -axis. This traction 
tensor can be expressed as 
 

 [ ]















=

3

2

1

i

i

i

it
σ
σ
σ

 (3.48) 

 
There are several different stress tensors. The stress tensor, which represents the true stress, is 
called Cauchy stress tensor ijσ  and is defined as 
 

 [ ]















=

















=

333231

232221

131211

3

2

1

σσσ
σσσ
σσσ

σ
T

T

T

ij

t
t
t

 (3.49) 

Figure 3.3: Force dPi and area dA with outer unit 
normal vector ni. 

in

idP
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Two other stress tensors was introduced by Piola in 1833 and by Kirchhoff in 1852, where the 
first Piola-Kirchhoff stress tensor is defined as 
 

 
k

j
ikij x

X
JP

∂

∂
= σ  (3.50) 

 
and the second Piola-Kirchhoff stress is defined as 
 

 
j

l
ij

i

k
kl x

X
x
XJS

∂
∂

∂
∂

= σ  (3.51) 

 
The first Piola-Kirchhoff tensor is unsymmetric and the second Piola-Kirchhoff tensor is 
symmetric. 
 
Another stress tensor is the Kirchhoff’s stress tensor which is defined as 
 
 ijij Jστ =  (3.52) 
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4 Constitutive models 

4.1 Material frame indifference 
One of the requirements of the constitutive relations are that they must be coordinate invari-
ant, i.e. if a constitutive relation holds in one coordinate system, it must hold in any other co-
ordinate system. This requirement is fulfilled, when the constitutive relation is formulated in 
tensor quantities.  
Unfortunately the coordinate invariance is not enough, since it is also possible to change 
frame. Therefore the principle of frame indifference must be fulfilled as well, i.e. a function 
valid in one frame must be valid in all frames. 
 
In constitutive modelling and especially within plasticity theory, an introduction of the time-
rate of the stress tensor is of interest. It is often found that the material derivate of an objective 
stress tensor is not always objective. An objective tensor must transform in a similar manner 
when the frame is changed as when the coordinate system is changed. To demonstrate this, 
the objective Cauchy stress tensor will be investigated   
 
 ljklkiij QQ *σσ =  and jlklikij QQ σσ =*  (4.1) 
 
where ijQ  describe a rigid body rotation.  
 
Now taking the material derivate of (4.1)  
  

 
Dt

DQ
QQ

Dt
DQQ

Dt
DQ

Dt
D jl

klikjl
kl

ikjlkl
ikij σσσ

σ
++=

*

 (4.2) 

 
It is evident that the tensor quantity DtD klσ  is not objective. To obtain a valid objective 
stress rate, (3.40) is useful. The spatial velocity gradient can be expressed as 
 

 jlklikjk
ik

ij QLQQ
Dt

DQL +=*  (4.3) 

 
and the expression of the rate-of-deformation as an objective tensor becomes  
 
 jlklikij QDQD =*  (4.4) 
 
Now the spin tensor (3.40) with (4.3) and (4.4) can be expressed as 
 

 jk
ik

jlklikij Q
Dt

DQQWQW +=*  (4.5) 

 
Use of (4.2) and (4.5) gives 
 

 ( ) ( )jmmljmmlkliklj
kl

ikjmlmklikklik
ij QWWQQQ

Dt
DQQWQQW

Dt
D

−++−= **
*

σσσ
σ

 (4.6) 
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this with (4.1) may be written as 
 

 jllmkmmlkm
kl

ikjkikkjik
ij

QWW
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D
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


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−−=−− σσ

σ
σσ

σ
****

*

 (4.7) 

 
It appears that one can define following objective quantity from (4.7) 
 

 jkikkjik
ijJ

ij WW
Dt

D
σσ

σ
σ −−=∇  (4.8) 

 
This expression is commonly known as the Jaumann rate of the Cauchy stress. Now the mate-
rial derivate of Cauchy stress consists of two parts: the rate of change due to material re-
sponse, which is reflected in the objective rate, and the change of stress due to rotation, which 
corresponds to the two last terms in (4.8). 
 
To prove that frame indifference is not only a mathematical problem, a realistic example will 
follow. 
 
Consider a bar that is initially loaded with a constant stress of 0σ . An observer that is riding 
with the body during a rotation (rigid body motion) of a bar in time will not observe any 
difference in stress, the initial value remains, Figure 4.1. 

 
Since no deformation has occurred during the rotation, the rate-of-deformation ijD , equals 
zero, which is a correct assumption, but undecidedly leads to that 0=DtD ijσ  which is in-
correct see (4.2). The components of Cauchy stress in a fixed coordinate system will change 
during the rotation, so the material derivative of the stress must be nonzero. Obviously, 
something is missing in equation (4.2) since it does not support rigid-body-motions.  
 
The material rotation can be accounted for an objective rate of the stress tensor or often called 
a frame-invariant rate. There exist several objective rates, some more commonly are 
Truesdell-rate and Green-Naghdi-rate among others, but throughout this work all derivations 
are based on the Jaumann-rate. 
 

Figure 4.1: Rotation of a bar under initial stress. 

0σ 0σ

0,0 == yx σσσ 0,0 == xy σσσ
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4.2 Elasticity at finite strain 

4.2.1 Hypo-elasticity 
Hypo-elastic laws are used primarily for representing the elastic response in elasto-plastic 
material laws, where the elastic deformations are small. The most common elasto-plastic 
constitutive models that are implemented into conventional FE-programs are based upon 
Hypo-elasticity. The theory presented in chapter 4.2.1 and 4.2.2 is taken from [6], if nothing 
else is indicated. 
 
Hypo-elastic material laws relate the rate of stress to the rate of deformation. A general ex-
pression of Hypo-elasticity is given by 
 
 ( )klklijij Dg ,σσ =∇   (4.9) 
 
where ∇

ijσ  represents any objective rate of the Cauchy stress tensor. The function ijg  must 
also be an objective function of the stress and rate-of-deformation. 
 
Several of the Hypo-elastic constitutive relations can be expressed as linear relations between 
the objective measure of stress and the rate-of-deformation 
 
 e

klijkl
J

ij DC=∇σ   (4.10) 
 
where J

ij
∇σ  is the Jaumann rate of Cauchy stress, e

klD  is the elastic part of (3.41)  and ijklC  is 
the fourth-order elastic-moduli-tensor. This tensor can be expressed for an isotropic condition 
as 
 
 ( )jkiljlikklijijklC δδδδµδλδ ++=  (4.11) 
 
where λ  and µ  are the Lames constants. 
 
With a hypo-elastic formulation an undesired effect arises during a large elastic strain appli-
cation. The strain energy is not necessarily conserved, i.e. the work done in a closed elastic 
deformation path is not necessarily zero, Figure 4.2. 
 

Figure 4.2: Closed deformation path in a four step illustration. 
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4.2.2 Hyper-elasticity 
Hyper-elastic or often called Green elastic materials provide a natural frame-work for frame-
invariant formulation [6], the frame indifference restrictions are trivially fullfilled if proper 
deformation measures are employed. Hyper-elasticity is a good model for non-linear 
elasticity, since the drawbacks of hypo-elasticity are avoided. Following expressions are taken 
from [18]. 
 
The second Piola-Kirchoff stress tensor, ijS , and the rate of Lagrangian strain tensor, ijE& , are 
conjugated quantities and therefore the strain-energy per unit reference volume can be ex-
pressed as 
 

 ( ) ( ) ij

E

klijij EdESEW
ij ~~

0
∫=   (4.12) 

 
The notation ijE~ indicates that it is an integration variable. From (4.12) an energy increment 
can be expressed as 
 
 ijijdESdW =  (4.13) 
 
The energy increment can also be expressed as 
 

 ij
ij

dE
E
WdW
∂
∂

=  (4.14) 

 
With (4.13) and (4.14) the following expression holds 
 

 ( )ij
ij

ij EWWwhere
E
WS =
∂
∂

=  (4.15) 

 
It appears that the strain energy W serves as a potential-function for the stresses. Choosing, 
for instance 
 

 klijklij ELEW
2
1

=  (4.16) 

 
where ijklL  is the positive definite constant stiffness tensor, results in the following simple 
hyper-elastic model  
 
 klijklij ELS =  (4.17) 
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4.3 Plasticity theory 
Plasticity theory provides a mathematical relationship that characterizes the elasto-plastic 
response of materials. There are three ingredients in plasticity theory [3]: the yield criterion, 
hardening rule and the flow rule. The theory throughout chapter 4.3 is taken from [19], if 
nothing else is indicated. 
 

4.3.1 Yield criterion 
The yield criterion determines the stress level at which yielding is initiated. It is convenient to 
define a scalar function ,F  as the yield criterion. If it is assumed that the material is isotropic, 
it does not have any preferred directions. Therefore, the initial yield surface can be expressed 
in terms of principal stresses [11] 
 
 0),,()( 321 === σσσσ FFF ij  (4.18) 
 
This can also be expressed in terms of the invariants of the stress tensor as [11] 
 
 0),,( 321 == JJJFF  (4.19) 
 
where 21, JJ  and 3J  are the invariants of the stress tensor and are defined by 
 

 kijkijjiijii sssJssJsJ
3
1;

2
1; 321 ===  (4.20) 

 
where ijs is the deviatoric stress tensor defined by 
 

 ijkkijijs δσσ
3
1

−=  (4.21) 

 
Since the yield surface in general varies with the increase of plastic strains, it is possible to 
express the current yield surface by 
 
 ,..2,10),( == ασ αKf ij  (4.22) 
 
where the so-called hardening parameters αK  are introduced. That characterizes the way in 
which the current yield surface changes its size, shape and position with plastic loading. 
 
The number of hardening parameters is unknown at the moment but as indicated; it is per-
mitted to have more than one. 
 
The type of the hardening parameters may be scalars or higher-order tensors. Initially the 
hardening parameter is set to zero, this means that the current yield surface coincides with the 
initial yield surface. The choice of hardening parameters therefore implies a choice of hard-
ening rule. 
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The hardening parameters αK  vary with the plastic loading. To model this, it is assumed that 
there exist some internal variables that are used to memorize the plastic loading history. In 
analogy with the notation above, let βκ  denote the internal variables 
 
 =βκ internal variables ...)2,1( =β  (4.23) 
 initially0=βκ  
 
Because the internal variables memorize the plastic loading history, they are zero before any 
plasticity is initiated. Since the internal variables βκ  characterize the elastic-plastic material, 
the hardening parameter αK  depend on the internal variables βκ  
 
 )( βαα κKK =  (4.24) 
 

4.3.2 Hardening rule 
The hardening rule describes the changing of the yield surface with increasing yielding. Three 
common hardening rules are: perfectly plastic, isotropic hardening and kinematic hardening. 
 
Thermoplastic materials often experience hardening during plastic straining. If a material is 
assumed not to experience hardening during plastic straining, the yield surface is unaffected 
by the plastic deformations, then it is called perfectly plastic [11]. 
 
Yield criteria for this type of material can be expressed with (4.22) as 
 
 0)()0,( == ijij Ff σσ  (4.25) 
 
During plastic straining the shape, size, and orientation of the yield surface remain unchanged 
as shown in Figure 4.3. 

 
The initial yield surface 0f  is often defined as the locus of stress states when the first yielding 
occurs shown in Figure 4.3, inside the surface the stresses are elastic and the material behaves 
elastically. 
If an initially isotropic material hardens isotropically, the yield condition can be expressed as 
 
 0)(),( =−= αα σσ KFKf ijij  (4.26) 
 

Figure 4.3: Perfectly plastic. 
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In other words, as hardening occurs, the value of )( βα κK  and the size of the yield surface 
changes with the development of plastic strains, shown in Figure 4.4. This event, will not 
affect the shape or orientation. 

 
In mathematical terms, hardening is obtained by letting the function )( βα κK  in (4.26) in-
crease with increasing plastic deformation. If the function )( βα κK  at some stage decreases 
with increasing plastic deformation then the yield surface shrinks in size corresponding to 
softening plasticity. 
 
As illustrated in Figure 4.5, if the loading is reversed from point A where yσσ = , the iso-
tropic hardening model will predict elastic unloading until point B is reached. The isotropic 
hardening model predicts the same yield stress in tension and in compression. For some mate-
rials, experimental results show that point B, where plastic effects again are encountered, 
occurs much earlier than predicted. This effect is called the Bauschinger effect. 
 

 
 

Figure 4.4: Isotropic hardening. 

Figure 4.5: Isotropic hardening. 
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A way to approximate the Bauschinger effect is to assume that the difference between the two 
yield points is the value of 02 yσ , cf. Figure 4.6. This approximation of hardening is called 
kinematic hardening. 
 

The idea of kinematic hardening is that the shape and size of the yield surface remain the 
same but the yield surface can translate in the direction of the plastic strain increment in the 
stress space, Figure 4.7. 

 
During plastic deformations the yield surface can be expressed as 
 
 0)(),( =−= ijijij FKf ασσ α  (4.27) 
 
where the hardening parameter in terms of the tensor ijα  represents total translation of the 
yield surface. A more general hardening is obtained if the two models are combined into 
mixed hardening, i.e. both the size and the position of the yield surface are allowed to change. 
 

Figure 4.7: Kinematic hardening. 

Figure 4.6: Kinematic hardening. 
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4.3.3 Flow rule 
When the state of stress reaches the yield surface f , the material undergoes plastic deforma-
tion; this is also called plastic flow [11], which is defined through a flow rule. 
The flow rule determines the direction of plastic straining and can be given as [3] 
 

 
ij

p
ij

QD
σ

λ
∂
∂

= &  (4.28) 

 
where p

ijD  is the plastic part of (3.41) and λ&  is the plastic multiplier, which determines the 
amount of plastic straining.Q  is the plastic potential function which determines the direction 
of plastic flow direction. 
If Q  is the yield function, the flow rule is referred to as an associative flow rule of plasticity 
[11] and the plastic strains occur in a direction normal to the yield surface [3]. Many materials 
are best modelled when the yield surface f  and the plastic potential function Q  are different. 
 
In the same way as in the flow rule, it is possible to establish a flow rule for the internal vari-
ables. 
 

 α
α λκ

Κ∂
∂

=
Q&&  (4.29) 

 

4.4 Hypo-elastic-plastic constitutive model 
The elasto-plastic constitutive models that ANSYS uses today are based upon hypo-elastic-
plastic models. This model is an extension of hypo-elasticity, described in chapter 4.2.1. 
Following expressions are taken from [6]. 
 
The modelling of plasticity for large strains often implies an additive split of the rate of defor-
mation, ijD  into an elastic part and a plastic part  
 
 p

ij
e
ijij DDD +=  (4.30) 

 
With (4.10) and (4.30) the Jaumann-rate can be expressed as 
 
 ( )p

klklelijkl
J

ij DDC −=∇
,σ   (4.31) 

 
If the elastic moduli, elijklC , , is assumed to be constant, it must be isotropic in order to satisfy 
the principle of material frame indifference. 
 
Now introducing one important feature for Jaumann-rate, that ( )ijfσ and ijσ  is commute. This 
leads to the following relationships 
 
 ( ) ( )klijklij ff σσ σσ =  and ( ) ( ) J

klijklij ff ∇= σσ σσ &  (4.32)   
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Using the consistency relation 0=f& from (4.22) with the relation (4.31), the plastic flow rela-
tion (4.28), the evolution equation (4.29) and the relation (4.32) gives the consistency 
condition  
 

 
( )

( ) ( ) tuelrstursK

klelijklij

rCQhQ
DCQ

,

,

σαα

σλ
+−

=&   (4.33) 

 
where ijij fr σ∂∂= is the plastic flow direction and α

α Kfh ∂∂=  is the flow direction for 
internal variables. For an associative flow rule ( ) ( )ijij fQ σσ = . 
 

4.5 Rate-dependent plasticity 
For many materials like thermoplastic materials, the strain rate influences the material be-
haviour, which necessitates a separation of this behaviour into rate-dependent and rate-inde-
pendent. Materials where the stress-strain response is independent of the rate of deformation, 
is said to be rate-independent, Figure 4.8a; otherwise rate-dependent, Figure 4.8b. 
 
In a large class of rate-independent and rate-dependent elastic-plastic constitutive equations 
the elasticity is modelled in hypo-elastic form, with the stress rate being taken as the Jaumann 
derivative, so as to make the constitutive model properly frame-indifferent or objective [2]. 
 

 
The addition of viscous effects to the derived hypo-elastic-plastic model in chapter 4.4, is just 
an adjustment of the plastic rate parameter λ& . This will now be expressed as [6] 
 

 
( )
η
σ

λ
Kij ,Φ

=&   (4.34) 

 

b)a) 

Figure 4.8: Engineering stress-strain curve a) rate-independent material b) 
rate-dependent material. 
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where ( )Kij ,σΦ  is an overstress function and η  is the viscosity. It shall be pointed out that 
the over stress function has the dimension of stress and can be considered as the driving force 
for the plastic strain [6]. To get a grip of how a rate-dependent model is composed, a one di-
mensional rheological model will be considered, Figure 4.9. 

The constant frictional stress is represented by yσ , η  is the viscous constant and E  is the 
elastic constant [14]. Thermoplastic materials in general have a material behaviour that com-
bines all above described, Figure 4.9. 
 

4.5.1 Viscosity models 
In this thesis, there was a limit of the available numbers of material models implemented in 
ANSYS, which support the plastic and viscous behaviour of PC/ABS. There are only three 
models in ANSYS that support visco-plasticity, Anand’s model, Peirce model and Perzyna 
model. Of those models mentioned above, there are only two material options available that 
are suitable for large strain rates, namely the Perzyna and the Peirce model. Both of these 
models must be combined with isotropic hardening. Another requirement is that the material 
model has to be able to describe the typical softening behaviour, cf. Figure 4.10 

Figure 4.9: One dimensional rheological model. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

True Strain

Tr
ue

 S
tre

ss
 [M

P
a]

Figure 4.10: Softening behaviour. 

Softening 

 1 

1 
)ln( 0LL

 

A
F  

 



 25

 
One drawback for these models is that the strain rate effects are only active after plastic 
yielding has occurred [3] and it can not describe viscous effects during unloading. 
 
In a more detailed fashion, the models can be described as follows [3]. 
 
The visco-plastic flow rule is given as 
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for Perzyna model and 
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for Peirce model, where yσ  is the yield stress, 0σ  is the static initial yield stress, n  is a 
hardening parameter and γ  is the viscosity parameter. 
 
The equivalent-plastic-strain rate is based on the visco-plastic flow rule as follows 
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for Perzyna model and as 
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for Peirce model. 
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5 Material testing 
The choice of material model is important and may not always be obvious. To understand the 
behaviour of the thermoplastic, it is necessary to perform material testing. A good way to 
evaluate material behaviour is to do tensile tests at different rates. This will, among other 
things, show viscous effects in the material. Some of the material properties are provided by 
the material supplier, but they need to be complemented with further material tests. 
 

5.1 The stress-strain curve 
A uniaxial (one dimensional) stress-strain curve can be obtained from a tensile test. Often the 
applied load versus elongation is illustrated without any attention taken to the geometrical 
behaviour during loading. In order to extract meaningful information about the material be-
haviour from the tensile tests, all effects of the specimen geometry needs to be eliminated.  
For materials where the strains are just a few percent, the cross section area decrease is not 
significant; in those cases the cross section area will be approximated to be constant. This is 
not the case for thermoplastic materials, where many load applications results in large strains 
and hence the cross section area can not be approximated as constant, cf. Figure 5.1. The 
following definitions are taken from [6]. 

 
Where the cross section area is approximated as constant, the mechanical response is often 
expressed in Engineering stress and Engineering strain. Define the stretch as 
 

 
0L

L
=λ  (5.1) 

 
where δ+= 0LL  is the length of the gage section associated with elongation δ . The 
engineering strain is then defined as 
 

 1
0

0 −== λδε
L

 (5.2) 

Figure 5.1: Geometrical behaviour during loading 
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The nominal or engineering stress is given by 
 

 
0

0 A
F

=σ  (5.3) 

 
where 0A  is the original cross-sectional area. 
 
If the cross section area change is significant, true stress must be considered instead of the 
engineering stress. 
 

 
A
F

=σ  (5.4) 

 
where A is the current cross section area, i.e. not approximated to be constant any longer. 
 
The strain, ε , can be measured by integrating the change of unit current length. This measure 
of strain is called true strain or logarithmic strain. 
 

 ( )∫ =







==

L

L L
LdL

L
0

lnln1

0

λε  (5.5) 

 
The time derivate of the logarithmic strain (5.5) will in one-dimensional case be equal to the 
rate of deformation. 
 

 11D==
λ
λε
&

&  (5.6) 

 
The nominal strain rate is defined as 
 

 
0

0 L
δε
&

& =  (5.7) 

 
Since 
 

 L&& =δ  and λ
δ &

&&
==

00 L
L

L
  (5.8) 

 
it follows that the nominal strain rate is equivalent to the rate of stretching, i.e. λε && = , in a one 
dimensional case. This relation is not true for general multiaxial states of deformation, unless 
the principal axes of the deformation are fixed. 
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5.2 The plastic behaviour 
Many polymers that undergo loading above the yield stress stretch uniformly for a few per-
cent and then, instead of breaking, they fail by forming a neck. The neck may get steadily 
thinner until break, or it may stabilize at some point and then the shoulders travel along the 
specimen. In this case, the phenomenon is called cold-drawing [17] [22]. 
 
Necking is a geometrical behaviour, which typically starts before the softening on the engi-
neering stress-strain curve. Furthermore strain will change the softening process into a hard-
ening process until failure [1] [12] [13]. 
 
Another interesting feature of thermoplastic materials is that they show a different behaviour 
when they are exposed to compression compared to tension. When looking at Polycarbonate, 
PC, which is a component of PC/ABS, this effect is obvious, cf. Figure 5.2. The response in 
tension is significantly stiffer than in compression [4]. 

 
 

Figure 5.2: PC [4]. 
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5.3 Data from the material supplier 
Figures 5.3 and 5.4 show data from the supplier of PC/ABS at different temperatures and load 
rates. Figure 5.3 show tensile tests at 23º C at different load rates. It has typical strain rate-
dependence, since the load rate influence the load level for necking entry. 

In Figure 5.4, a compression test has been made at different temperatures. Intuitive the mate-
rial manage more load when cooled compared to a heated level. 
 
Under uniaxial compressive loading conditions, the underlying polymeric network chain 
structure is undergoing a planar orientation process which gives rise to the corresponding ob-
served strain hardening behaviour. The necked region of the tensile specimen is being cold 
drawn resulting in a uniaxial state of orientation. Therefore, the observed engineering strain 
hardening in uniaxial tension distinctly differs from that obtained in uniaxial compression, 
giving different stress-strain curves [8] [5]. 

1
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5.4 The tensile test 
In order to accurately model the material behaviour, a reliable set of experimental data over 
an adequate range of strain rates is required. The true stress-strain testing of polymers is a 
formidable task due to the difficulty of conducting such tests to very large strains while 
maintaining a homogeneous state of deformation [4]. 
 

5.4.1 Test preparation 
All tensile tests were made at LTH with a tensile testing machine like the one in Figure 5.5, at 
normal temperature and pressure conditions. 
 

 
The test specimen is injection-moulded and made of PC/ABS. The essential dimensions can 
be seen in Figure 5.6. 115 mm indicates the distance between the grips. Dimensions of the 
specimen follow the norm ISO 527-2/1A. 

Figure 5.5: MTS tensile testing machine. 

Figure 5.6: Test specimen ISO 527-2/1A. 
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5.4.2 Testing procedure 
Tensile tests with constant displacement rate were performed on all test specimens for com-
parison with the simulated tensile test results from finite element analysis. A displacement 
controlled application was chosen because of the critical necking phase that would make the 
specimen collapse, if a load controlled application was chosen instead. 
 
The test equipment measures applied displacement versus obtained load. This data can not 
directly be transformed to true stress and true strain, since the cross section area decreases 
with the strain. Due to the lack of test equipment that could measure this area decrease, we 
had to find this in another way, which will be described in chapter 6. 
 
There is helpful equipment that can measure the cross section area, for example a CCD-cam-
era. Even with this equipment this data is difficult to measure with accuracy, since the area 
decrease arises somewhere along the specimen during stretching and therefore one does not 
know where the area decrease takes place exactly. Unfortunately the material supplier could 
not support us with this data of true stress and true strain. 
 

5.4.3 Results of tension tests 
Results of the tension tests made at different strain rates are shown in Figure 5.7. Near the 
maximum force, the specimen creates a neck and a very rapid decrease in cross section area 
appears. Once the neck stabilizes locally, drawing continues as material is pulled from the 
wider regions. During this time the load cell records very little increase in force. 

 

Figure 5.7: Tensile test at different rates for PC/ABS. 
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From the material supplier data, Figure 5.3, and from the tensile tests in Figure 5.7, it is obvi-
ous that the material behaves differently when exposed to varying strain rate. This indicates 
that the material is rate-dependent, which must be considered when choosing the material 
model. To evaluate the yield stress of PC/ABS one needs to do further material tests, where 
the rate-dependent contribution is eliminated. Due to this a static tensile test was done, cf. 
Figure 5.8. 
 
Unloading this static curve at midway will identify if there exists any remaining deformation, 
at this load level. 

Obviously there exists a remaining deformation at this load level, Figure 5.9. 
In metals an often used plastic limit is the so called RP0.2 limit, which occurs when 0.2% 
remaining plastic deformation exists after unloading. For materials like thermoplastics this 
entry is not so sharp and may be effects of the rate-dependence. This is the reason why an 
exact yield stress is hard to define for PC/ABS. 
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Figure 5.8: PC/ABS  
loading at a rate of 0.5 mm/min 
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6 Calibration of the constitutive model 
Material models are mathematical descriptions of material behaviour. For the adoption of the 
material model, one needs to determine several material parameters therefore experimental 
data is needed. 
 
According to Figure 5.3 and 5.7, PC/ABS is showing rate-dependent effects. Due to lack of 
information, one does not know if the viscous effects exist in the elastic region. 
 
The isotropic hardening is in ANSYS described by an input of a true stress-strain curve like 
the one in Figure 6.1. Before the calibration will be described, the procedure of numerical 
simulations must be explained. 
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Figure 6.1: True stress versus true strain. 
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6.1 Numerical simulation of the uniaxial tensile testing of PC/ABS 

6.1.1 Element type 
All simulations in ANSYS made in this thesis are based upon the 3D-solid element, Solid185. 
This element has eight nodes, node I through P Figure 6.2, and each node has three degrees of 
freedom, UX, UY, UZ. 
 
This element supports orthotropic behaviour [3] 
 
Young’s modulus, zyx EEE ,, . 
Poisson’s ratio, zyx υυυ ,,  or the shear angle, zyx γγγ ,, . 
Temperature dependence, zyx ααα ,, . 

 
Other features that this element supports are plasticity, hyper-elasticity, creep, visco-
plasticity, damping analysis and large strains [3]. 

Figure 6.2: Solid185 
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6.1.2 Mesh 
The simulated model of the tensile specimen represents the real one, with measurements 
according to Figure 5.6. Since there exist two planes of symmetry, only a quarter of the test 
specimen will be used, cf. Figure 6.3. 

 
The use of symmetry planes reduces the simulation time noticeably. For many simulation 
applications, a 2-D model would be sufficient for Sony Ericsson. Unfortunately the simplifi-
cation plane-stress, which could be an interesting alternative for simulations of cellular tele-
phone shells, does not work for this model. 
 
The mesh, which consists of 2640 elements, was divided in five regions, regarding element 
size. This was done to more easily change element size in sensible regions, if convergence 
problems occur. Since there exist large strains and thereby the elements are exposed to large 
stretching, one needs a tight mesh to avoid highly disordered elements. This will increase the 
calculation time, but otherwise maintain a reasonable accuracy of the simulation results. 
 

6.1.3 Necking simulation 
The simulated part has a necking behaviour in the same manner as a real test specimen. Since 
the narrowest width of the test specimen follows through over the whole test specimen, Figure 
6.3a, a small imperfection was made to control the initial point of the necking. This imper-
fection of the test specimen was introduced in form of a width decrease of 1 % at the centre of 
the specimen (the bottom of the mesh), Figure 6.3b. 
 

Figure 6.3: Finite element model of a 
quarter of the tensile test specimen. 
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6.1.4 Boundary conditions 
The nodes along the x- and y-axis of symmetry are constrained to have no displacement in 

yU  and xU  , respectively. The nodes located at the top of the specimen are constrained in zU  
and prescribed to move in the vertical direction yU , at a constant displacement rate corre-
sponding to that applied in one of the actual experiments, cf. Figure 6.4. 

 

Figure 6.4: Test specimen, boundary conditions. 

∆
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6.2 Modifying the input data 
Usually all calculations are based upon engineering data in terms of engineering stress and 
engineering strain. In large strain analysis, generally stress-strain input is in terms of true 
stress and true strain. In small strain applications, the area reduction effect is insignificant and 
it will therefore not affect the accuracy of the simulation results. 
 
From Figure 6.5, the curve with the slowest rate is considered as static in this thesis. This 
curve was also the base for the true stress-strain curve. 

For small-strain regions of response, true strain and engineering strain are essentially identi-
cal. There is no efficient way to convert engineering stress to true stress, therefore an initial 
guess; an assumption from [3] was used 
 
 ( )engengtrue εσσ += 1  (6.1) 
 
This stress adaptation is valid only for incompressible plasticity. This is not the fact for the 
investigated thermoplastic where Poisson’s ratio is not constant throughout the yield point due 
to cavitations [9]. Expression (6.1) should not be used after softening has been initiated due to 
the area decreasing. The adaptation to true stress and true strain after necking was therefore 
only a qualitative guess based upon earlier work see Figure 5.2. 
 
The developed input data that is used throughout this thesis is illustrated in Figure 6.6. 

Figure 6.5: Tensile tests made at different rates for PC/ABS. 
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Figure 6.6: Input data to ANSYS expressed in true stress and true 
strain. 
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6.3 Determination of viscosity parameters 
Calibration of the rate-dependent behaviour, i.e. determination of the viscosity parameters, is 
an important aspect when simulating the behaviour of snaps or conducting simulations of 
drop tests, where the strain rates are high. Simulation programs, like ANSYS, require viscos-
ity parameters to manage calculations at different strain rates. 
 

6.3.1 The parameters m and γ  
The next step is to calibrate the parameters m and γ  in a satisfying manner. Rearranging 
(4.37) gives the Perzyna equation 
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Corresponding equation for Peirce (4.38) is 
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where: 
 
 =yσ material yield stress 

 =in
eqvε& equivalent plastic strain rate 

 == nm 1 strain rate hardening parameter 

 =γ material viscosity parameter 
 =0σ static yield stress of material 
 
As γ approach ∞ , or m approach zero or in

eqvε&  approach zero, the solution converges to the 

static solution for Peirce. As γ approach ∞ , or in
eqvε&  approach zero, the solution for Perzyna 

converges to the static solution. However, for this material option when m  is very small (< 
0.1), i.e. when a rate-independent model is approached, the solution shows difficulties in con-
vergence [20]. 
 
To be able to find the parameters m  (a value between 0 and 1) and γ  (a value between 0 and 
∞ ), it is first necessary to determine the material yield stress, static yield stress and equivalent 
plastic strain rate for as many tensile tests as possible. 
 
Finding the yield stress for different strain rates is not an easy task with the given data. The 
only way is to make a qualified guess. By looking at tensile tests, see Figure 6.5, the yield 
stress is determined after the initial estimated linear part. 
 
Figure 6.7 shows a comparison between Perzyna model (6.2) (dashed line) and determined 
yield stress as a function of strain rate (solid line). 
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The determined yield stresses are only an estimate which will affect the values of m  and γ  
noticeably. 
 
Figure 6.8 shows a comparison between determined yield stress as a function of strain rate 
(solid line) and the Peirce equation (6.3) (dashed line). 

It is not hard to see that no combination of m  and γ  will fit the Peirce model, so this model 
will be eliminated from further analysis. 
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Figure 6.8: Yield stress as a function of strain rate (solid line) 
compared with Peirce model (dashed line). 
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Figure 6.7: Yield stress as a function of strain rate (solid line) 
compared with Perzyna model (dashed line). 
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Initially in the analysis, the Perzyna model with the chosen parameters of m andγ , was used, 
Figure 6.7. As mentioned above, these parameters only work as an initial estimation due to 
the difficulty in finding the yield stress. Tensile tests at different strain rates were simulated in 
ANSYS with the chosen parameters and compared with the real tests, Figure 6.5. If the results 
were not satisfying, new parameters were estimated and simulated for all strain rates in Figure 
6.5 until an adequate result was achieved. 
 

6.4 Results 
The tensile tests were made at seven different strain rates, Figure 6.5, and compared with 
simulations made under the same conditions, Figure 6.9, 6.11, 6.12, 6.13, 6.15, 6.16 and 6.17 
 
A typical plastic behaviour is the softening that occurs. This effect appears due to molecular 
rearrangement in the material. Describing this effect mathematically in a material model is 
difficult but has been achieved in this thesis, cf. Figure 6.10, 6.14 and 6.18. Simulations were 
done up to 80% global strains of the test specimen, with satisfying results. Of course, one 
must be aware of the limit when failure occurs. 
 
The material model that has been investigated is a visco-plastic model. This material model 
describes the softening behaviour well, at an arbitrary rate. Figure 6.9, 6.11, 6.12, 6.13, 6.15, 
6.16 and 6.17 show real tensile tests made in a tensile test machine, at different strain rates, 
compared with simulations of tensile tests made in ANSYS with the visco-plastic model. 
 
Since we were testing the real specimen to failure, the same was done in the simulation. 
Unfortunately one does not know when break occurs in the simulation program, since the 
mesh keeps on stretching without notice. This is one of the reasons why one needs to do real 
tests to verify the validity of the simulation results. 
 
The tensile specimen at Figure 6.10, 6.14 and 6.18 are scaled to fit in the same figure. This 
explains the differences in width of the tensile specimen. 
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The slowest tensile test was done at a displacement-rate of 0.5 mm/min, which was also the 
selected curve that was stated to be static, Figure 6.9. It is obvious that the material model 
with the chosen parameters of m  and γ  can not describe the softening acceptably for static 
conditions, Figure 6.9. This drawback occurs because the Perzyna model approaches isotropic 
hardening plasticity at slow strain rates. Isotropic hardening plasticity is not able to describe 
this softening in a satisfying manner. 

Figure 6.10: Von Mises stress of PC/ABS at a rate of 0.5 mm/min. MaxU  refers to global displacement. 
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Figure 6.9: A real test (solid line) of PC/ABS at a rate of 0.5 
mm/min compared with simulation (dashed line). 
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The static result which was not totally satisfying, Figure 6.9, will not be a limitation for the 
material model, since in practical applications, static conditions are rare. 
The typical area decreasing phenomenon for thermoplastic materials, the so called cold-
drawing is illustrated in Figure 6.10. 

 
Already at a rate of 5 mm/min, the Perzyna model, describes the softening well, Figure 6.11. 
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Figure 6.12: A real test (solid line) of PC/ABS at a rate of 57.5 
mm/min compared with simulation (dashed line). 
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Figure 6.11: A real test (solid line) of PC/ABS at a rate of 5 
mm/min compared with simulation (dashed line). 
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Figure 6.14: Von Mises stress of PC/ABS at a rate of 100 mm/min. MaxU  refers to global displacement. 
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Figure 6.13: A real test (solid line) of PC/ABS at a rate of 100 
mm/min compared with simulation (dashed line). 
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Figure 6.15: A real test (solid line) of PC/ABS at a rate of 200 
mm/min compared with simulation (dashed line). 
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Figure 6.16: A real test (solid line) of PC/ABS at a rate of 690 
mm/min compared with simulation (dashed line). 
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Figure 6.17: A real test (solid line) of PC/ABS at a rate of 6900 
mm/min compared with simulation (dashed line). 
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Overall the test results show very good agreement with the simulated results, except from the 
softening behaviour at static condition. It should be pointed out that all tensile tests, show 
scattering in the results, Figure 6.19 and 6.20, probably due to material imperfections. This 
spreading partly explains the divergence between the real tests and simulations, throughout. 
 
The slower tensile rates, shows a lower force level before the necking phenomenon initiates, 
compare Figure 6.9 with Figure 6.17, as mentioned earlier this indicates viscous effects. 
When comparing the size of the waist area in Figure 6.10, 6.14 and 6.18, it is evident that the 
strain rate affects the initiating of necking and the size of the waist area enlarges with in-
creasing rate. Exactly what causes this behaviour is hard to describe without further material 
investigation. 

Figure 6.19: The scattering in result. Tensile tests of 
PC/ABS at a rate of 0.5 mm/min.  
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Figure 6.20: The scattering in result. Tensile tests of 
PC/ABS at a rate of 200 mm/min. 
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7 Verification of the material model 
Tensile tests, with ordinary test specimens are a good way of analysing material behaviour. 
Unfortunately this test technique can only describe material behaviour in one dimension. Due 
to this verification tests, so called “specimen with a cylindrical hole”, were made to evaluate 
the whole stress field. This test follows the same test procedure as a normal tensile test but 
with the difference that now the test specimen has a cylindrical hole at the centre. 

7.1 Tensile test of plate with hole 
A tensile test was made in the same manner as described in chapter 5.4. This test specimen 
has the same dimensions according to ISO 527-2/1A, Figure 5.6, with the only difference that 
it has a 3.2 mm milled cylindrical hole in its centre, Figure 7.2. The addition of the cylindrical 
hole will describe a multi-axial stress field. 
 
Four different tensile tests were made with increasing strain rates to failure, Figure 7.1. 

 

Figure 7.1: Test specimen with cylindrical hole at different rates. 
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7.2 Simulation of test specimen with hole 

7.2.1 Element type and mesh 
In the same manner as described in chapter 6.1, a similar tensile test was simulated in ANSYS 
to verify the results of the tensile test of the specimen with a cylindrical hole, described in 7.1. 
The mesh of the modelled tensile test specimen is overall identical with the earlier tensile 
tests described in chapter 6.1, with exception from addition of a cylindrical hole, Figure 7.2. 
This extra hole gives an increase in number of elements, which are now 2784. 

7.2.2 Loads and boundary conditions 
Since this test specimen is almost identical to the one earlier described in chapter 6, with 
exception from the cylindrical hole, the geometrical symmetry can be used. In the same man-
ner as described in chapter 6.1 only a quarter of the test specimen was used for analysis. 
Regarding the boundary conditions, these are the same as earlier described, but now with a 
smaller final displacement yU at the top, Figure 6.4. 

Figure 7.2: Test specimen with a 
cylindrical hole. 
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7.2.3 Results 
The results from the tensile tests on the specimen with cylindrical hole are compared with the 
simulation in the same manner as described in chapter 6.4. Since the simulation can not de-
scribe the actual failure, one needs to be aware of the limit when failure occurs. 
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Figure 7.3: A real test of specimen with cylindrical hole (solid line) 
of PC/ABS at a rate of 0.5 mm/min compared with simulation (dashed 
line). 
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displacement. 
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Figure 7.6: Von Mises stress of PC/ABS at a rate of 5 mm/min. MaxU  refers to global displacement. 
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Figure 7.5: A real test of specimen with cylindrical hole (solid 
line) of PC/ABS at a rate of 5 mm/min compared with simulation 
(dashed line). 
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Figure 7.8: Von Mises stress of PC/ABS at a rate of 10 mm/min. MaxU  refers to global 
displacement. 

Minσ  

Maxσ  

Maxσ  =       54.3 MPa                                        102 MPa                    127 MPa       

Minσ  =       3.80 MPa                                       3.66 MPa                    3.66 MPa  

MaxU  =         2.0 mm                                         3.0 mm                                                4.0 mm 

Figure 7.7: A real test of specimen with cylindrical hole (solid 
line) of PC/ABS at a rate of 10 mm/min compared with 
simulation (dashed line). 
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Figure 7.10: Von Mises stress of PC/ABS at a rate of 50 mm/min. MaxU  refers to global 
displacement. 
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Figure 7.9: A real test of specimen with cylindrical hole (solid line) 
of PC/ABS at a rate of 50 mm/min compared with simulation 
(dashed line). 
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The overall test results show very good agreement with the simulated results, Figure 7.3, 7.5, 
7.7 and 7.9. Still there is a spreading in result due to material imperfections, which will affect 
the results of the test comparison overall. 
 
In the same way as in chapter 6, the lower tensile rates, show a lower force level before 
softening initiates, Figure 7.3, 7.5, 7.7 and 7.9. It is noticeable that the strain rate influencing 
the initiating of softening and the size of the waist area enlarges with increasing rate, Figure 
7.4, 7.6, 7.8 and 7.10. Overall the Perzyna model seems to describe the whole stress field 
satisfactorily. 
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8 Conclusions 
The investigated plastic, PC/ABS, shows a highly viscous behaviour, i.e. highly rate-depend-
ent. In large strain applications for materials where the cross section area changes, it is im-
portant to use input data in terms of true stress and true strain, to maintain the accuracy. Use 
of engineering data of PC/ABS in simulation programs makes the results less reliable, par-
ticularly after necking has been initiated. 
 
Data of true stress and true strain is not available either in the literature or from the material 
supplier. This data can be obtained by comparing simulations of tensile tests with real tensile 
tests. 
 
The only useful material models in ANSYS for large strain rates, is the visco-plastic model 
namely, the Perzyna model. 
This model requires identification of the two parameters γ  and m  to describe the visco-plas-
tic behaviour. Due to the request for secrecy these parameters can not be published. 
 
The Perzyna model describes the softening behaviour well and global strains up to 80 % at 
analyzed strain rates. Overall the test results show satisfying agreement with the simulated 
results, with the only exception for static condition, where the agreement between real tests 
and simulations were not totally satisfying in the softening region. This drawback arises from 
the Perzyna model approaching isotropic hardening plasticity at slow strain rates. Isotropic 
hardening plasticity is not able to describe this softening in a satisfying manner. 
 
A uniaxial tensile test can only describe material behaviour in one dimension. Due to that, a 
verification tensile test using a specimen with a cylindrical hole was made. This test describes 
the whole stress field. The results are satisfying in all analyzed strain rates for Perzyna model. 
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