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Abstract 
 
Railways, which in the future will be trafficked by high-speed trains, are designed 
with respect to the dynamic responses that these trains raise. The dynamic response is 
normally calculated using modal superposition, based on an eigen frequency base 
defined by the highest frequency included, the so called cut-off frequency. A higher 
cut-off frequency gives more accurate results but demands a longer computational 
time. Because of the extensive number of dynamic analyses needed to be performed 
for a bridge trafficked by high-speed trains, it is desirable to minimize the frequency 
base and thereby receive as short computational time as possible.  At the same time, 
the accuracy of the results must be satisfying i.e., choosing the cut-off frequency is in 
a sense a balance between cost and quality.  
 
This study aims to find general guidelines for choosing an appropriate cut-off 
frequency, when performing modal dynamic analyses of concrete bridges trafficked 
by high-speed trains. To do so, a convergence study was carried out for two types of 
bridges to find acceptable cut-off frequencies. With the cut-off frequency known, an 
attempt to find a relation between the load frequency and the found cut-off frequency 
was made. Also, the use of residual modes when performing modal dynamic analyses 
was studied, by performing the same analyses as when searching for the cut-off 
frequencies but with residual modes included.  
 
The study shows that the cut-off frequency depends on which result component of the 
section forces chosen to be studied. For bridge 1, a long three span bridge, the 
analyses converged earlier when studying the bending moment than when studying 
the shear forces. 
 
There are few bridges stiffer than bridge 2, a short frame bridge. A higher cut-off 
frequency than needed for bridge 2 is not likely to be needed when performing modal 
dynamic analyses on bridges. For the convergence criterion set up in this report, the 
analyses for bridge 2 converge when a cut-off frequency of 160 Hz was used. That is 
about four times the highest frequency any of the studied standardized high-speed 
trains generates. The results also show that the analyses for each bridge converge at 
the same cut-off frequency, independent of which standardized train load used in the 
analyses. This leads to the conclusion that a cut-off frequency higher than 160 Hz is 
most likely never needed for any bridge and standard vehicle combination.   
 
Using residual modes proved to have a big impact on the analyses performed on 
bridge 2 but smaller on bridge 1. For bridge 2, the cut-off frequency was lowered 50 
% when a residual mode was used. For the residual modes to be a powerful tool and 
making better analyses, the user’s knowledge on how to generate an adequate residual 
mode is essential. Guidelines are presented in this paper on how to generate adequate 
residual modes. 
 
The results also show that, studying the effective mass is a conservative method when 
defining a cut-off frequency for bridges, if assuming an un-deformable ground.   
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1 Introduction 
 

1.1 Scanscot Technology 
 
Scanscot Technology has been active in two major areas since it was founded in 1992, 
development of analysis software products and consulting within civil, structural and 
mechanical engineering. In both areas advanced structural Finite Element Analyses 
(FEA) are used.  
 
Scanscot Technology is the developer of the analysis software package BRIGADE, 
containing the products BRIGADE/Standard and BRIGADE/Plus. Both programs are 
based on an integrated implicit solver from ABAQUS. The software is mainly 
developed to analyse bridges and other civil structures but can be used for other 
purposes as well. For further information, visit www.scanscot.com. 
 

1.2 Background to assignment 
 
Railways, which in the future will be trafficked by high-speed trains, are designed 
with respect to the dynamic responses that these trains raise. The dynamic response is 
normally calculated using modal superposition analysis, based on an eigen frequency 
base defined by the highest frequency included i.e. the cut-off frequency. The more 
complete the frequency base is chosen, the higher the accuracy of the results will be. 
On the other hand, a larger frequency base demands longer computational time 
because there will be more modes to include in the superposition. At the same, the 
computational time will increase due to the need of shorter increments in order to 
dissolve the high frequency modes.  
 
The total computational time is extensive since each bridge must undergo one analysis 
for each one of the ten high-speed trains HSLM-A1 - HSLM-A10 defined in the 
Swedish design code for railway bridges [2]. For each bridge it is not known, for 
which train type the greatest dynamic response will occur, or at what velocity it will 
occur. Because of the extensive number of dynamic analyses needed to be performed 
for a bridge trafficked by high-speed trains, it is important to minimize the frequency 
base to maintain a reasonable computational time. At the same time, the accuracy of 
the results must be satisfying.  
 
For many types of structures, a study of effective mass is used to select the cut-off 
frequency when performing a modal dynamic analysis e.g. an earthquake analysis. In 
such analyses, the cut-off frequency is chosen by studying the sum of the effective 
mass of the participating modes. Common praxis in such analyses is to include 
enough modes until 90 % of the total mass is excited. For most analyses of bridges 
trafficked by high-speed trains, the soil is assumed to be un-deformable. Since bridges 
normally have a considerable part of the total mass located in the supports a relative 
high cut-off frequency is needed to excite 90 % of the total mass. Therefore, for most 
bride structures, effective mass is not an appropriate method when trying to find a cut-
off frequency.       
 

 1



 

 2

1.3 Problem formulation 
 
Is there a way to define practical guidelines when trying to determine a cut-off 
frequency for modal dynamic analyses of bridges trafficked by high-speed trains? 
 

1.4 Objectives 
 
By studying two types of bridges and the properties of high-speed trains, this report 
aims to find guiding principles for choosing a cut-off frequency when performing 
modal dynamic analyses of concrete bridges. The bridges are modelled in a 3-D 
environment using BRIGADE/Plus. 
 

1.5 Limitations 
 
To verify the results, analyses have to be made for some different types of bridges. 
Because of the long computational time there are some limitations for the verification: 
 

• Verification will only be made on two types of bridges. 
• Only the worst-case trains, i.e. the trains that generate the greatest dynamic 

responses, will be tested on each bridge. 
• Only shear forces and bending moments will be studied. A full dynamic 

bridge analysis also requires studies of vertical accelerations but will not be 
considered in this study since the Swedish bridge design code [2] already 
defines the cut-off frequency for such analyses.  

• Track irregularities and interaction between rail and train wheels will not be 
considered in this study. This is in accordance with specification for short 
and medium span bridges found in [2]. 

 

1.6 Method 
 
The approach of this study is defined in three steps: 
 

1. An attempt to find the cut-off frequency through a convergence study.  
 

2. An attempt to find a relation between the cut-off frequency and the load 
properties. 

 
3. An investigation to determine whether the use of residual modes can be 

helpful when attempting to find a satisfying cut-off frequency. 
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2 Theory of dynamic analysis using FEM 
 

2.1 FEM 
 
Differential equations, set up to describe physical phenomena that are too complicated 
to be solved analytically, can be approximately solved numerically. The most widely 
used method to solve systems of differential equations numerically is the Finite 
Element Method (FEM) [1].  
 
With a complete model of a structure’s geometry, material properties, boundary 
conditions and the loads applied on it, a Finite Element Analysis (FEA) can produce 
several results. The load applied on the structure, can be of different kinds such as: 
heat, force, electric current and many other. Additionally, FEM can be used to 
calculate the natural frequencies and the modal shapes of a structure.   
 
The global structure of interest in a finite element analysis is divided into smaller 
parts/elements with corresponding nodal points. The equilibrium in these nodes can 
be described by simple equations. These equations are usually combined and written 
with the standard FE-formulation 
 
Mü + Ku = f      (2.1) 
 
where K is the global stiffness matrix including the geometry and material property of 
the structure, u the displacement vector containing the displacements at the nodes and 
ü is the acceleration vector. M is the mass matrix and f is the external forces and 
boundary conditions applied at the nodal point in the structure.  
 
When modelling the bridges in this project, shell elements have been used. Shell 
elements are only an approximation of the field equations and reduce a 3-dimensioned 
problem into a 2-dimensioned problem that can be calculated simpler. The reason 
why shell elements are used is that, for structures with a small thickness compared to 
the other dimensions, the accuracy of the solutions is often sufficient. 
 
For shell elements, the matrices K and f are defined as 
 

∫=
A

dABDBK T ~      (2.2) 

( )∫ ∫∫ +∇−⎟
⎠
⎞

⎜
⎝
⎛ +=+=

L A
nn

L

nm
nz qdAdLMdL

dm
dM

V TTT
lb NnNNfff   (2.3) 

 
where fBb B represents the forces at the boundary conditions and fBl B represents the internal 
forces. N is the shape function of the element and B is defined as NB ∇= . D is the 
constitutive matrix including the material properties. The shear force is in the 
formulation denoted as V BnzB while the torsion moment and bending moment are 
denoted as M BnmB and M Bnn B respectively. “q” is the distributed force per unit area acting 
on the elements and n, m and z are coordinate indexes for section/plane identified by 
the normal vector n. 
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Beam elements have also been used for some parts in the modelling. Since beams are 
dominated by the extension in the axial directions, a number of assumptions can be 
made. Accordingly, field equations and beam elements are therefore also just an 
approximation. The FE-formulation for beam elements can also be written as 
Equation. 2.1 but instead with the matrices K and f defined as  
 

∫=
b

a

dxEIBBK T      (2.4) 

[ ] ∫+⎥
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b
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a

b
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dx
dV T

T
T

lb NNNfff    (2.5) 

 
The term EI is called the bending stiffness. If it varies over the cross-section, it can be 
defined as 
 

∫=
A

dAEzEI 2      (2.6) 

 
V, M and q are still the notations for shear force, moment and distributed load. E is 
the Young’s Module and z is the distance from the normal plane of the beam.   
 

2.2 Linear dynamic analysis 
 
A dynamic analysis is more complex than a static analysis due to the time varying 
load/loads. At the same time the response of the structure varies in time when affected 
to a dynamic load. A linear static analysis results in only one solution. A dynamic 
analysis results in a series of solutions that correspond to the time that is chosen to be 
studied.  
 
In a dynamic analysis, not only internal forces are present but also inertia forces 
resulting from the accelerations of the structure. 
 
Bridges trafficked by high speed trains (speed > 200 km/h) must undergo dynamic 
analysis because of the risks of vibration resonance that might occur due to the high 
speed. Resonance of the vibrations can lead to ballast instability and exceeding of the 
stress limit of the bridge [3]. 
 

2.3 Dynamic load and resonance 
Resonance is the consequence of a train’s high speed and regularly spaced axles. The 
regular spacing of the axles causes a periodic load with a certain frequency f and time 
period T, shown in figure 2.1 (b). The relationship between the frequency f, the time 
period T, the velocity of the train v and the length of the wheel spacing L is shown in 
Equation 2.7. The similarity with a harmonic load is shown in Figure 2.1 (a). 
 

L
vf

v
LT

T
f =⇒== ,1     (2.7) 
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Figure 2.1: (a) The time period T given in a harmonic load, (b) Two different time 

periods given in the periodical load from a high-speed train 
 
On a train set there are several repeated space lengths, see Figure 2.2, that could 
generate different frequencies through different time periods depending on the 
velocity of the train. If this load-generated frequency is equal to or close to one of the 
natural frequencies of the structure resonance may occur.  

 
Figure 2.2: From [2] 

 

2.4 Modal Analysis  
 
The frequencies, at which vibration of the structure naturally occurs and the modal 
shapes, which the vibrating system takes, are properties of the system. The natural 
frequencies and the modal shapes of a simple system can be determined analytically. 
Modal analyses applied on more complex systems are often solved numerically 
through FEA.  
 

2.4.1 Eigenvalue problem 
 
The equation of motion for a freely vibrating system without damping can according 
to [1] be expressed:  
 

0KuuM =+&&      (2.8) 
 
where M is the mass matrix, u is the displacement vector and K is the stiffness matrix 
of the system. The motion is assumed to be simple harmonic, which can be express as 
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)sin()( tt nωφu =       (2.9) 
 
whereφ  is the amplitude of the motion, nω is the natural circular frequencies of 
vibration or eigenfrequencies of the system. Substituting Equation 2.9 and its second 
time derivate into Equation 2.8 gives 
 

0KφMφ =+− )sin()sin(2 tt nn ωωω                        (2.10) 
 
which can be rewritten as 
 
( ) 0φMK =− 2

nω                         (2.11) 
 
Applying Cramer’s rule [1], it can be shown that the only nontrivial solutions are 
possible when 
 

02 =− MK nω                                  (2.12) 
 
Equation 2.12 is the characteristic equation of the system and the solution gives N real 
roots of the eigenfrequencies 2

nω  for a system with N degrees of freedom. Each root 
represents the frequency of a mode of vibration possible in the system and has a 
corresponding mode shape vector nφ . The frequency vector  
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Nω

ω
ω

M
2

1

ω                          (2.13) 

 
includes all frequencies arranged in sequence. 
 

2.4.2 Mode superposition 
 
The mode superposition method is used to determine the dynamic response in a linear 
structure where the damping can be expressed as modal damping ratios and the 
displacements are given by a set of N discrete coordinates. By solving the response 
for each modal coordinate and subsequently superposing the results to determine the 
response in the original coordinates gives the dynamic response in the structure. The 
basis in the mode superposition method of a dynamic analysis is to change the set of 
N coupled equations of motion into a set of N uncoupled equations, by normal-
coordinate transformation. For more details, see [8]. 
 
After solving the eigen value problem in the previous section, the eigen frequencies 

nω  and the mode-shapes nφ  are defined. If the structural properties are known as well, 
the response of the system can be calculated using a set of generalized coordinates 

)(tqn . The response of each mode can then be determined by solving the equation 
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 )(tfqKqCqM nnnnnnn =++ &&&                        (2.14) 
 
where nC  is the damping and nf  is the external load. nM , nC , nK  and nf  are 
generalized and defined as: 
 

n
T
nnM φφ M=  

n
T
nnK φφ K=                           (2.15) 

n
T
nnC φφ C=  

)()( ttf T
nn fφ=  

 
The C matrix is defined as: 
 

C

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Nc

c
c

M
2

1

                         (2.16) 

 
where 
 

nnn mc ωζ2=                         (2.17) 
 
ω BnB is the circular frequency of the mode and ζ the damping ratio.  
 
Since all parameters in Equation 2.15 depend on the n:th mode only, there exist N 
uncoupled equations, one for each mode. 
 
The total dynamic response can then be calculated by adding the contribution from all 
N modes: 
 

∑
=

=
N

n
nn tqt

1
)()( φu                         (2.18) 

 

2.4.3 Cut-off frequency 
 
All structures have endless many natural frequencies. A modelled structure has as 
many natural frequencies as there are degrees of freedom. The modes chosen to be 
included in the analysis must therefore be chosen wisely. If too few modes are 
included, the result will not be accurate [4]. If too many modes are included, the 
analysis will end up with an unreasonably long computational time. For every 
dynamic modal analysis a cut-off frequency must be chosen in such a way that both 
accurate results are received and computational time is minimized. The use of a cut-
off frequency, which truncates the higher modes, is possible because the low-
frequency-modes mainly affect the structure [4].    
 



 

2.4.4 Residual modes 
 
Residual modes compensate for the truncated modes, modes with eigen frequencies 
above the cut-off frequency, in the modal analysis. The modal shape and frequency 
depends on the frequency base chosen for the analysis. The compensation is a result 
of the contribution of effective mass that the residual mode brings to the modal 
analysis.  
 

2.5 Study of convergence 
 
A study of convergence can be made to decide whether a satisfying cut-off frequency 
has been chosen. For bridge structures, shear forces and bending moments in the 
superstructure are of main importance and will therefore be included in the study of 
convergence [2]. If all modes are considered, which is not practically possible, 100% 
convergence will be obtained. To shorten the computational time, a convergence 
criterion is set up. Convergence studies in modal analysis are difficult because the 
decision of including an additional mode can lead to vastly different results in the 
convergence study i.e. the results the analysis seemed to be aiming at could change 
quickly. Therefore it is difficult to determine when a certain degree of convergence is 
reached.  
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3 Method of choosing an appropriate cut-off frequency from 
a dynamic load study 

 

3.1 Fast Fourier transformations (FFT) 
 
Fourier transformations can be used to transform a time function into a function in the 
frequency domain. Fast Fourier transformation is a discrete Fourier transform 
algorithm. It computes the same results as the discrete Fourier transform but only 
needs N(logN) operations instead of N2 operations for the transformation. 
 

3.2 Theory 
 
A simply supported beam will be used as an example to explain the idea behind the 
study of dynamic loads. 
 
If a simply supported beam is subjected to a pulse force F at its centre as in Figure 3.1 
and then is allowed to vibrate freely, it will eventually stop vibrate due to the inner 
damping of the beam, as shown in Figure 3.2. The shape and the frequency of the 
beam during the vibrations will correspond to the shape and frequency of the beam’s 
first and third vertical bending modes, which is shown in Figure 3.3. 
 

 
Figure 3.1: A simply end-supported beam subjected to a vertical force at its centre. 

 

 
Figure 3.2: Force F applied once at time t = 0 as demonstrated in Figure 3.1. The 
inner damping of the system forces the beam to stop vibrating after some time. The 

vertical axel shows the value of the bending moment at the centre of the beam. 
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Vertical bending mode 1: 8.35Hz 
Vertical bending mode 2: 33.33Hz 

Vertical bending Mode 5: 74.71Hz 

 

Figure 3.3: First three vertical bending modes for the simply supported beam 
 

If the beam is subjected to a force at a frequency (fF) that corresponds with one of the 
natural frequencies of the beam (fn), resonance will occur (fF = fn). As a result, this 
causes the deflection of the beam to increase every time the force is applied. When the 
force is removed the vibrations of the bridge will damp out. Figure 3.4 (a) shows the 
time history for the bending moment at the centre of the bridge when force F is 
applied five times with a frequency of 8.35Hz, the same frequency as the bridge’s first 
natural frequency. Figure 3.4 (b) reveals the time history in Figure 3.4 (a) transformed 
into the frequency plane through the use of Fast Fourier Transformation (FFT).  
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Figure 3.4: (a) Time history for the bending moment (SM1) at the centre of the beam 
when force F was applied 5 times with frequency fF =fn= 8.35Hz. Cut-off frequency 
10Hz. (b) The time history of the bending moment transformed into the frequency 

plane through FFT. 
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The force acting at the same frequency as the beam’s natural frequency denotes that 
every time the beam is flexed up to its highest point at the centre, the force is applied. 
For example, if the force F is applied with a frequency that is half the natural 
frequency (fi = fn/2) of the beam the force will be applied every second time the beam 
flexes up. This will also cause resonance but not as significant as when the force is 
applied at the same frequency as the bridge’s natural frequency. Also, when force is 
applied at half the frequency, every second peak will be lower because the beam will 
have time to vibrate freely once before the next pulse force is applied. Figure 3.5 (a) 
shows the time history of the bending moment at the centre of the beam when the 
force F is applied at a frequency of fn/2 = 4,18Hz. Notice that the maximum bending 
moment reaches a higher value when the force is applied with the same frequency as 
the bridge’s natural frequency, as opposed to when it is applied with only half the 
frequency. Figure 3.5 (b) shows the time history of the bending moment transformed 
into the frequency plane through FFT. 
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Figure 3.5: (a) Time history for the bending moment (SM1) at the centre of the beam 
when force F was applied 5 times with frequency fF =fn/2= 4.18Hz. Cut-off frequency 

10Hz. (b) The bending moment time history transformed into the frequency plane 
through FFT. 

 
With the same reasoning, resonance can be generated by applying a pulse force with a 
frequency that is a third, quarter, etc. of the beam’s natural frequency (fF = f/k, k = 
1,2,3…). However, if the frequency of the force is too low (k is a large integer), the 
beam will have time to damp the vibrations between the time periods when the force 
is applied. This means that there will be no resonance.  
 
Resonance of the beam can only occur at its natural frequencies. The frequency of the 
force acting on the beam, or the force’s frequency divided with an integer, must 
correspond with one of the natural frequencies of the beam (not necessarily the first) 
to cause resonance. Forces acting on the beam at other frequencies are harmless, in 
regards to resonance. Figure 3.6 (a) shows the time history of the bending moment at 
the centre of the beam when force F is applied 5 times with a frequency of 20Hz. As 
illustrated, no resonance is present. This is further demonstrated in Figure 3.6 (b) 
through the absence of a peak at a specific frequency.  
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Figure 3.6: (a) Time history for the bending moment (SM1) at the centre of the beam 
when force F was applied 5 times with a frequency of 20Hz. Cut-off frequency 100Hz. 

(b) The bending moment time history transformed into the frequency plane through 
FFT. 

 
For the force to be able to excite a certain eigenmode it must not only have a certain 
frequency (fF = fn/k, k = 1,2,3…), but also it must act on a certain point or certain 
points. For example, if the force F is applied as in Figure 3.1, it can excite the vertical 
bending modes 1 and 3 but not the mode 2. It is intuitive that the vertical force F 
cannot trigger modes on which the point it is acting is not moving in the force’s 
direction. 
 
To accelerate calculations in a modal analysis, one can choose to exclude modes that 
cannot be excited due to the position/positions of the force/forces applied. The same 
result will be obtained when the non-excited modes are included as when they are 
excluded.  When performing a modal analysis on a simple structure, such as a beam, it 
may be easy to exclude some modes in the analysis. However, when performing an 
analysis on a more complex structure, such as a bridge subjected to a trainload, it is 
much more difficult to exclude modes that do not effect the results. The time needed 
to the selection procedure, of which eigenmodes to include, as well as the following 
result verification, can be just as time consuming as including all eigenmodes in the 
frequency base. 
 
If a modal analysis is performed on the system in Figure 3.1, excitation of the first 
mode will occur. Including only the first mode in the modal analysis i.e. choosing a 
cut-off frequency just above 8.35 Hz may not be enough. The beam may have 
eigenmodes with frequencies that are integer-multiples of the frequency with which 
the force is applied. Figure 3.7 (a) shows the response of the same analysis as in 
Figure 3.4 (fF = 8.35Hz) but with a cut-off frequency of 100 Hz instead of 10 Hz. In 
this analysis the highest value of the bending moment, which is shown in Figure 3.7 
(a), is slightly higher than when a lower cut-off frequency was used. A study of the 
frequency response spectra illustrated in Figure 3.7 (b) reveals why. When a higher 
cut-off frequency is used the excitation of mode number 5 (f = 74.71 Hz) is included 
in the analysis. 
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Figure 3.7: (a) Time history for the bending moment (SM1) at the centre of the beam 

when force F was applied 5 times with a frequency of 8.35Hz. Cut-off frequency 
100Hz. (b) The bending moment time history transformed into the frequency plane 

through FFT. 
 
 
Nonetheless, not as many modes as the model’s degree of freedom need to be 
included since, according to the reasoning mentioned previously, higher modes will 
have time to damp out before the force is reapplied. This is indicated in Figure 3.7 (b) 
where the amplitude of the exited mode at 74.71 Hz is not as high as the low 
frequency mode at 8.35 Hz is. Moreover, the precise correlation between the 
amplitudes at different frequencies in the frequency spectra, as well as the relation 
between the belonging mode’s effects on the structure, is not fully established.  
 
Therefore, the aim is to find a multiple of the highest frequency that the high-speed 
trains generate, and subsequently choose that frequency as the cut-off frequency in the 
modal analysis of the bridges. Modes with a higher frequency than the chosen cut-off 
frequency are considered to not critically affect the bridge.  
 

3.3 Train load frequencies 
 
The various frequencies the HSLM trains generate depend on the geometry and speed 
of the train and can be calculated analytically with Equation 2.7. Internal axle distance 
and resulting frequencies corresponding to a speed of 300 km/h are presented below 
in Table 3.1. The internal axle distances A-E referred to in Table 3.1 are explained in 
Figure 3.8. Notice that the highest frequency 41.7 Hz is generated when the distance 
A is 2 meters. 
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Vehicle  A B C D E 

L [m] 2 3 11 16 18 HSLM-A1 
f [Hz] 41.7 27.8 7.6 5.2 4.6 
L [m] 3.5 3 11 15.5 19 HSLM-A2 f [Hz] 23.8 27.8 7.6 5.4 4.4 
L [m] 2 3 11 18 20 HSLM-A3 f [Hz] 41.6 27.8 7.6 4.6 4.2 
L [m] 3 3 11 18 21 HSLM-A4 f [Hz] 27.8 27.8 7.6 4.6 4 
L [m] 2 3 11 20 22 HSLM-A5 f [Hz] 41.6 27.8 7.6 4.2 3.8 
L [m] 2 3 11 21 23 HSLM-A6 f [Hz] 41.6 27.8 7.6 4 3.6 
L [m] 2 3 11 22 24 HSLM-A7 f [Hz] 41.6 27.8 7.6 3.8 3.5 
L [m] 2.5 3 11 22.5 25 HSLM-A8 f [Hz] 33.3 27.8 7.6 3.7 3.3 
L [m] 2 3 11 24 26 HSLM-A9 f [Hz] 41.6 27.8 7.6 3.5 3.2 
L [m] 2 3 11 25 27 HSLM-A10 f [Hz] 41.6 27.8 7.6 3.3 3.1 

Table 3.1: Different frequencies generated by different vehicles (trains) when 
travelling at 300 km/h 

 
 

 
Figure 3.8: The significant internal distance of the train. 
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4 Standards and recommendations for analysis  
 

4.1 Loads 
According to the Swedish design code for railway bridges BV BRO [2], bridges 
trafficked by high-speed trains should be dynamically analysed with loads HSLM-A 
or HSLM-B. Load HSLM-A should be used for all bridges except for simply 
supported one-span bridges less than 7.0 meters where HSLM-B should be used. 
Bridges in which HSLM-B can be used will not be considered in this report. 
 
HSLM-A simulates actual trains and consists of 10 different vehicles that should be 
checked for every single bridge. The load distribution and the load cases are shown in 
Figure 2.2 and Table 4.1. 
 

Load case 
Number of inter-
mediate wagons   

[N] 

Length of 
wagon     
D [m] 

Bogie 
distance    

d [m] 

Axis 
load    

P [kN] 
HSLM-A1 18 18 2.0 170 
HSLM-A2 17 19 3.5 200 
HSLM-A3 16 20 2.0 180 
HSLM-A4 15 21 3.0 190 
HSLM-A5 14 22 2.0 170 
HSLM-A6 13 23 2.0 180 
HSLM-A7 13 24 2.0 190 
HSLM-A8 12 25 2.5 190 
HSLM-A9 11 26 2.0 210 

HSLM-A10 11 27 2.0 210 
Table 4.1: Train definitions according to [2] 

 
Each vehicle should, for every bridge, be tested in a velocity interval from 100 km/h 
to 1.2·vmax (i.e. 300 km/h). In the velocity interval, the velocity step can be increased 
with a maximum of 5 km/h between each velocity controlled. 
  

4.2 Damping 
 
The maximum structural damping values in the bridge, which can be used in the 
dynamic analysis, are shown in Table 4.2. The damping depends on the bridge type 
and span length. The damping ratio is the same for all modes in an analysis. 
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ζ upper limit for damping (%) Type of bridge 

L < 20 m L ≥ 20 m 
Steel- and composite constructions ζ = 0.5+0.125(20-L) ζ = 0.5 
Prestressed concrete constructions ζ = 1.0+0.07(20-L) ζ = 1.0 
Reinforced concrete constructions ζ = 1.5+0.07(20-L) ζ = 1.5 

Table 4.2: Bridge damping according to [2] 
 

4.3 Boundary conditions  
 
The knowledge about the deformation properties of soil materials in fast dynamic 
events is inadequate. The stiffness is significant larger than the well-known stiffness 
that soil has when being subjected to a permanent load. Since the Swedish design 
code for railway bridges BV BRO [2] does not demand that the deformation of the 
soil has to be considered, it is most common to model the soil as rigid in bridge 
designing, because the possibilities of meeting the demands of vertical acceleration 
increase.    
 

4.4 Practical recommendations 
 

4.4.1 Time increment 
 
During a modal dynamic analysis, a fixed time increment (∆t) is used. The user must 
specify this time increment. When designing structures there should be at least 10 
time increments per period (T) of the highest frequency (fBmaxB) of the analysis (i.e. the 
cut-off frequency) in order to receive accurate results.    
 

max

min

10
1

10 f
Tt =≤∆      (4.1) 

 
For example, if an analysis with a cut-off frequency of 50 Hz is to be performed, the 
time increment ( t∆ ) should be chosen as 0.002 (=1/500) seconds or lower.  
 

4.4.2 Convergence criteria 
 
To determine at which level the analyses converge, reference cut-off frequencies for 
both bridge 1 and bridge 2 is chosen so high that the results from those analyses are 
considered to be satisfying. The reference cut-off frequencies for these analyses are 
70 Hz and 180 Hz for bridge 1 and bridge 2 respectively. For bridge 1, the reference 
cut-off frequency was chosen through experience from earlier analyses made on a 
similar bridge. For bridge 2, the reference cut-off frequency was chosen based on the 
assumption used in other structure designing fields, that a cut-off frequency higher 
than four times the highest load frequency should not be necessary. If the results from 



 

an analysis differ less than 10 % from the analysis with reference cut-off frequency, 
the results assumed to have converged.  
 
The requirement of a difference less than 10 % does not necessarily concern all points 
along the bridges. When studying the convergence of shear forces, only areas near the 
supports, where the force will peak, are of interest. Also, only the magnitude of the 
greatest maximum or minimum value in these areas is of interest when designing a 
bridge. The sign of the value is not important. When designing the bridge regarding 
the bending moment, both the maximum and minimum bending moments are relevant 
to study since they are used to design the lower and upper reinforcement, respectively. 
However, in areas where the bending moment is relative small, the percentage 
increase does not matter since the difference in value is rather small.  
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5 Modelling 
 

5.1 General modelling of bridges 
 

5.1.1 Element types 
 
For the modelling of superstructures, end shields and wing walls general-purpose four 
node shell elements with reduced integration and a large-strain formulation are used. 
This type of general-purpose element provides accurate solution in all loading 
conditions for both thin and thick shell problems.  For the modelling of the edge 
beams and columns, Timoshenko beams are used. Timoshenko beams are described 
by two node elements and allow transverse shear deformation and can be used for 
thick as well as slender beams [4]. 
 

5.1.2 Boundary conditions 
 
In agreement with common practice, the ground is not modelled as deformable in the 
bridge models. Instead all supports have been fixed in all degrees of freedom at 
foundation level. [2] 
 

5.1.3 Residual modes 
 
The residual mode shape and frequency are calculated in the frequency step of the 
analysis. The use of residual modes requires that a static load case is added to the 
structure in a linear perturbation step prior the frequency step. This load case is used 
to calculate the mode shape and frequency. Recommendations suggest that this staic 
load case is defined as similar to the dynamic load as possible [4]. Since the dynamic 
load i.e. the trainload, is moving along the rail as point loads there is no absolute way 
to design the load case. To investigate how the load case should be designed to get the 
best result, two different load case shapes have been tested. In the first case, the load 
was applied as point loads along the rails. A distributed load was applied on the entire 
deck of the bridge in the second case. These two alternatives were carried out for both 
bridges. 
 

5.1.4 Modelling of trains 
 
The trainloads are according to standard defined as N numbers of point loads moving 
in pairs that are spaced with different distances for each train model [2]. In 
BRIGADE/Plus, the different HSLM trainloads are predefined and applied as external 
forces along the rails with a load intensity history simulating axles approaching and 
leaving. 
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5.1.5 Material properties 
 
In order to include the weight of the ballast (the bed of stones fixating the rails) on the 
deck, fictitious densities have been introduced in different areas. The fictional 
densities are calculated as shown in Equation. 5.1. 
 

concreteballastballastconcretefictional HH /⋅+= ρρρ    (5.1) 
 
were HBballast Bis the average ballast thickness and HBconcrete  Bis the bridge thickness in the 
area of interest. 
 
In accordance with common practice the structural stiffness used in models 
correspond to the stiffness of uncracked concrete. Since the reinforcement is of 
interest for cracked concrete only, it is not included in this model.  
 

5.2 Bridge 1 
 

5.2.1 Geometry 
 
Bridge 1, shown in Figure 5.1, is a three span reinforced concrete bridge. The length 
of the bridge is 41.5 meter and the width is 7 meter. The mid span and end spans 
measures 15 and 12 meter respectively. The deck thickness is 0.95 meter. At the 
distance of 6.4 meter from each of the mid supports the thickness start increasing with 
a parabolic shape to be 1.5 meter at the support line. The end shields and wing walls 
are 0.7 meter thick respectively. The columns are 8.5 meters high, measured from the 
bridge’s centre of gravity and have circular cross sections with a diameter of 1.2 
meter. Every pair of columns is spaced with 3 meters, which is measured between 
their centrelines. The two edge beams used to keep the ballast in place, one beam on 
each long side of the bridge, have a rectangular profile with a width of 0.6 meter and a 
height of 0.8 meter.  
 

 
Figure 5.1: Geometric model of bridge 1 
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5.2.2 Material property 
 
The bridge is made of concrete with Young’s modulus E = 34·10P

9
P N/mP

2
P and Poisson’s 

ratio ν = 0.2. With a concrete density of 2500 kg/mP

3
P, a ballast density of 2000 kg/mP

3
P 

and an average ballast thickness of 450 millimetres Equation 5.1 become:  
 

concretefictional H/45.020002500 ⋅+=ρ     (5.2) 
 
The fictitious density in different sections of the deck, as well as the thickness of each 
section, is presented in Table 5.1 and Figure 5.2. 
 

Section Bridge thickness 
[m] 

Fictitious Density 
[kg/mP

3
P] 

1 0.950 3447 
2 0.959 3438 
3 1.027 3376 
4 1.165 3273 
5 1.371 3156 
6 1.500 3100 

Table 5.1: Density in different sections of the deck. 
 
 

 
Section 1  
Section 2  
Section 3  
Section 4  
Section 5  
Section 6  

 
Figure 5.2: The sections of the deck. View form above. 

 
The damping ratio ζ for bridge 1 is set to 1.5 % in agreement with BV BRO [2]. 
 

5.2.3 Interaction and boundary conditions 
 
The edge beams interact with the deck using rigid beam connection.  
 
As mentioned in 5.1.2 the ground is modelled as un-deformable. The lower edges of 
the columns are therefore fixed in all degrees of freedom. The end supports have not 
been modelled. Instead, at the end supports, the nodes above each bearing point are 
locked for vertical translation and translation in the bridge’s cross-direction but free to 
move in all other directions. 
 



 

5.2.4 Dynamic loads 
 
Vehicles HSLM-A1, HSLM-A3 and HSLM-A4 have been analysed in velocities 
between 100 and 300 km/h. The vehicles have been loaded along the two node lines 
shown in Figure 5.3. The lines are respectively distanced 0.75 meter from the centre- 
line. 

 
Figure 5.3: Rail positions where trainloads have been applied. 

 
For the dynamic load, a small output area along one rail is defined. It is advantageous 
to use as small output field as possible to save computational time and minimize the 
size of the result files. The most critical areas of the bridge are near the rails, 
especially near the midfield of the spans and the areas near the supports. Since the 
bridge is symmetric, the output area only contains one of the rails. The output area 
starts at one of the end shields and ends at the centre of the mid span.   
 

5.2.5 Mesh 
 
As mentioned in 5.1.1, four node elements have been used to mesh the deck, the end 
shield and the wing walls and two node elements to mesh the edge beams and 
columns. The elements sizes of the deck are approximately 0.7 x 0.7 meter. Figure 5.4 
shows the mesh of bridge 1. 
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Figure 5.4: Mesh of Bridge 1 

 

5.2.6 Analysis 
 
There are 5 cut-off frequencies tested for each vehicle on bridge 1. The dynamic 
analyses have been performed with modal superposition and are based on eigenmodes 
up to 30, 40, 50, 60 and 70 Hz. The time increment for each analysis has been chosen 
as described in chapter 3.4 and the output data is saved for each time increment.  
 

5.3 Bridge 2 
 

5.3.1 Geometry 
 
Bridge 2 is chosen because short frame bridges have relatively high eigenfrequencies 
and therefore gives a good indication of an upper limit of cut-off frequency. Bridge 2 
is a frame bridge with two rail tracks and is used for crossing a pedestrian path. The 
bridge’s frame consists of a 3.5 meter span, an 11.2 meter width and a height of 3.75 
meter. The four wing walls are 4.8 meter long and their height varies between 4.90 
and 1.30 meter. The bridge also consists of two edge beams that are connected to the 
deck. A shell model is used for all parts of the bridge except for the edge beams.  
Bridge 2 is shown in Figure 5.5. 
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Figure 5.5: Geometric model of bridge 2 

 

5.3.2 Material property 
 
The bridge is made of concrete with Young’s modulus E = 34·10P

9
P N/mP

2
P and Poisson’s 

ratio ν = 0.2. As mentioned in 5.1.5, the density of the deck is modified to make up 
for the weight of the ballast. The thickness of the bridge is not the same in all sections 
and is therefore shown in table 5.2, together with the density of the sections. 
 
 

Section 
Bridge thickness 
[m] 

Density 
[kg/mP

3
P] 

Deck 0.5 4900 
Abutment 0.5  2500 
Foundation slab 0.6 2500 
Wings 0.4 2500 

Table 5.2: Density of different section of bridge 2. 
 
The edge beams have a rectangular profile with a width of 0.25 m and a height of 0.8 
m.   
 

5.3.3 Interaction and boundary conditions 
 
The edge beams interact with the deck using rigid beam connection in order to get a 
desirable interaction. As noted, the foundation slab is fixed in all directions according 
to 5.1.2. 
 
 



 

5.3.4 Dynamic loads 
 
Vehicles HSLM-A1 and HSLM-A10 are analyses of velocities from 100 km/h to 300 
km/h. A1 is analysed because it has the shortest distance between the point loads and 
A10 is analysed because it has the largest load magnitude. 
 
An output area for the dynamic loads on bridge 2 was defined along one of the rails. 
To keep the output data file as small as possible, the output area contains only one 
row of element along one of the rails. The rails for bridge 2 are shown in Figure 5.6.  
 

 
 

Figure 5.6: Rail positions where trainloads have been applied. 
 

5.3.5 Mesh 
 
Four node elements have been used to mesh the structure, see section 5.1.1. Since the 
largest result gradient will occur on the deck, this area has a finer mesh than the rest 
of the structure. The elements sizes on the deck are approximately 0.3 x 0.7 meter. 
Since the foundation slab is fixed and thus will not deform at all, it consists of a 
course mesh. Figure 5.7 shows the mesh of bridge 2.  
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Figure 5.7: Mesh of Bridge 2 

 

5.3.6 Analysis 
 
There are 9 cut-off frequencies tested for the two vehicles on bridge 2. The dynamic 
analyses have been performed with modal superposition and are based on eigenmodes 
up to 80, 100, 120, 140, 150, 160 and 180 Hz respectively. The time increment for 
each analysis has been chosen as described in chapter 3.4. Output data is saved for 
every time increment.  
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6 Results of dynamic analyses 
 

6.1 Eigenfrequencies 
 

6.1.1 Bridge 1  
 
Bridge 1 has 44 eigenmodes below 70 Hz, see Table 6.1. Appendix A shows the 
shape of the most important modes. 
  

Eigenmode Frequency 
[Hz] Description Eigenmode Frequency 

[Hz] Description 

1 2.11 Horizontal translation 23 40.46 End shields/wing walls
2 6.95 Horizontal bend mode 24 43.38 End shields/wing walls
3 8.55 Vertical bend mode 25 44.38 End shields/wing walls
4 11.20 Vertical bend mode 26 45.53 End shields/wing walls
5 13.79 Vertical bend mode 27 45.78 Columns 
6 16.32 Torsional mode 28 46.77 Columns 
7 20.62 Torsional mode 29 46.77 Columns 
8 20.86 Vertical bend mode 30 47.11 Columns 
9 20.99 Vertical bend mode 31 47.77 Columns 

10 22.18 Wing walls 32 48.01 Columns 
11 24.14 Wing walls 33 48.47 Columns 
12 24.82 Wing walls 34 49.90 Columns 
13 25.08 Wing walls 35 51.84 Columns 
14 25.08 Wing walls 36 54.84 End shields 
15 25.48 Wing walls 37 55.87 Torsional mode 
16 26.34 Wing walls 38 56.13 End shields 
17 26.40 Wing walls 39 63.52 End shields/wing walls
18 26.47 Vertical bend mode 40 63.54 End shields/wing walls
19 34.40 Torsional mode 41 65.34 Vertical bend mode 
20 35.61 Vertical bend mode 42 65.84 Vertical bend mode 
21 37.95 Wing walls 43 67.11 Vertical bend mode 
22 39.13 Vertical bend mode 44 68.29 Horizontal bend mode

Table 6.1: Eigenfrequencies for Bridge 1 
 

6.1.2 Bridge 2 
 
Table 6.2 shows the 54 eigenfrequencies below 180 Hz. The description of the modes 
can be seen in Table 6.2 while the most important mode shapes are shown in 
Appendix B. Note that the higher modes are complex and therefore difficult to 
describe appropriately. 
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Eigenmode Frequency 
[Hz] Description Eigenmode Frequency 

[Hz] Description 

1 11.40 Wing walls 28 112.18 Wing walls 
2 11.75 Wing walls 29 113.02 Vertical bend mode 
3 11.96 Wing walls 30 114.85 Horizontal bend mode
4 11.96 Wing walls 31 116.72 Wing walls 
5 14.94 Horizontal translation 32 116.74 Wing walls 
6 31.92 Torsional mode 33 118.55 Horizontal bend mode
7 47.87 Wing walls 34 119.02 Wing walls 
8 49.13 Wing walls 35 125.65 Complex 
9 49.24 Wing walls 36 129.10 Complex 
10 52.68 Wing walls 37 129.40 Complex 
11 53.81 Wing walls 38 137.52 Complex 
12 57.47 Wing walls 39 142.89 Complex 
13 57.79 Wing walls 40 144.16 Complex 
14 58.02 Wing walls 41 145.45 Complex 
15 59.86 Wing walls 42 148.04 Complex 
16 61.97 Vertical bend mode 43 155.01 Complex 
17 66.47 Vertical bend mode 44 155.60 Complex 
18 70.39 Vertical bend mode 45 156.42 Complex 
19 72.41 Wing walls 46 157.62 Complex 
20 73.71 Wing walls 47 159.81 Complex 
21 81.05 Vertical bend mode 48 161.45 Complex 
22 82.58 Horizontal bend mode 49 166.48 Complex 
23 92.57 Wing walls 50 167.32 Complex 
24 95.12 Vertical bend mode 51 169.21 Complex 
25 103.11 Wing walls 52 178.22 Complex 
26 106.32 Wing walls 53 179.70 Complex 
27 106.79 Vertical bend mode 54 179.92 Complex 

Table 6.2: Eigenfrequencies for Bridge 2 
 

6.2 Residual modes 
 
The two different designed load cases tested for bridge 1, results in different shaped 
residual modes. The residual modes resemble the solutions of the static perturbation 
step, which is to expect according to [4]. The solution of the static perturbation step 
and the shapes of the residual modes for cut-off frequencies 30, 40, 50 and 60 Hz are 
shown in Figure 6.1 and 6.2. 
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Figure 6.1: (a) Solution of the static perturbation step with distributed load on the 
deck. Shape of residual mode for analysis with cut-off frequency (b) 30 Hz, (c) 40 Hz, 

(d) 50 Hz and (e) 60 Hz. 
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Figure 6.2: (a) Solution of the static perturbation step with the load applied as 
concentrated forces  along the rails. Shape of residual mode for analysis with cut-off 

frequency (b) 30 Hz, (c) 40 Hz, (d) 50 Hz and (e) 60 Hz.   
 
 
The solution of the static perturbation step and the shapes of the residual modes for 
bridge 2 when applying the two different load cases, using cut-off frequencies 80, 100 
and 120 Hz are shown below in Figure 6.3 and 6.4. 
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Figure 6.3: (a) Solution of the static perturbation step with distributed load on the 

deck. Shape of residual mode for analysis with cut-off frequency (b) 80 Hz, (c) 100 Hz 
and (d) 120 Hz. 
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Figure 6.4: (a) Solution of the static perturbation step with the load applied along the 
rails. Shape of residual mode for analysis with cut-off frequency (b) 80 Hz, (c) 100 Hz 

and (d) 120 Hz. 
 

6.3 Cut-off frequencies without consideration to residual modes 
 

6.3.1 Bridge 1 
 
The maximum and minimum section force (shear force and bending moment) in each 
node, regardless from what speed and at what time the values arise from, were 
calculated using BRIGADE/Plus. These envelopes along a path, shown with a red 
arrow in Figure 6.5, are used to create a convergence plot for each dynamic load 
(vehicle). Since the section forces are of greatest interest in the centre of the spans and 
at the supports, the path is chosen to pass right above the bearing support and the 
column. 
 
The plots for each vehicle are put together in a convergence plot to determine at what 
frequency the section forces converge. Figure 6.6-6.11 shows the convergence plots 
of the shear force and bending moment for the chosen dynamic loads mentioned in 
5.2.4.  
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Figure 6.5: Created path for bridge 1 
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Figure 6.6: Maximum/minimum shear force from HSLM-A1 using different cut-off 
frequencies. 
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Figure 6.7: Maximum/minimum bending moment from HSLM-A1 using different cut-
off frequencies. 
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Figure 6.8: Maximum/minimum shear force from HSLM-A3 using different cut-off 
frequencies. 

 
 

 33



 

HSLM-A3

-400

-300

-200

-100

0

100

200

300

400

500

Distance along path [m]

B
en

di
ng

 m
om

en
t [

kN
m

/m
]…
…

..

30 Hz-min
30 Hz-max
40 Hz-min
40 Hz-max
50 Hz-min
50 Hz-max
60 Hz-min
60 Hz-max
70 Hz-min
70 Hz-max

Figure 6.9: Maximum/minimum bending moment from HSLM-A3 using different cut-
off frequencies. 
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Figure 6.10: Maximum/minimum bending moment from HSLM-A4 using different cut-
off frequencies. 
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Figure 6.11: Maximum/minimum shear force from HSLM-A4 using different cut-off 
frequencies. 

 
 
The convergence criterion is as mentioned in section 4.4.2 set to 10 %. The shear 
force has acceptable magnitudes in the critical areas when the cut-off frequency is 60 
Hz while the bending moment converges earlier at the cut-off frequency 30 Hz.  
 

6.3.2 Bridge 2 
 
The maximum and minimum section forces are, as for bridge 1, calculated in 
BRIGADE/Plus. The section forces along one of the rails are analysed, from one 
abutment to the other. The path is shown with a red arrow in Figure 6.12. Along the 
path, two convergence plots for each dynamic load is created, one of shear force and 
one of bending moment. The plots are shown in Figure 6.13-6.16.  
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Figure 6.12: Path created for bridge 2. 
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 Figure 6.13: Maximum/minimum shear force from HSLM-A1 using different cut-off 
frequencies. 
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Figure 6.14: Maximum/minimum bending moment from HSLM-A1 using different cut-
off frequencies. 
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Figure 6.15: Maximum/minimum shear force from HSLM-A10 using different cut-off 
frequencies. 
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Figure 6.16: Maximum/minimum bending moment from HSLM-A10 using different 
cut-off frequencies. 

 
 

Using the convergence criterion 10 %, both the shear force and the bending moments 
converge in all critical areas for the cut-off frequency 160 Hz. 
 
The frequencies, at which the shear force and moment converge, and the chosen cut-
off frequencies for the two bridges are presented in Table 6.3. For comparison with 
the effective mass method, the table also shows the percentage effective mass. The 
effective mass is here calculated as the ratio between sum of effective mass at the cut-
off frequency (calculated in BRIGADE/Plus) and the total mass that is able move in 
the structure. The following conclusions can be made: 
 

• The section forces converge at different cut-off frequencies for the two bridges 
when they are subjected to exactly the same load, in this case A1.  

• For each bridge all tested vehicles converge at the same cut-off frequency.  
• Shear force and bending moment converge at different cut-off frequencies in 

one of the studied bridges.  
 



 

Bridge Vehicle 

Cut-off 
frequency 
regarding 

shear force 
[Hz] 

Effective 
mass [%]

Cut-off 
frequency 
regarding 
bending 

moment [Hz]

Effective 
mass [%] 

Chosen 
cut-off 

frequency 
[Hz] 

1 A1 60 90 30 69 60 
1 A3 60 90 30 69 60 
1 A4 60 90 30 69 60 
2 A1 160 56 160 56 160 
2 A10 160 56 160 56 160 
Table 6.3: Cut-off frequencies at which the analyses converge for bridge 1 and 2 

together with the effective mass at the cut-off frequency.  
 
A comparison between the highest cut-off frequency needed to converge all studied 
section forces and the highest load frequency for each vehicle are analysed and 
presented in Table 6.4 and 7.3. It shows that, for bridge 1, the cut-off frequencies are 
never greater than 1.5 times the highest frequency that any vehicle can give rise to, 
see Table 6.4. For bridge 2, the cut-off frequencies never exceed 3.9 times the highest 
load frequency to which any of the vehicles can give rise to, see Table 6.5. 
 

 A1 A3 A4 
Highest load frequency 41.6 41.6 27.8 
Cut-off frequency  60 60 60 
Ratio 1.44 1.44 2.16 

Table 6.4: A ratio between the cut-off frequency and the highest load frequency for 
bridge 1. 

 
 A1 A10 
Highest load frequency 41.6 41.6 
Cut-off frequency  160 160 
Ratio 3.85 3.85 

Table 6.5: A ratio between the cut-off frequency and the highest load frequency for 
bridge 2. 

 

6.4 Cut-off frequencies with consideration to residual modes 
 

6.4.1 Bridge 1 
 
Residual modes do not seem to have a great influence on the cut-off frequency for 
bridges like bridge 1. When including a residual mode in the analysis the shear force 
converges at the cut-off frequency 60 Hz, which is the same cut-off frequency 
discovered in the analyses without residual modes, both when the residual mode is 
based on a static distributed load on the deck (denoted “deck” in the plots in this 
chapter) or based on a static line load along the rails (denoted “pointload” in the plots 
in this chapter). The bending moment still converges at the cut-off frequency 30 Hz 
when a residual mode is included in the analysis. Convergence curves for the shear 
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force and the bending moment of the analyses with residual modes are shown in 
Figure 6.17-6.22.  
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Figure 6.17: Maximum/minimum shear force from HSLM-A1 using different cut-off 
frequencies and including a residual mode. 
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 Figure 6.18: Maximum/minimum bending moment from HSLM-A1 using different 
cut-off frequencies and including a residual mode. 
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Figure 6.19: Maximum/minimum shear force from HSLM-A3 using different cut-off 
frequencies and including a residual mode. 
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 Figure 6.20: Maximum/minimum bending moment from HSLM-A3 using different 
cut-off frequencies and including a residual mode. 
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HSLM-A4
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Figure 6.21: Maximum/minimum shear force from HSLM-A4 using different cut-off 
frequencies and including a residual mode. 
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 Figure 6.22: Maximum/minimum bending moment from HSLM-A1 using different 
cut-off frequencies and including a residual mode. 

 
 

 42



 

6.4.2 Bridge 2 
 
For bridge 2, the residual mode seems to lower the cut-off frequency but only if the 
load used for the calculation of the residual mode shape is applied as point loads 
along the rails. Using that residual mode, the shear force converges at 80 Hz and the 
bending moment converges at 80 Hz. For analysis with the residual mode created 
from a distributed load on the deck, the shear force has not yet converged at the cut-
off frequency 120 Hz. The same pattern can be seen for the bending moment, which 
has still not converged at 120 Hz. Convergence curves for the shear force and the 
bending moment are shown in Figure 6.23-6.26. 
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 Figure 6.23: Maximum/minimum shear force from HSLM-A1 using different cut-off 
frequencies and including a residual mode. 
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 Figure 6.24: Maximum/minimum bending moment from HSLM-A1 using different 
cut-off frequencies and including a residual mode. 
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 Figure 6.25: Maximum/minimum shear force from HSLM-A1 using different cut-off 
frequencies and including a residual mode. 
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Figure 6.26: Maximum/minimum bending moment from HSLM-A1 using different cut-
off frequencies and including a residual mode. 

 
The results regarding the cut-off frequencies when using residual modes for the two 
bridges are presented below. Table 6.6 shows the cut-off frequencies when the 
residual mode is shaped from a static distributed load added on the deck. Table 6.7 
shows the cut-off frequencies when the residual mode is shaped from a static load 
applied along the rails as point loads. The following conclusions can be made:  
 

• The shape of the residual mode is crucial for what impact it will have on the 
dynamic response. The shape of the residual mode is highly dependent on the 
shape of the load case in the static linear perturbation step preceding the 
extraction of the eigenmodes. Additionally, the shape and frequency of the 
residual mode is also dependent on the chosen cut-off frequency.  

• Using residual modes when performing dynamic modal analyses on bridges 
can lower the cut-off frequency significantly, as can be seen in Table 6.6. 

 
The effective mass in the structure at the cut-off frequencies, when using residual 
modes is shown in Table 6.8. 
 



 

Cut off frequencies 
regarding shear force 

Cut off frequencies 
regarding bending 

moment Bridge Vehicle 
Without 
residual 

mode [Hz] 

With 
residual 

mode [Hz]

Without 
residual 

mode [Hz] 

With 
residual 

mode [Hz] 

Chosen 
cut-off 

frequency 
with 

residual 
mode [Hz]

1 A1 60 60 30 30 60 
1 A3 60 60 30 30 60 
1 A4 60 60 30 30 60 
2 A1 160 >120 160 >120 >120 
2 A10 160 >120 160 >120 >120 
Table 6.6: Cut-off frequencies at which the analyses converge for bridge 1 and 2 

when residual modes, created from a static distributed load added on the deck, are 
included.  

 
Cut off frequencies 

regarding shear force 
Cut off frequencies 
regarding bending 

moment Bridge Vehicle 
Without 
residual 

mode [Hz] 

With 
residual 

mode [Hz]

Without 
residual 

mode [Hz] 

With 
residual 

mode [Hz] 

Chosen 
cut-off 

frequency 
with 

residual 
mode [Hz]

1 A1 60 60 30 30 60 
1 A3 60 60 30 30 60 
1 A4 60 60 30 30 60 
2 A1 160 80 160 80 80 
2 A10 160 80 160 80 80 
Table 6.7: Cut-off frequencies at which the analyses converge for bridge 1 and 2 
when residual modes, created from a static load applied along the rails as point 

loads, are included. 
 
 

Bridge Cut-off 
frequency

Effective mass when static 
load is applied on deck as a 

distributed load [%] 

Effective mass when static 
load is applied along rails as 

point loads [%] 
1 60 94 90 
2 80 53 48 
Table 6.8: Effective mass at the cut-off frequencies, when using a residual mode. 
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7 Conclusions 
 
For bridge 1 shear force and bending moment converged at 60Hz and 30 Hz 
respectively, when using a 10% convergence criterion. An appropriate cut-off 
frequency for the bridge would be 60 Hz when studying section forces. Bridge 2 on 
the other hand converged at 160 Hz for both the shear force and the bending moment 
and an appropriate cut-off frequency when studying the section forces is 160 Hz.  
 
From these results three main conclusions can be made: 
 

1. The type and geometry of the bridge is critical to which cut-off frequency 
needs to be chosen 

2. The result components of section forces may converge at different cut-off 
frequencies. 

 
3. Sections forces converge at the same frequency for all vehicles analysed, 

which means that a cut-off frequency for one vehicle can be used for all the 
remaining vehicles. 

 
Since all vehicles seems to converge at the same cut-off frequency, it is possible to 
estimate the maximum cut-off frequency needed in the analyses by looking at the 
highest frequency that any of the 10 vehicles can generate. The cut-off frequency for 
bridge 2 is about 160 Hz. Very few bridges are stiffer than bridge 2. This indicates 
that a cut-off frequency four times the highest load frequency that any of the trains 
generate is satisfied (4·41.7 = 166.8) for most concrete bridges. Choosing a cut-off 
frequency for analyses of larger bridges, like bridge 1, which does not need a high 
cut-off frequency, still requires further investigation. 
 
Moreover, the results show that using residual modes in the analysis can be a great 
help to lower the cut-off frequency, especially for short and stiff bridges with high 
eigenfrequencies. For larger bridges, the residual mode might not be as helpful but at 
the same time, is innocuous to the results. To make the use of residual modes as 
helpful as possible, it is important to know how to design the static load case used for 
calculation of the mode shape. The solution of the static load case should be as similar 
to the dynamic load as possible. Of the two alternative load case shapes evaluated in 
this project, the best results were achieved when concentrated forces were applied 
along the rails.  
 
The study shows, as expected, that effective mass is not an appropriate method to find 
cut-off frequencies when analysing bridges if the ground is assumed to be un-
deformable. For bridge 2, the cut-off frequency is chosen to 160 Hz but by then, the 
effective mass in structure is only 56 % of the total mass. When using a residual 
mode, based on a static load created by point loads applied along the rails, the 
effective mass is even lower, about 48 % of the total mass that is able to move in the 
structure.  
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The following remarks should be regarded when making conclusions from the results: 
 

• Dynamic modal analyses are sensitive when it comes to choosing a correct 
time increment size. If a rather moderate time increment is chosen a peek in 
the output may be lost as discussed in [3]. The time increment (dt) for the 
analyses presented in this paper is chosen as dt=1/(f BmaxB·10), where f BmaxB is the 
cut-off frequency used in the analysis. To investigate if a poor time increment 
was used, which caused a non-converge for analyses using lower cut-off 
frequencies, a test was performed on bridge 2. An analysis with a cut-off 
frequency of 100Hz with the time increment dt=1/(120·10) was carried out. 
The “original” analysis were run with a dt =1/(100·10). The results varied 
about 2 % from the analysis with time increment dt =1/(100·10) but about 20 
% from the results of the analysis with cut-off frequency 120 Hz 
(dt=1/(120·10)). The time increment of 1/(f BmaxB·10) was therefore considered to 
be satisfying.   

 
• When the modal base is increased the peek response (e.g. the shear fore) might 

be slightly displaced on the speed-axel in a speed-response diagram [3]. The 
analyses in this project have been carried out with a speed increment of 5 km/h 
that is required [2]. It is therefore possible that a part of the difference in 
response between two analyses only with different cut-off frequencies (and 
therefore different time increment) is due to a dislocation of the speed at 
which the response peeked. This is a reason not to be too conservative when 
setting up a required convergence requirement.  

 
• A clear indication revealing the need of more investigation on this topic is the 

fact that the result file for bridge 1, using a cut-off frequency of 70 Hz, was 
not possible to open when first tested. The ABAQUS support was contacted 
but the problem was not solved in the timeframe of this project. What caused 
the problem was not clarified but it seems to be related to the size of the result 
file, which was relatively large, around 7.5 GB. Splitting the analysis into two 
solved the problem. If the size of the result file was in fact the problem, 
narrow guidelines pointing towards the “right” cut-off frequency becomes 
even more important.  

 
• Nodes connected to the ground have been locked in all degrees of freedom in 

both models. This is an assumption that is allowed according to Banverket, the 
Swedish railway authority. The alternative is to take the elastic deformation of 
the soil into account. This could lower the eigenfrequencies of the first 
bending modes for the bridges because of the stiffness reduction. The 
following vertical bending modes will also have a lower eigenfrequency and 
from experience the vertical bending modes affect the results at great extent. 
For bridge 1 the difference would probably be smaller. For bridge 2, the effect 
of letting the bridge interact with the ground would probably be quite 
significant since a relatively large ratio of the bridge mass is connected to the 
ground. If the eigenfrequencies of the vertical bending modes are lowered 
when the elastic deformation of the soil is taken into account, it would 
probably lead to a lower cut-off frequencies when performing the kind of 
analyses carried out in this project. 
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• Bridge 1 might converge earlier with respect to the bending moment, than 
revealed in this paper. No analyses were made with lower cut-off frequency 
than 30 Hz. 

 
• Note that some convergence plots might not have converged in every point 

even though they are said to fulfil the convergence criterion. The section 
forces are used when dimensioning the reinforcement of the bridges and the 
different aspects mentioned in 4.4.2 can be used to determine that the analysis 
still converge at a certain cut-off frequency. 

 



 

8 Further work 
 
More convergence studies should be made for a larger number of bridges and other 
types of bridges, in order to be able to form narrower guidelines for the choice of a 
suitable cut-off frequency.  It would be interesting to perform more analyses on one 
bridge type, for example a three span bridge. Perhaps a relation between for example, 
the span lengths of one bridge type and the cut-off frequency can be found with a 
wider result basis. In addition, more analyses including more vehicles (trains) should 
be performed to be able to determine further conclusions about the effect that 
different types of vehicles have on the cut-off frequency. 
 
The effects of residual modes need to be further investigated. The residual modes are 
still not perfectly created to compensate for all the truncated modes. Perhaps one 
alternative, which was not investigated in this report, is to use multiple residual modes 
for each analysis instead of a single residual mode. 
 
Furthermore, if the interaction properties between the bridge and ground can be 
established the bridges could be modelled to that respect. Today the interaction is not 
modelled. Instead, fixed support is used in the nodes where the bridge is in contact 
with the ground. The fix support leads to stiff bridge models that result in higher 
eigenmodes, opposed to when the interaction with the ground is taken in into account. 
Moreover, the models would then be more similar to the reality and thus the results 
could then be even more reliable than they are today.  
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Appendix A 
 
The most important eigenmodes and eigenfrequencies of bridge 1: 
 

Eigenmode 1: 2.11 Hz Eigenmode 2: 6.95 Hz 

Eigenmode 3: 8.55 Hz Eigenmode 4: 11.20 Hz 

Eigenmode 5: 13.79 Hz Eigenmode 6: 16.32 Hz 

Eigenmode 7: 20.62 Hz Eigenmode 8: 20.86 Hz 

Eigenmode 9: 20.99 Hz Eigenmode 10: 22.18 Hz 
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Eigenmode 11: 24.14 Hz Eigenmode 12: 24.82 Hz 

Eigenmode 13: 25.08 Hz Eigenmode 14: 25.08 Hz 

Eigenmode 15: 25.48 Hz Eigenmode 16: 26.34 Hz 

Eigenmode 17: 26.40 Hz Eigenmode 18: 26.47 Hz 

Eigenmode 19: 34.40 Hz Eigenmode 20: 35.61 Hz 
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Eigenmode 21: 37.95 Hz Eigenmode 22: 39.13 Hz 

Eigenmode 37: 55.87 Hz Eigenmode 41: 65.34 Hz 

Eigenmode 42: 65.84 Hz Eigenmode 43: 67.11 Hz 

Eigenmode 44: 68.29 Hz 
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Appendix B 
 
The most important eigenmodes and eigenfrequencies of bridge 2: 
 

Eigenmode 1: 11.40 Hz Eigenmode 2: 11.75 Hz 

Eigenmode 3: 11.96 Hz Eigenmode 4: 11.96 Hz 

Eigenmode 5: 14.94 Hz Eigenmode 6: 31.92 Hz 

Eigenmode 7: 47.87 Hz Eigenmode 8: 49.13 Hz 
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Eigenmode 9: 49.24 Hz Eigenmode 10: 52.68 Hz 

 
Eigenmode 16: 61.97 Hz Eigenmode 17: 66.47 Hz 

Eigenmode 18: 70.39 Hz Eigenmode 21: 81.05 Hz 

Eigenmode 22: 82.58 Hz Eigenmode 24: 95.12 Hz 
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Eigenmode 27: 106.79 Hz Eigenmode 29: 113.02 Hz 

Eigenmode 30: 114.85 Hz Eigenmode 33: 118.55 Hz 
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