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EXAMINER

PROF. MATTI RISTINMAA

Copyright c© 2007 by Div. of Solid Mechanics, Viktor Petersson

Printed by Media-Tryck, Lund ,Sweden

For information, address:

Division of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden.

Homepage: http://www.solid.lth.se





Preface

This master thesis are the last part of my degree in Master of Science in Engineering
Mathematics. The project has been performed under the period from February to
August 2007 at the division of Solid Mechanics.

First I like to thank my examiner Prof. Matti Ristinmaa who introduced me to this
exciting research subject and gave me the opportunity to write this master thesis.
Then I would like to give my supervisor Ph. D. Paul H̊akansson an extra thanks for
all his time and effort he spend on guiding me under this project. I really appreciate
that he always took time and helped me through my endless questions. I had never
managed to do this without his help. Also a big thanks to the rest of the staff at
division of Solid Mechanics that helped to make this a enjoyable and unforgettable
six months of my life.

Finally I would like to thank family, friends and my beloved Sara for their inter-
est and constant encouragement.

Lund, August 2007

Viktor Petersson





Abstract

Simulation of different engineering applications has for many years been a large in-
dustry. This is done by solving partial differential equation with initial values and
boundary conditions. The Finite Element Method (FEM) has been the standard tool
for this kind of calculations. But under the last fifteen years a new mesh free method
has been under extensive research. In mesh free methods there is no element that
combine the nodes. Without this restriction of connectivity between the nodes, mesh
free methods have some advantages in special applications.

It is well known that the mesh less methods are more time consuming than the FEM.
So for now mesh free methods is not any threat to the FEM in standard simulations.
But in special applications mesh free methods have advantages that FEM do not
have. Examples of these applications are large deformation and discontinuous prob-
lems, for example crack growth or interface problem. Examples of interface problems
are solid-solid (two different materials) or solid-fluid. In large deformation analysis
with FEM, the element can suffer from large distortion and remeshing is necessary.
This remeshing is time consuming and a projection of the field variables have to be
made, which can introduce errors in the calculations. In discontinuous problem you
can for example describe the crack without adding nodes, and again no remeshing is
needed.

This master thesis give an introduction to this large research subject. After liter-
ature study, two methods was chosen and implemented for linear static. The Element
Free Galerkin (EFG) method and the Reproducing Kernel Particle Method (RKPM),
which are the two most widely used methods. The both methods have a quite dif-
ferent approach how to construct shape functions. A comparison is made between
the two methods concerning accuracy, effectiveness and implementation difficulties.
Despite the two different approaches, they are surprisingly similar in performance and
accuracy. Because of the similar results, only RKPM is further developed to manage
large deformation analysis.

The step to large deformation analysis is done in the following parts. First a ma-
terial non-linear model for plasticity with linear kinematic hardening is implemented.
After that a geometric non-linear model for hyperelasticity, then finally a elasto-plastic
model for large deformation with a non-linear isotropic hardening. The elasto-plastic
model follows from a multiplicative split of the deformation gradient, but no further
theory is presented in this report.
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For all cases numerical examples are discussed and compared against the commercial
FEM program ABAQUS. For the two first cases there is excellent agreement. But for
the last example, necking of a bar, the solution is not trivial and even ABAQUS give
different results depending which elements that are used. Also RKPM give different
results when changing parameters, so a more detailed investigation and some experi-
mental data would be needed to give any conclusion about the results. In general the
mesh free program work well and give fine results, but there are many loose ends that
would needed some more attention.
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Chapter 1

Introduction to Mesh Free
Methods

As for now the finite element method has been a powerful tool for solving partial dif-
ferential equations. It has successfully been applied for a large number of engineering
applications, for example solid mechanics, structure mechanics, electro magnetism,
geo mechanics, bio mechanics and so on. But for the last fifteen years a new mesh
free method has been subject to extensive research.

Compared to the finite element method, the mesh free methods do not have any
connectivity between the nodes (the elements in FEM). This give some advantages
in applications as large deformations. Large deformation analysis in FEM give rise
to remeshing because the elements are highly distorted. This remeshing is computa-
tional heavy and accuracy is lost because a projection has to be made between the two
meshes. In mesh free methods this problem does not occur. Other applications were
mesh free methods has been applied are for example crack simulation and interface
problem. This master thesis is focused on investigating the methods and apply it to
large deformation problem.

1.1 Overview of mesh free methods

In this section a general procedure for how the mesh free approximation are con-
structed and some problem that occur is discussed. This section is just to introduce
the reader to some important concepts and compare the difference against FEM. The
notation in Table 1.1 is consistent through the report.

1.1.1 Weak form and corresponding mesh free form

As for FEM the goal is to solve a partial differential equation with initial values and
boundary conditions. The weak form is constructed exactly as in FEM. There is no
unified way how to choose the test function Ψi in mesh free methods. In FEM it is
chosen as Galerkin, i.e. Ψi = φi, and that is most common in mesh free methods
too. But also point collocation, Ψi = δ(x − xi) is widely used. A benefit with point
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symbol explanation
u unknown function
x space coordinate
xi position of a node
ui nodal value
φ shape function
N total number of nodes
m number of basis coefficients
n number of nodes inside support domain
Ω problem domain
ΩI support domain to node I

Table 1.1: Variables and their explanation.

collocation is that you do not need to integrate over the problem domain Ω, it solves
the strong form of the problem. But it is well known to have problem with accuracy.
Then there are a number of other ways to choose the test function, for a summarize
see for example Fries and Matthies (2004). A slightly more different way is to use a
local weak form, instead of a global. This also have the benefit that you do not need
to integrate over Ω. This idea was originated by Atluri and Zhu (1998).

1.1.2 Shape functions and support domain

After choosen the testfunction, the function u is approximated. Two of the most used
methods to construct shape functions are the Moving least square (MLS) method and
the Reproducing Kernel particle method (RKPM). More details about these methods
will follow later on in the report, but roughly MLS method comes from data fitting
theory and RKPM from theory of wavelets. There are several other methods, but
they are not discussed in this report. Common for these methods is that they end up
with an approximation similar to FEM

u(x) ≈
n∑

i=1

φiui. (1.1)

Because there is no connectivity between the nodes, you have to decide which nodes
xi should influence on the approximation for a point x. It is not computationally
possible to use all the nodes in Ω, therefore we introduce a very important expression
called support domain. Nodes inside the support domain contribute to the approxi-
mation. Often you have circular or rectangular support domains, and they are often
the same for all points in the domain, but it is not necessary. For example of support
domains see Figure 1.1.

In practice to realize this support domain, the shape functions are multiplied with
a weight function. This weight function are non zero inside the support domain, and

2



(a) (b)

Point x Node
Point x Node

Figure 1.1: Example of support domain: a) circular b) rectangular

have compact support, i.e. zero outside the support domain. Examples of weight
functions follows later on in the report.

1.1.3 Invoke essential boundary conditions.

Most of these methods to construct shape functions do not fulfill the Kronecker delta
property, i.e. if you construct a shape function for a node it should be one for the
current node and zero for all other. Or in more mathematical terms

φi(xj) = δij . (1.2)

The lack of this property give rise to some problem. When you solve the system of
equations you do not get real values of the field variables, just fictive values. To get
the real value you have to perform a search for all nodes in the support domain and
use the shape functions. A bigger problem are the essential boundary. In FEM you
have Kronecker delta property, so when you have a prescribed displacement at a node
you can just put in this value at the equation system. This is not the case for mesh
less methods, something else has to be done.

There are in general three methods to deal with this problem, and of course another
hundred if you start looking in the literature.

• Lagrange Multiplier is accurate and easy to implement. But it has large
numerical costs because you get a larger equationsystem and you loose a banded
stiffness matrix.

• Penalty method is also easy to implement and the numerical costs is small.
But it is not very accurate and therefore not widely used.

• Update shape functions so they posses Kronecker delta property. This leads
to easy enforcement of boundary condition, but the implementation of shape
functions get more tricky. This is of course the best alternative if you get a easy
implementation. See for examples articles by Most and Bucher (2007) and Rossi
and Alves (2007).
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Lagrange multiplier is the most widely used of these three, but as more sofisticated
shape functions with Kronecker delta property come they will replace Lagrange mul-
tiplier. For details and a more extensive comparison between Lagrange multiplier and
penalty methods, see article by Gavete et al. (2000).

1.1.4 Implementation issues

If you compare the general structure of a mesh free and a FEM program, both starts
with a discretization of Ω. Depending on which test function is used, a numerical
integration has to be performed. For a Galerkin formulation an integral over Ω is nec-
essary. The usual integration scheme is Gauss- or Direct Nodal integration. In Gauss
integration Ω is divided in cells, that are completely independent of the nodes, which
contains Gauss points. In direct nodal integration the integral is evaluated only at the
nodes. Benefits with nodal integration is that you do not need to generate integration
points and it is faster than full integration. But similar to point collocation methods
there are some stability and accuracy problem.

Also Gauss integration have problems with accuracy, because the support and in-
tegration cells do not coincide. In FEM you integrate over the element which is a
smooth for example second order polynomial, so the numerical integration gives the
exact result. In mesh free methods the shape function is much more complex. In
practice it is easy to get sufficiently accurate results, but the number of integration
points has to be larger than regular FEM.

After you have created nodes and integration points, you start to compute the sys-
tem matrices. In FEM this is done by a loop over all elements, and local matrices
is calculated and assembled to right position. In mesh less methods the loop is over
all integration points. The number of nodes inside the support domain determine the
size of the local matrix which is then assembled to the global. Then you solve the
system of equations and get you fictive nodal values.

Then some post processing has to be done to get the real displacement at a point.
In FEM this is not necessary, but in FEM you get a discontinuous first derivate of
the function. So if you want to know the strain for the entire body, you need to do
some interpolation. This is not necessary for the mesh less methods. There you get
approximation that have continuous derivatives.

It is well known that the mesh less methods are more time consuming then FEM.
That depends on the more complex shape functions and the need for many integra-
tion points to get accurate results.
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1.2 Examples of mesh free methods

Over the last years a number of different mesh free methods have been developed.
There is no possibility to mention them all in this section, for a more extensive re-
view and classification of all mesh free methods see the excellent article by Fries and
Matthies (2004). As explained in the last section there is a number of choice you
have to make, for example construction of shape function, test function, integration
method and so on. Each of these combinations have different names, but there are
also some methods that origin from a completely other point of view. In the following
list some of the most well known methods are described

• Element Free Galerkin (EFG) was developed by Belytschko et al. (1994).
The shape functions are constructed with MLS approximation, and the test
function is chosen as the shape function. Boundary condition are enforced by
Lagrange multiplier and in general a lot of gauss integration points is needed to
get accurate results.

• Smooth Particle Hydrodynamics (SPH) was introduced by Lucy (1977) and
further developed by Monaghan (1982). It is the most simple method, partly
because it is a point collocation method and also because the shape functions are
very simple with no special cases at the boundary. It has some problems with
both stability and accuracy, but many corrections have been made to improve
the method, for example better integration scheme and correction term in the
shape functions.

• Reproducing Kernel Particle Method (RKPM) was created by Liu et al.
(1995). It is a particle method, but instead of point collocation it uses a Galerkin
formulation. Also the shape function have a correction term to improve the
accuracy at the boundary.

• Mesh less Local Petrov-Galerkin (MLPG) was originated by Atluri and Zhu
(1998). Instead of a global weak form, it have an local weak form. Therefore
no integration over the domain is necessary, so no background mesh is needed
as for example EFG and RKPM. MLPG can have different shape functions and
test functions and is then named as MLPG1, MLPG2 and so on. Common for
all are the local weak form.

• Natural Element Method (NEM) was developed by Sukumar et al. (1998).
Also NEM solves a Galerkin formulation of the problem. But here the shape
functions are constructed in a different fashion. The domain is divided in Voroni
cells and the shape function value for a point x with respect to a node xi is the
ratio between area of x overlap to xi and the total area of x, i.e φi(x) = Ai(x)

A(x)
. So

the NEM fulfills the Kronecker delta property and therefore it is straightforward
to implement essential boundary conditions.

These are some of the uncountable methods that exist in the literature. The question
arise, which method was first, and there is no good answer to that question. But if
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some methods should be mentioned, Diffuse element method (Nayroles et al. (1992)),
which was a forerunner to EFG, and SPH was one of the first.
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Chapter 2

Galerkin mesh free formulation
with Lagrange multiplier

2.1 Introduction

As mentioned before there are a number of different mesh free methods. Two of
the most used methods are Element Free Galerkin and Reproducing Kernel Particle
Method. They are very different how the shape functions is constructed, therefore
they are implemented in this master thesis. Common for both methods is that they
use Galerkin formulation, which makes the methods stable. In this master thesis both
use Lagrange multiplier to enforce essential boundary condition. The weak form and
the corresponding mesh free formulation is derived that are valid for both methods.

2.2 Weak form for Solid Mechanics

The partial differential equation that controls solid mechanics can for 2-D be stated
as

RT σ + b = 0, (2.1)

for derivation see Ottosen and Petersson (1992). This equation apply for all points
in the problem domain Ω. For the essential boundary, Su, we have a prescribed
displacement

u = u.

For the natural boundary, St, we have a prescribed force given by the traction vector

t = Sn
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where n is the normal vector to the boundary and S is the stress tensor. The matrices
in the formulation is given by

R =

⎡
⎣ ∂

∂x
0

0 ∂
∂y

∂
∂y

∂
∂x

⎤
⎦ Operator working on the stress

σ =

⎡
⎣ σxx

σyy

σxy

⎤
⎦ Stressmatrix

b =

[
bx

by

]
Forces working on the body

u =

[
ux

uy

]
Displacement vector for a point

n =

[
nx

ny

]
Normal vector to a boundary point

S =

[
σxx σxy

σyx σyy

]
Stress tensor

.

This is the strong form of the problem. In general we can not solve this equation
analytically. This is why we need numerical methods like the finite element method.
In order to solve the problem we need to lower the regularity of the function u we seek.
There are several methods for doing this, the one used in this report is a variational
principle. We construct the lagrangian function L that in solid mechanics is calculated
according to

L = T − Π + W (2.2)

where T is the kinetic energy, Π is the elastic energy and W is the work done by the
external forces. The components of the function L is calculated as

T =
1

2

∫
Ω

ρu̇T u̇ dΩ (2.3)

Π =
1

2

∫
Ω

εT σ dΩ (2.4)

W =

∫
Ω

uTb dΩ +

∫
St

uT t dSt. (2.5)

In EFG and RKPM the shape functions do not fulfill the Kroneckers delta property.
So in order to invoke essential boundary, we have to use Lagrange multiplier. This
will lead to a modified Lagrange function

L̃ = L +

∫
Su

λT (u − u) dSu. (2.6)

The Lagrange multiplier (λ) can be interpreted as the reaction forces needed to fulfill
the displacement conditions at the boundary.

Hamilton’s theorem states that the variation of Lagrange function is equal to zero,

δL̃ = 0. (2.7)

8



By using expression 2.6 we get

δ(
1

2

∫
Ω

ρu̇T u̇ dΩ − 1

2

∫
Ω

εT σ dΩ +

∫
Ω

uTb dΩ +

+

∫
St

uT t dSt +

∫
Su

λT (u− u) dSu) = 0. (2.8)

By simplify the elastic term of the Lagrange equation

δ(εT σ) = δεT σ + εT δσ (2.9)

where

εT δσ = (εT δσ)T = δσT ε = δ(cε)T ε = δεTcT ε = δεTcε = δεT σ. (2.10)

Here we assume that the constitutive matrix c is symmetric. If we use this result and
static consideration, i.e. the kinetic term of the lagranian vanish, equation 2.8 reduces
to

−
∫

Ω

δεT σ dΩ+

∫
Ω

δuTb dΩ+

∫
St

δuT t dSt +

∫
Su

δλT (u−u) dSu +

∫
Su

λT δu dSu = 0.

(2.11)
The last term is a scalar, therefore nothing will change if we take the transpose∫

Su

λT δu dSu =

∫
Su

(λT δu)T dSu =

∫
Su

δuT λ dSu. (2.12)

So equation 2.11 becomes

−
∫

Ω

δεT σ dΩ+

∫
Ω

δuTb dΩ+

∫
St

δuT t dSt +

∫
Su

δλT (u−u) dSu +

∫
Su

δuT λ dSu = 0.

(2.13)
This is the weak form for a solid mechanic problem. At this point we have not
introduced any kind of approximations, this is a law of nature modified a little bit.
In order to discretize the domain we have to invoke some kind of approximation.

2.3 Introducing approximation

With the approximation given by

u(x) ≈
n∑

i=1

φiui = φU (2.14)

we can now approach the final formulation for a linear static problem in solid me-
chanics. But first the unknown Lagrange multiplier also, like the displacement, has to
be discretized on the essential boundary. Like the displacement it is approximated as
sum of nodal values multiplied with a shape function, λ = NΛ. A common use as N
is, like in FEM, the simplest linear Lagrange shape functions, that only depends on

9



the nodes to the left and right of the current node. Inserted the equation 2.13 results
in

−
∫

Ω

δεT σ dΩ +

∫
Ω

δUT φTb dΩ +

∫
St

δUT φT t dSt +

+

∫
Su

δΛTNT φU −
∫

Su

δΛTNTu dSu +

∫
Su

δUT φTNΛ dSu = 0. (2.15)

For now no assumption has been made concerning constitutive relation. If small
strains are considered the following relation holds between the displacement and the
strains, ε = Ru = RφU = BU. And for linear elasticity the stress is obtained by
σ = cε. The nodal values vectors U and Λ are independent of x, so they can be
detached from the integral

−δUT

∫
Ω

BTcB dΩ︸ ︷︷ ︸
K

U + δUT

(∫
Ω

φTb dΩ +

∫
St

φT t dSt

)
︸ ︷︷ ︸

F

−δΛT

∫
Su

−NT φ dSu︸ ︷︷ ︸
GT

U + δΛT

∫
Su

−NTu dSu︸ ︷︷ ︸
q

−δUT

∫
Su

−φTN dSu︸ ︷︷ ︸
G

Λ = 0. (2.16)

This can be written as

δUT (KU − F + GΛ) + δΛT (GTU − q) = 0. (2.17)

Because both variations are independent, and not always equals to zero, the terms
they are multiplied with have to be zero. This gives the following equation system[

K G
GT 0

] [
U
Λ

]
=

[
F
q

]
. (2.18)

Now the unknowns nodal parameters can be solved by inverting the left matrix. This
is the mesh free formulation for linear static.
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Chapter 3

Element Free Galerkin Method

3.1 Introduction

In Element Free Galerkin (EFG) we use the moving least square (MLS) method for
constructing the shape functions. Moving least square method was first proposed
by Lancaster and Salkauskas (1981), as an interpolation method. It was used in el-
ement free methods by Belytschko et al. (1994), with use of Lagrange multiplier to
invoke essential boundary.

The MLS approximation of the displacement field basically looks like this. We ap-
proximate the displacement in a point by coefficients to a polynomial basis p. Then
we minimize a weighted error function J in a least square sense to get our shape
functions.

3.2 Deriving shape functions

We approximate the displacement field by a discrete sum

u(x) ≈ û(x) =

m∑
i=1

pi(x)ai(x) = pT (x)a(x) (3.1)

where p is a basis. For example a linear basis in two dimensions becomes pT = [1 x y].
In order to determine the unknown coefficients a, a functional J is constructed. It
sum up the weighted quadratic error for all nodes inside the support domain as

J =

n∑
i=1

W (x− xi)(ûi − ui)
2 =

n∑
i=1

W (x − xi)(p
T (xi)a(x) − ui)

2 (3.2)

where W is the weight function. Then we want to minimize this functional, so we
differentiate with respect to the unknown vector a, containing the coefficient

∂J

∂a
= 0. (3.3)

11



By inserting the expression for J , the equation ends up with

∂J

∂a
=

n∑
i=1

W (x − xi)
∂(pT (xi)a(x) − ui)

2

∂a
(3.4)

=

n∑
i=1

W (x − xi)2(pT (xi)a(x) − ui)p(xi) = 0 (3.5)

⇔
n∑

i=1

W (x − xi)p(xi)p
T (xi)a(x) =

n∑
i=1

W (x− xi)p(xi)ui. (3.6)

This can be written in a compact matrix form as

A(x)a(x) = B(x)U(x) (3.7)

where the matrices are given by

A(x) =

n∑
i=1

W (x − xi)p(xi)p
T (xi) ∈ M(m × m) (3.8)

B(x) =
[

W (x − x1)p(x1) . . . W (x − xn)p(xn)
] ∈ M(m × n) (3.9)

U(x) =

⎡
⎢⎣ u1

...
un

⎤
⎥⎦ ∈ M(n × 1). (3.10)

The unknown vector a can now be determined as

a(x) = A−1(x)B(x)U(x). (3.11)

By inserting this expression in 3.1, we get a new formulation of the displacement field

û(x) = pT (x)a(x) = pT (x)A−1(x)B(x)︸ ︷︷ ︸
φ(x)

U(x). (3.12)

So the displacement in a point x are approximated as a sum of shape functions mul-
tiplied with respectively displacement, it can be noted that ûi �= ui. That is the
consequence when the shape functions does not fulfill the Kronecker delta property.
If you want to know the displacement in a point, you have to construct a support do-
main and compute the sum with displacement multiplied with shape function values.

3.3 Choice of support domain and weight function

There is no difference if circular or rectangular support domain are used in the EFG
method. The following implementations is made with circular. The weight function
plays an important role for the EFG method. A proper constructed weight func-
tion will give unique solutions when we determine the coefficient vector a. A weight
function need to have following the properties:
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• Compact support, i.e. zero outside the support domain.

• Adopt positive values for all points in the support domain

• Has its maximum value at the current point and decrease when moving outwards.

There are many kinds of function satisfying these properties, but the one used in this
paper are the quartic spline function, found in for example Chen et al. (2006),

W (sI) =

{
1 − 6s2

I + 8s3
I − 3s4

I , sI ≤ 1
0, sI > 1.

(3.13)

where

sI =
RI

ρI

(3.14)

ρI = Radius of the support domain (3.15)

RI = ‖rI‖ (3.16)

rI = x − xI (3.17)

A 2D plot of the quartic spline function is given in Figure 3.1. For details how to
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Figure 3.1: A quartic spline weight function.

construct a proper weight function see for example Liu and Liu (2003).

In the derivation of the shape functions in section 3.2 the weight function are dif-
ferentiated with respect to x. With help of the chainrule we get

∂WI

∂x
=

∂WI

∂sI

∂sI

∂x
=

{
(−12sI + 24s2

I − 12s3
I)rI/RIρI , sI ≤ 1

0, sI > 1.
(3.18)

It can be observed that when xI approach x in equation 3.18, both the nominator
and the denominator approach zero. It is not trivial to see the limit for the problem,
therefore a plot of the scalar coefficient before rI in 3.18 is given in Figure 3.2. As seen
in the figure the scalar term approach zero, therefore the limit also have to approach
zero.
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Figure 3.2: Plot of the scalar term in front of the gradient to the weight function.

3.4 Implementation

In order to calculate the matrices needed to solve the problem, a numerical integration
has to be performed. For that purpose a background mesh is generated. The back-
ground mesh is completely independent of the node mesh, so it can be constructed
arbitrary. In this example gauss integration is used, and each integration cell is rect-
angular. So instead of looping over all elements as in FEM, here it is a loop over all
integration points.

To find all nodes inside the support domain, a search algorithm has to be done.
There are many advanced algorithms available, but my implementation contains none
of them. I just calculate the distance to all nodes. The sub routine to construct shape
functions are easily implemented given the matrix formulation. The matrix inversion
my be given some extra attention. A LU factorization can be done to speed it up,
but this is not done in my code. Then some post processing has to be done in order
to calculate the real displacement. So again you need to do a search algorithm and
calculate shape functions for these points. Over all the implementation are very sim-
ilar to that in FEM. In Algorithm 1 pseudocode for a general mesh free program is
presented.

3.5 Numerical Example

As a first challenge to understand the EFG method, a program for linear static was
implemented. A beam in bending found in Example 6.2 from Liu (2003). A figure of
the beam is given in Figure 3.3.
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Algorithm 1 General algorithm for EFG with Gauss integration.
Pre processing

-generate nodes
-generate integration points and cells
-set variables and constants
Main program

for i=1..all integration points do
for j=1..all nodes do

if j ∈ support domain for i then
-calculate shape function

end if
end for
-calculate local system matrices K,G,q and F
-assemble to global system matrices

end for
-solve equations system
Post processing

for i=1..number of output points do
-determine nodes inside support domain to i
-calculate real displacement
-compute strains and stresses for i

end for

The parameters given for this example are

P = −1000 N Force

E = 3 × 107 N/mm2 Young’s modulus
ν = 0.3 Poisson’s ratio
D = 12 m Height of beam
L = 48 m Length of beam

.

For the constitutive relation we assume plane stress, so the matrix c is given by

c =
E

(1 − ν2)

⎡
⎣ 1 ν 0

ν 1 0
0 0 (1 − ν)/2

⎤
⎦ . (3.19)

The advantage of using a beam example is that the analytical solution is known. So
we can check the how accurate the numerical method is. The solution was made
by Timonshenko and Goddier (1970),

ux = − P

6EI

(
(6L − 3x)x + (2 + ν)

(
y2 − D2

4

))
(3.20)

uy =
P

6EI

(
3νy2(L − x) + (4 + 5ν)

D2x

4
+ (3L − x)x2

)
. (3.21)
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Figure 3.3: Cantilever beam load by a vertical force at in it free end

also the exact stresses where calculated by Timoschenko and Goodier

σxx = −P (L − x)y

I
(3.22)

σyy = 0 (3.23)

σxy = − P

2I

(
D2

4
− y2

)
. (3.24)

The traction vector at the free end (x=48) are parabolic and given by

t =
P

2I

(
D2

4
− y2

)
. (3.25)

The moment of inertia for a rectangular surfaces with unit thickness is

I =
D3

12
.

The displacement are prescribed at the boundary (x=0). The magnitude are easily
calculated by just put (x=0) in 3.20 and 3.21.

The domain was divided in a number of nodes, Nx nodes in x direction and Ny

nodes in the y direction. So the total number of nodes where N = Nx × Ny. An
example of the mesh with regular node distribution and irregular node distribution
can be seen in Figure 3.4.

To perform gauss integration the domain was divided in nbrofcellsx cells in x di-
rection and nbrofcellsy in y direction. So, as in the mesh, the total number of cells
are nbrofcells = nbrofcellsx × nbrofcellsy. Each cell contains pointspercell points where
the functionvalues are evaluated, the total number of integration points where then
nbrofcells × pointspercell.
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Figure 3.4: Example of node distribution with Nx = 16 and Ny = 7: a) regular b)
irregular

3.6 Results for Beam in bending

The code was implemented in Matlab, and tested for several number of nodes and
integration points. For each test, given the number of nodes, the number of integration
points and the support domain where

nbrofcellsx = Nx × 2

nbrofcellsy = Ny × 2

pointspercell = 8 × 8

support domain = 2

√
D2

(Ny − 1)2
+

L2

(Nx − 1)2
.

In each test the relative error of the displacement in y direction for x = 48 and y = 0
was calculated as

uanalytical − uEFG

uEFG

.

The results for both regular and irregular nodes are given in Table 3.1.

nodes(Nx × Ny) relative error regular(%) relative error irregular(%)
7 × 5 2.4992 2.5901
11 × 5 1.1950 1.1838
16 × 7 0.8717 0.8708
20 × 9 0.7606 0.7835
30 × 14 0.6305 0.6376
60 × 29 0.5369 0.5566

Table 3.1: Relative error for the EFG method, applied to a cantilever beam, for both
regular and irregular mesh.
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The relative error converge to zero when the number of nodes approach infinity. The
analytical stresses where also known for the problem, so for the last case (Nx = 60 and
Ny = 29) the stresses where calculated in a number of points for the section x = 24.
Figure 3.5 contains the deflection of the beam for x = 0 and the normal stress in
x-direction for the section and Figure 3.6 contains the normal stress in y-direction
and shear stress for the section.

For regular node distribution we have excellent agreement, for both displacement and
stresses. For the case with irregular nodes, the displacement also seems very accurate.
But the normal stress in y contains some errors, but not very large compared with
the magnitude of the normal stress in x. The problem with irregular nodes are that
for the current node the support domain to the left contains much more nodes than
to the right. Therefore it gets a little bit unbalanced. The main reason when having
irregular mesh, is that you want more nodes at some location, but on that location
the distance between the nodes is constant. Then you don not have this problem.
Another solution would have been to use some kind of adaptive support domain.
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Figure 3.5: Comparison of the test result for the cantilever beam, both with regular
mesh and irregular, and with Nx = 60 and Ny = 29: a) deflection in y at y=0 b)
normal stress in x at x=L/2

3.7 Summary

An Element free Galerkin method was implemented in Matlab for linear statics. The
implementation was straightforward, the only thing that needed some extra thought
was the shape functions. But they where easily implemented given the formulation
from section 3.2. The assembling part and the whole structure of the program looks
like a regular finite element program.

The method seems accurate enough and converge to the analytical solution when
the number of nodes approach infinity. A little remark has to be mentioned about
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Figure 3.6: Comparison of the test result for the cantilever beam, both with regular
mesh and irregular, and with Nx = 60 and Ny = 29: a) normal stress in y at x=L/2
b) shear stress at x=L/2

the numerical integration. To have accurate result, the numerical integration has to
be very fine, i.e. many integration points. Note that it converge even with a small
amount of integration points, but it is not accurate enough. The only requirement
to converge is that the number of nodes in the support domain is greater than the
number of components in p. This to guarantee that the matrix A is invertible.

The many integration points combined with the enlarged system because of the La-
grange multiplier, results in a very time consuming program. Even for a so simple
problem with linear statics. But no optimization where made on the code to improve
the performance.
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Chapter 4

Reproducing Kernel Particle
Method

4.1 Introduction

Another mesh free method you find in the literature is the Reproducing Kernel Parti-
cle Method(RKPM) developed by Liu et al. (1995). This method has been successfully
applied to many different kind of problems including large deformations. There is no
difference in how to construct the weak form compared to EFG, the main difference
is the shape functions.

In EFG we approximated the displacement u in a point x by a sum of all nodes
that lies in the support domain of x multiplied with the value of the shape function in
that point. In RKPM we end up with a similar expression but the shape functions dif-
fers from EFG. There is a significant difference how to develop the shape functions in
these methods, EFG starts the approximation with a serial representation and RKPM
starts with a integral representation. RKPM is motivated by the theory of wavelets
where the function is represented by a combination of dilation and translation of a
single wavelet. This often leads to an integral representation of the function itself.

4.2 Deriving shape functions

The RKPM approximation starts from an integral representation of the unknown
function u

u(x) =

∫
ΩI

u(x̃)K(x, x̃) dṼ (4.1)

where K is the kernel function. The integral is only defined over the supportdomain
ΩI due to the compact suppport of the weight function. It is trivial to see that if
K(x) → δ(x) this integral transformation should generate the exact displacement. So
the problem is to choose Kernel functions that mimics a Kronecker delta.

In the Smoothed Particle Hydrodynamics method, you simply choose the kernel as
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the weight function. But Liu and co-workers discovered that this method had prob-
lems with the consistency at the boundaries. Consistency for mesh free methods can
compared to completeness for FEM. It is the ability for the approximation to exactly
reproduce a polynomial of certain order. For the case of linear consistency it becomes

c =

∫
ΩI

cK(x, x̃) dṼ = c

∫
ΩI

K(x, x̃) dṼ (4.2)

x =

∫
ΩI

x̃K(x, x̃) dṼ . (4.3)

In order to obtain desired consistency over the entire domain, he introduced a kernel
function that where the weight function multiplied with a correction function. And
this correction function is constructed just to fulfill the consistency condition.

4.2.1 Construction of correction function

If we choose to have linear consistency then the correction function will take the form

K(x, x̃) = C(x, x̃)W (x− x̃) = (C0(x) + C1(x)(x − x̃))W (x − x̃). (4.4)

It can be seen that the correction function is linear with respect to x − x̃. The
consistency conditions implies that the approximation is able to reproduce a constant
and a linear term exactly. For the first consistency, equation 4.2, to be fulfilled the
integral over the kernel function have to be equal to one. So the first consistency
condition can be reformulated as∫

ΩI

K(x, x̃) dṼ = 1 (4.5)

which is also called the normalization property.

The second consistency condition, equation 4.3, also have to be rewritten in order
to fit with the theory

x =

∫
ΩI

x̃K(x, x̃) dṼ =

∫
ΩI

xK(x, x̃) dṼ −
∫

ΩI

(x − x̃)K(x, x̃) dṼ = (4.6)

= x

∫
ΩI

K(x, x̃) dṼ︸ ︷︷ ︸
=1

−
∫

ΩI

(x − x̃)K(x, x̃) dṼ = x −
∫

ΩI

(x − x̃)K(x, x̃) dṼ . (4.7)

Here we used the normalization property of the kernel function. For this equation to
be fulfilled, the second term has to be zero. So the second consistency condition can
again be reformulated as ∫

ΩI

(x − x̃)K(x, x̃) dṼ = 0. (4.8)

22



Before we use this expressions to determine the c coefficients, we start with define
some quantities named moments

m0(x) =

∫
ΩI

W (x − x̃) dṼ (4.9)

m1(x) =

∫
ΩI

(x − x̃)W (x − x̃) dṼ (4.10)

m2(x) =

∫
ΩI

(x − x̃)(x − x̃)T W (x − x̃) dṼ . (4.11)

By inserting our modified kernel function 4.4 in the first consistency condition 4.5 and
use our defined moments we end up with

1 =

∫
ΩI

(C0(x) + C1(x)(x − x̃))W (x − x̃) dṼ = C0(x)m0(x) + C1(x)m1(x). (4.12)

And in the same manner equation 4.8 gives us

0 =

∫
ΩI

((x − x̃)(C0(x) + C1(x)(x − x̃))W (x− x̃) dṼ =

= C0(x)m2(x) + C1(x)m2(x). (4.13)

If we define ND as number of dimension, and write the two equations as an equation
system, we get[

m0(1 × 1) mT
1 (1 × ND)

m1(ND × 1) m2(ND × ND)

] [
C0(1 × 1)

C1(ND × 1)

]
=

[
1(1 × 1)

0(ND × 1)

]
. (4.14)

This can in a compact form be written as

MC = H(0). (4.15)

Here M is the moment matrix, C the wanted coefficient vector and H(0) = [1 0 0]T .
Given the moment matrix it is now possible to determine the unknown coefficients just
by inverting it. As seen in the next section, when differentiating the shape functions,
it is also necessary to know the differentiated coefficients. They can be determined by
differentiate equation 4.15, for two dimensions it becomes

∂M

∂x
C + M

∂C

∂x
= 0 (4.16)

∂M

∂y
C + M

∂C

∂y
= 0 (4.17)

We are now ready to formulate the final equation system when determine the coeffi-
cients ⎡

⎣ M 0 0
∂M
∂x

M 0
∂M
∂y

0 M

⎤
⎦

⎡
⎣ C

∂C
∂x
∂C
∂y

⎤
⎦ =

⎡
⎣ H(0)

0
0

⎤
⎦ . (4.18)

When you have constructed the enlarged moment matrix, it is just to invert it and
then you have the coefficients and derivatives.
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4.2.2 Discretization of integral

Now the kernel function in equation 4.1 is known, but in order to implement the
approximation on a computer, we have to discretize the integral. If the support
domain ΩI contains n nodes the integral is approximated as

u(x) ≈
n∑

j=1

ujC(x,xj)W (x − xj)∆Vj =
NP∑
j=1

φjuj (4.19)

where ∆Vj is the volume associated with node j. The sum of all ∆Vj have to be the
complete volume V .

It is easy to obtain the first derivate of the shape function

φj,x = (C,x(x,xj)W (x − xj) + C(x,xj)W,x(x − xj))∆Vj . (4.20)

4.2.3 Summary

Given a point x this is how you construct shape functions for all nodes in the support
domain.

• determine the support domain

• integrate over the support domain and calculate the moments m0, m1, m2 and
it is derivatives. Determine the coefficients vector c.

• find all nodes in the support domain

• for all nodes calculate the value of the weight function and after that the shape
function

It can be noted that the coefficients c is completely independent of the coordinate for
the node point. It was also shown by Liu et al. (1995) that if x is far away from the
boundary, the coefficients becomes C0 = 1 and C1 = [0 0]T . So when the support do-
main is completely inside the problem domain the shape function value just becomes
the weight function value multiplied with the corresponding volume, exactly as in the
Smooth Particle Hydrodynamics method.

If you want a higher order approximation, you just add extra terms in the correction
function C(x, x̃) in equation 4.4, which will give extra coefficients. But the consis-
tency conditions will also get more constraints, which will lead to a enlarged moment
matrix. So it will only lead to a larger equation system to solve when determine the
coefficients.
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4.3 Choice of support domain and weight function

In the EFG method we had a circular support domain, and a weight function with
only one variable, the radius. But now, when we need to integrate over the support
domain to get our moment matrices, it is handy to have a rectangular support do-
main. Because these integrals have to be integrated numerically and the division is
much easier with a rectangular support domain.

The weight function for a point x in one variable is generalized to two as

W (sx, sy) =

{
(1 − 6s2

x + 8s3
x − 3s4

x)(1 − 6s2
y + 8s3

y − 3s4
y)

25
16

, sx ≤ 1 and sy ≤ 1
0, sx > 1 or sy > 1

(4.21)
where

sx =
|x − x̃|

Rx

(4.22)

sy =
|y − ỹ|

Ry
(4.23)

An integral of the weight function over the support domain, independent of the size,
always becomes 16

25
. That is why we have the constant term in the weight function, just

to normalize it. For the EFG method this property is irrelevant, but for the RKPM
it is important because of the first consistency condition. As mentioned before, in the
body the kernel function just becomes the weight function. So in order to equation 4.5
to be fulfilled the weight function has to be normalized.

The first derivate is constructed exactly as equation 3.18 and becomes

∂W

∂x
=

{
(−12sx + 24s2

x − 12s3
x)(1 − 6s2

y + 8s3
y − 3s4

y)(x − x̃)25/(sxRx16), sx ≤ 1
0, sx > 1.

(4.24)

∂W

∂y
=

{
(−12sy + 24s2

y − 12s3
y)(1 − 6s2

x + 8s3
x − 3s4

x)(y − ỹ)25/(syRy16), sy ≤ 1
0, sy > 1.

(4.25)

As for the weight function in one variable it hold that if sx or sy approach zero, the
differentiated weight function also approach zero.

4.4 Implementation

The program looks exactly like the EFG program, except the routine that returns
the shape functions. Implementation of this routine is slightly more complex than for
EFG. You have to calculate a volume corresponding to each node when discretizing
the integral and you also have to perform a numerical integration over the support
domain to get the moment matrices.

This in combination with a bunch of derivates to be calculated made the program-
ming kind of tricky. But there are several checks that can be done to investigate the
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reliability of the code, for example that the correction term becomes one when the
support domain is completely inside the problem domain and the the integral over
the kernel always becomes one, even when we are close to the boundary.

4.5 Results for Beam in bending

An RKPM program where implemented for the exact same test as the EFG program.
In this program we had a rectangular support domain, like for the EFG method, the
size depends on how many nodes there are

Rx = 4 × L

Nx − 1

Ry = 4 × D

Ny − 1
.

This will approximately give the same number of nodes in the support domain and
except these two parameters everything are the same, see section 3.5 for details.

As for the EFG program the implementation where tested for different number of
nodes, both with regular and irregular node distribution. For each test the relative
error where calculated in the point (x = 48,y = 0) as

uanalytical − uRKPM

uRKPM

. (4.26)

The results are collected in Table 4.1. The relative error converge to zero when the
number of nodes approach infinity. This holds for both regular and irregular node
distribution.

nodes(Nx × Ny) relative error regular(%) relative error irregular(%)
7 × 5 1.6227 1.6140
11 × 5 0.9694 0.9648
16 × 7 0.7401 0.7507
20 × 9 0.6623 0.6790
30 × 14 0.5794 0.5816
60 × 29 0.5193 0.5329

Table 4.1: Relative error for the RKPM method, applied to a cantilever beam, for
both regular and irregular mesh.

To be able to compare the both methods, the displacement and stresses are plot-
ted exactly as for the EFG example. The displacement for y = 0 and the normal
stress in x-direction for x = L/2 are plotted in Figure 4.1. And the normal stress in
y-direction and the shear stress for x = L/2 are plotted in Figure 4.2. The results
shows excellent agreement of the displacement for both regular and irregular node
distribution. The same holds for the normal stress in x-direction, but exactly as for
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the EFG example the normal stress in y-direction contains some errors, especially
with irregular nods. But the error is not bigger than for the EFG method and not
large compared to the stresses in the x-direction. The shear stress also seems accurate
enough except for some parts where the solution with irregular nods are a little bit
big. This depends on a large disorientation of the nods a this point. A magnified
support domain should have solved the problem.
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Figure 4.1: Comparison of the test result for the cantilever beam, both with regular
and irregular mesh, and with Nx = 60 and Ny = 29: a) deflection in y at y=0 b)
normal stress in x at x=L/2
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Figure 4.2: Comparison of the test result for the cantilever beam, both with regular
and irregular mesh, and with Nx = 60 and Ny = 29: a) normal stress in y at x=L/2
b) shear stress at x=L/2
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4.6 Summary

The RKPM method seems to give accurate results and converge when the number of
nodes approach zero. Also this program is time consuming for such a small problem
as this. If you compare the two methods for this simple problem there is almost no
difference. The convergence is the same, the stress field very similar and both method
seems to have problems with the same thing, i.e. the normal stress in y-direction.
The time spend in creating shape functions are also the same. For both methods the
inversion of the moment matrix respective A matrix is the most time consuming part.
And if the number of basis coefficient are the same, also the size of the matrices are
the same. As a matter of fact, if the volume per node is chosen to one, ∆Vi = 1, then
RKPM give the exact same shape functions as MLS method. This was shown by Liu
et al. (1997).
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Chapter 5

RKPM for plasticity problem

5.1 Theory

To further test our mesh free program, a plasticity model where implemented. For
the linear case, there was almost no difference of the performance between EFG and
RKPM. Therefore only the RKPM where further developed. Also the fact that many
existing articles handling large deformation problem use RKPM played a significant
role.

5.1.1 Mesh free formulation

In equation 2.10 a linear elastic constitutive relation was needed in order to manipulate
the equation. Without further proof this can be done for a plastic constitutive relation
so again we end up with equation 2.15. For now we only consider small deformations,
therefore the strain can, as before, be written as ε = BU. Inserted in equation 2.15
gives with definitions given in section 2.3

δUT (

∫
Ω

BT σ dΩ − f + GΛ) + δΛT (GTU − q) = 0. (5.1)

The variations can not always be equal to zero, and they are independent, therefore
the terms they are multplied with have to be equal to zero. This results in a equation
system

Ψ(U,Λ) =

{ ∫
Ω
BT σ dΩ − f + GΛ = 0

GTU − q = 0.
(5.2)

This is the equilibrium equations for the plasticity problem that we want to fulfill in
every step. Because the non-linear constitutive relation, we have to iterate in order to
find this equilibrium. This is done by a Newton-Raphson algorithm. Without going
through any details this is done by linearize the equation around a given point, put
it equal to zero and then solve the linear equation system to get our new variables.
Then check if the new variables fulfill the equilibrium equations.

Starting from a point i − 1 where Ui−1 and Λi−1 is known and i stands for num-
ber of iterations. The linearization is done by a Taylor expansion around i− 1 where
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higher order terms are neglected. The following equation is obtained

Ψ(Ui−1,Λi−1) + ΨU|i−1(Ui − Ui−1) + ΨΛ|i−1(Λi −Λi−1) = 0. (5.3)

Before proceeding with differentiation of the equilibrium equations, a modification of
the constitutive equation have to be made. For a plasticity problem the stress and
strains are related as σ̇ = Dε̇. This can be modified as follows

σ̇ = Dε̇ ⇔ dσ = Ddε ⇔ dσ = DBdU ⇔ dσ

dU
= DB. (5.4)

If we use this result when differentiate the upper row in the equilibrium equation with
respect to U, we get ∫

Ω

BT dσ

dU
dΩ =

∫
Ω

BTDB dΩ = K. (5.5)

The derivatives in equation 5.3 now becomes

ΨU =
dΨ

dU
=

{
K

GT (5.6)

ΨΛ =
dΨ

dΛ
=

{
G
0.

(5.7)

For simplicity a new variable is introduced

a =

[
U
Λ

]
. (5.8)

Then equation 5.3 becomes

Ψ(ai) +

[
K G
GT 0

]
︸ ︷︷ ︸
Iteration matrix

(ai − ai−1) = 0. (5.9)

This is the mesh free formulation for a plasticity problem, from this we can calculate
new field variables by inverting the iteration matrix. It can be noted that iteration
matrix takes exactly the same form as the enlarged stiffness martix from the linear
elastic case, except D is different.

5.1.2 Model

The implemented plasticity model is a linear kinematic hardening von Mises model. A
summarize are given in Table 5.1 and explanation of the variables given in Table 5.2.
For more details see Ristinmaa and Ottosen (2005).
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Yield conditions

f = σeff − σy0

σeff =
√

(3
2
βijβij)

βij = sij − αd
ij

sij = σij − 1
3
δijσkk

Evolution laws

ε̇p
ij = λ̇ ∂f

∂σij

α̇d
ij = cε̇p

ij

Table 5.1: Summarize of the plasticity model.

variable explanation
f yield condition
s deviatoric stress tensor

σy0 yield stress
εp plastic strain
λ plastic multiplier
c material parameter

αd deviatoric part of the backstress tensor

Table 5.2: Explanation of the variables in the plasticity model.

5.2 Implementation

Given the RKPM program for linear statics and an implemented material function
there where no problem to combine the two programs to one. Because we only look
at small strains, the reference configuration always where the initial configuration.
therefore the shape functions for all integration points was constant during the simu-
lation. So in the beginning of the program the shape functions where stored for each
integration point, and after that they where only fetched. Constructing the shape
functions is the most time consuming part of the simulation, so with this technique
you save a lot of time. This in combination that the F, G and q matrices where
calculated outside the iteration loop, the program where relative fast. Each iteration
took only a few seconds.
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5.3 Results for beam in bending

The new plasticity model was tested for the now well known beam example. Parameter
for the example is given in Table 5.3. The load loop consist of changing the parameter

K = 2.500 · 107 MPa
G = 1.1538 · 107 MPa

σy0 = 600 MPa
c = 25 · 103 MPa

Table 5.3: Material parameters for beam example.

P , see section 3.5 for details. The beam starts from P = 0 and where loaded up to
P = −500 N, and after that unloaded to P = 0 again. The plastic deformations starts
with approximately P = −340 N. Three pictures of the deflection are shown for the
initial configuration, the maximum pressure and when the unloading is finished (i.e.
P = 0) in Figure 5.1 to Figure 5.3. After the loading cycle is complete there is still
some plastic deformation left, see Figure 5.3.

Figure 5.1: Deflection at y=0 for the beam in the initial state, P = 0.

Figure 5.2: Deflection at y=0 for the beam at P = −500.
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Figure 5.3: Deflection at y=0 for the beam in the initial state, after the loading cycle
is complete. Some displacement still occur due to plastic deformations.

5.4 Results for Cooks membrane

To further test the implemented code, the well known Cook’s membrane was also
investigated. A sketch of the membrane are given in Figure 5.4. The same linear
kinematic plasticity model as for the beam is used, and the material parameters are
given in Table 5.4. The membrane was loaded with a constant traction vector at the
right side. It was simply supported at the left side, i.e. displacement zero in both
directions.

(mm)

16

48

16

44

f

Figure 5.4: Sketch of Cooks membrane.

The membrane was tested with a force controlled cycle loading, given by {0 → fmax →
fmin → fmax → fmin → fmax → 0}, where fmax = 2500N and fmin = −2500N . Val-
ues of the load in the cycle is the total force acting on the body, not the traction
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K = 164 · 103 MPa
G = 80 · 103 MPa
σy0 = 400 MPa

c = 18 · 103 MPa

Table 5.4: Material parameters for Cooks membrane.

vector. A plot of the response for the lower right node is given in Figure 5.5. After
the first cycle nothing will change, this is due to the kinematic hardening of the plas-
ticity. The plasticity occur approximately at 1.5 kN.
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P
 / 
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Force versus displacement

Figure 5.5: Results for Cook’s membrane tested with a cycle load. Displacement
versus total force for the node in the lower right corner.

To further investigate the method, a convergence test was performed on the mem-
brane. The membrane was loaded from zero and up to fmax in 25 equal steps, i.e.
∆f = 100N . For an increasing number of nodes, the displacement for the maximum
load was calculated. The results can be seen in Table 5.5.

The method converges, as the number of nodes increase and have irregular nodes
does not change the performance. It is surprisingly accurate even for very few nodes,
to show that a plot of the displacement versus force for both 10×8 and 50×48 nodes
are shown in Figure 5.6. Also a plot of the node distribution for the irregular case is
included, both the initial configuration and the maximal deformed configuration can
be seen in Figure 5.7.

The Newton iteration converges quadratically and there is no difference if there is
regular or irregular nodes. Number of nodes does not either influence the conver-
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Regular nodes Irregular nodes

10 × 8
20 × 18
30 × 28
40 × 38
50 × 48

u / 2500 N
1.601
1.640
1.650
1.655
1.658

u / 2500 N
1.604
1.635
1.645
1.649
1.655

Table 5.5: Convergence of displacement for both regular and irregular nodes.
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50 × 48
10 × 8

Figure 5.6: Comparison of force versus displacement plot for 10×8 and 50×48 nodes.

gence. A typical convergence serie for a point well inside the plastic region can be
seen in Table 5.6.

Iteration Residual
1 1.787 · 101

2 1.255 · 10−1

3 2.458 · 10−6

4 2.028 · 10−11

Table 5.6: A typical convergence serial.

5.5 Summary

A plasticity model was implemented in a mesh free RKPM program. The implemen-
tation was straightforward given a RKPM program for linear statics. The Newton
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Figure 5.7: A plot of the the inital(o) and deformed(*) mesh for the case of 20 × 18
nodes.

iteration seems to work well and the quadratic convergence is obtained. For the case
of small deformation the current configuration is always the initial, therefore we can at
the initial part store all shape functions for the integrations points and use them under
the whole loading cycle. The test of the membrane and beam shows that even with
few number of nodes a accurate results is obtained. If we combine these conclusions
we get a fast and accurate program that can be used to solve plasticity problems.
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Chapter 6

Large Deformations

6.1 Theory

So far the code has only been tested for material non-linearities as plasticity. The final
task now is to apply the code for geometrical non-linearities, i.e. large deformations.
The difference compared to the small strain theory is how you choose the strain
measure. For small theory we use the so called engineering-strain which is linear with
respect to the displacement. For large deformation this relation is not valid any more,
so another strain measure and corresponding stress has to be chosen.

6.1.1 Weak form

The new strain measure is the so called Green-Lagrange strain defined by

E =
1

2
(FTF − I) =

1

2
(U + UT + UTU) (6.1)

where F is the deformation gradient, U the displacement gradient and I is the identity
matrix. It is clear that Green-Lagrange strain contains a extra quadratic term which
makes it non linear. The corresponding stress measure is second Piola-Kirchoff stress,
S. Second Piola-Kirchoff is related to the Cauchy stress,σ, as

S = JF−1σF−T (6.2)

where
J = det(F). (6.3)

The weak form in form of the principle of virtual work for a large deformation problem
is given from Chen et al. (1996) and can be compared with equation 2.15

−
∫

Ω

δETS dΩ +

∫
Ω

δUT φTb dΩ +

∫
St

δUT φT t dSt +

+

∫
Su

δΛTNT φU −
∫

Su

δΛTNTu dSu +

∫
Su

δUT φTNΛ dSu = 0. (6.4)
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6.1.2 Introducing approximation

Before proceeding the following two operators are defined

∇l =

⎡
⎣ ∂

∂x
0

0 ∂
∂y

∂
∂y

∂
∂x

⎤
⎦ ∇u =

⎡
⎢⎢⎣

∂
∂x

0
∂
∂y

0

0 ∂
∂x

0 ∂
∂y

⎤
⎥⎥⎦ (6.5)

and a matrix depending on the displacement u

A(u) =

⎡
⎢⎣

∂ux

∂x
0 ∂uy

∂x
0

0 ∂ux

∂y
0 ∂uy

∂y
∂ux

∂y
∂ux

∂x

∂uy

∂y

∂uy

∂x

⎤
⎥⎦ . (6.6)

The Green-Lagrange strain can now be written as

E(x) = (Bo +
1

2
Bu)U = BU (6.7)

with the following definitions

Bo = ∇lφ (6.8)

Bu = A(u)H where H = ∇uφ. (6.9)

The variation of the strain E can now with the new approximation be expressed as
δE = BδU.

6.1.3 Mesh free formulation

By introducing the notation from section 2.3 and the approximation for the strain it
becomes

δUT (

∫
Ω

BTS dΩ − f + GΛ) + δΛT (GTU − q) = 0. (6.10)

With the same arguments as before, the variations are independent and can not always
be equal to zero. The following equation system are obtained

Ψ(U,Λ) =

{ ∫
Ω
BTS dΩ − f + GΛ = 0

GTU − q = 0.
(6.11)

This is the equilibrium equations for a large deformation problem. Because the equa-
tions are non-linear, you need to iterate in order to get a solution that fulfills the
equilibrium equation. As in section 5.1.1 this is done by a Newton-Raphson algo-
rithm. A linearization around the last known position,Ui−1 and Λi−1, are done by a
Taylor expansion

Ψ(Ui−1,Λi−1) + ΨU|i−1(Ui −Ui−1) + ΨΛ|i−1(Λi − Λi−1) = 0. (6.12)
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The following derivatives are needed in order to proceed with the calculations. The
first derivatives follows from the assumption that the material is linearized, i.e. dS =
DdE = DBdU ∫

Ω

BT dS

dU
dΩ =

∫
Ω

BTDB dΩ. (6.13)

And the second after some matrix manipulations∫
Ω

dBT

dU
S dΩ =

∫
Ω

HTRH dΩ (6.14)

where

R =

[
S 0
0 S

]
. (6.15)

If we define

K =

∫
Ω

BTDBdΩ +

∫
Ω

HTRH dΩ, (6.16)

the derivatives needed in equation 6.12 becomes

ΨU =
dΨ

dU
=

{
K

GT

ΨΛ =
dΨ

dΛ
=

{
G
0.

Again a new variable is introduced

a =

[
U
Λ

]
. (6.17)

So the Taylor expansion, equation 6.12, can in a more compact form be written as

Ψ(ai) +

[
K G
GT 0

]
︸ ︷︷ ︸
Iteration matrix

(ai − ai−1) = 0 (6.18)

Once again we end up with the same iteration format, but this time the stiffness ma-
trix K takes another form.

Some comments about the results:

• For small deformations E = Boa, now we have a extra non-linear term.

• The extra term not only contains the differentiated shape functions, but also
the displacement.

• Note that the expression differs from how the B matrix is constructed, and when
you calculate the Green-Lagrange strain.

This excellent matrix formulation is taken from Ristinmaa and Ljung (2002), and it
contains a more comprehensive discussion in this subject.
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6.1.4 Calculate reaction forces

In previous examples the load has been controlled by a outer force, which has given
contribution to the vector F. The following examples with large deformation models,
the load has to be displacement controlled in order to see the characteristics of the
model.

To generate force versus displacement plots, the reaction forces has to be calculated.
For that the Lagrange multiplier are used. The upper equation of the equilibrium
equation 6.11 contains the term GΛ. This term can be interpreted as the term that
force the nodes to fulfill the boundary conditions we want to have with help of the
Lagrange multiplier. A closer look shows that the term has the same unit as F, i.e.
Newton. The vector has the dimension number of nodes times one. So the reaction
force along a boundary are calculated as a sum of all the elements in GΛ that lies on
the boundary.

6.2 RKPM for large deformation with hyperelas-

ticity

Before we reach the final goal with this master thesis, a mesh free program for large
deformation with a elasto-plastic material model, a large deformation program for
hyperelasticity is implemented. This is just another check to test the accuracy of the
program before we reach the goal. There is no extra effort to implement this hypere-
lastic model, almost all routines are needed for elasto-plastic model.

It is difficult to find easy analytical solutions for large deformation, therefore the
RKPM program was tested against the commercial finite element program ABAQUS.
A total lagrangian formulation was used, so the shape functions could be calculated
in the beginning of the program as before. The energy potential function was a Neo
Hooke and given by

ϕ =
1

2
κ(J − 1)2 +

1

2
µ(J−2/3Cαα − 3) (6.19)

where Cαβ = FγαFγβ , J = det(Fαβ) and F is the deformation gradient. The second
Piola Kirchoff is given by differentiating (6.19) once

Sαβ = 2
∂ϕ

∂Cαβ

= κ(J2 − J)C−1
αβ − 1

3
µJ−2/3C−1

αβ Ckk + µJ−2/3δαβ . (6.20)
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To get our constitutive matrix we differentiate (6.19) once again and obtain

Dαβγδ = 4
∂2ϕ

∂Cαβ∂Cγδ

= 4(κ(
J2

2
− J

4
)C−1

γδ C−1
αβ − κ

4
(J2 − J)(C−1

αγ C−1
βδ + C−1

αδ C−1
βγ )

+
µ

18
J−2/3C−1

γδ CαβCkk +
µ

12
J−2/3(C−1

αγ C−1
βδ + C−1

αδ C−1
βγ )Ckk)

−µ

6
J−2/3(C−1

γδ δαβ + C−1
αβ δγδ)) (6.21)

6.2.1 Results for beam in extension and Cooks membrane

To check the accuracy of the implementation, the beam test was once again consid-
ered. This time simply supported and a constant traction vector in the horizontal
direction. Materials parameters was given by µ = 3448.276 MPa and κ = 33333.333
MPa. The beam was in twelve uniform steps loaded to a total force of 120 kN. For
a point (x=48,y=0) the displacement versus force plot is given in Figure 6.1. The
same simulation where done in ABAQUS with the same model and material data. A
displacement versus load plot for the same point can also be seen in Figure 6.1. The
results show excellent agreement between the two methods.
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Figure 6.1: Results for beam in extension. Comparison of force versus displacement
plot for ABAQUS and RKPM.

But to be even more certain the method was ones again tested for Cooks membrane.
Also this time with a constant traction vector in the vertical direction. The structure
was loaded up to a total force of -352 kN in 22 equal steps. As the last example
it was compared against a finite element solution given by ABAQUS. To be certain
that there is not any problem with the element types, a different number of elements
was used. For triangular mesh, 3328 elements was generated, and for quadratic mesh,
1740 elements. This compared to a RKPM solution with a total of 1400 nodes is given
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in Figure 6.2. The figure contains a displacement versus force plot for the different
methods.
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Figure 6.2: Results for Cooks membrane. Comparison of force versus displacement
plot for ABAQUS and RKPM.

The results shows excellent agreement also for this slightly more complex example. A
plot of the deformed mesh for both RKPM and ABAQUS with triangular elements
can be seen in Figure 6.3. The solutions agree well for the entire body, also small de-
tails found in the FEM solution can be seen in RKPM. The RKPM method managed
to solve large deformation problems for hyperelasticity very well, no further test is
needed to check the reliability of the code. The next and final step is now to implement
an elasto-plastic model for large deformation theory.
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Figure 6.3: A plot of the deformed membrane at the maximum load: a) ABAQUS b)
RKPM
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6.3 Elasto-plasticity for large deformations

The elasto-plastic model used in the following simulation is an implementation of Box
9.1 in Simo and Hughes (1998) which is a non-linear isotropic hardening model. No
further details are discussed in these report, but briefly you can say that the theory
is very similar to small deformation, but here we use a multiplicative split of the de-
formation gradient to an intermediate configuration.

The implementation was easy given the programs implemented before. You need
the non-linear geometric part from the hyper-elastic implementation and the variable
saving from the plasticity implementation for small deformations, this elasto-plastic
model is also path dependent so you need to save variables from last equilibrium.
Except that you just have to change the subroutine containing the material model.

The parameters is the same for all examples and is given in Table 6.1. To com-
pare the solution from the mesh free program, the exact same implementation was
used as a subroutine to ABAQUS.

κ = 164 · 103 MPa
µ = 80 · 103 MPa
σy0 = 450 MPa
h = 129.24 MPa

δ = 16.93
y00 = 265 MPa

Table 6.1: Material parameters for elasto-plastic model.

6.3.1 Results for beam in extension

The beam example (see section 3.5) was once again considered, this time with a lit-
tle bit more spectacular effects. To fit better with material data, the geometry was
scaled. Before all measures was in meters, now they are in millimeters. The problem
was displacement controlled, the right side of the beam was forced in the x-direction.
The left side (x=0) was locked in x-direction, and the point (x=0,y=0) was also locked
in y-direction. The thickness of the beam was one.

As mentioned before, the exact same simulation was performed in ABAQUS. This
example was tested to see how RKPM manage a necking problem. In order to trigger
the necking in ABAQUS, a small imperfection was introduced. The left side of the
beam was 0.5 millimeters thinner then the right side. As expected the irregular node
distribution helped to trigger the necking for the RKPM program, so no imperfection
was needed.
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The RKPM program was tested in a number of simulation. In order to check how the
parameters influence the solution, they was changed in the following manner:

Nx = number of nodes in x-direction

Ny = number of nodes in y-direction

X = controll the size of support domain as Rx = X · L

Nx − 1
, Ry = X · D

Ny − 1

Y = number of integrationcells as nocellsx = Y · Nx, nocellsy = Y · Ny

Number of integration points in each cell was constant 7×7. For each simulation force
versus displacement plot for a node (x=0.048,y=0) was generated. First the number
of nodes was constant and the variables X and Y was changed. The results can be
seen in Figure 6.4. Then the number of nodes was increased and the same variation
was made on X and Y, see Figure 6.5. The results shows big difference when the
parameters are changed and no unique solution can be found for this problem.
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Figure 6.4: A force versus displacement plot of a beam in extension. The nodes are
constant 38 × 19, but number of integration points and size of support domain are
changed.

To show the complexity of this problem, a reference solution was made in ABAQUS.
For the same problem a force versus displacement plot was generated for different
elements. The beam was discretized with approximately 3000 elements. The results
can be seen in Figure 6.6, and even ABAQUS have inconsistent results.

To compare the results, one of each test was plotted in Figure 6.7. All methods
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Figure 6.5: A force versus displacement plot of a beam in extension. The nodes are
constant 52 × 31, but number of integration points and size of support domain are
changed.
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Figure 6.6: A force versus displacement plot of a beam in extension simulated in
ABAQUS with different element types. Approximately 6000 elements are used.

and elements give the same results up to the beginning of the necking. The necking
starts much earlier in ABAQUS, and for that I have no good answer. If the number
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of nodes are increased, the necking starts little earlier. If that is a coincident or as a
result of more nodes is hard to say.

Something that is hard to see in the force versus displacement plots is that it seems
like ABAQUS is softer then RKPM. If the simulation are studied in more detail, it
can be seen that in the beginning the necking is the same. Then in most cases for
ABAQUS a shear band is developed which results in a very fast necking. This can be
seen in Figure 6.8, which contains the deformed beams for both ABAQUS and RKPM
at the beginning of necking and at the end of simulations.
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Figure 6.7: Comparision of force versus displacement plot for RKPM and ABAQUS.

6.3.2 Summary

A elasto-plastic model for large deformation has been implemented and tested for
a necking example. The solution obtained by RKPM seems to be very sensitive of
changes in parameters. But also the commercial program ABAQUS have problems
and give different results depending on which elements that is used. The force versus
displacement plot have approximately the same appearance except for which time the
necking starts.

A interesting observation in this example, the number of integration points does not
influence the solution at all. For the example of beam in bending, it was reversed.
Integration point have a great influence and size of support domain almost none. This
give the conclusion that it is not trivial which parameter should be changed in order
to give high accuracy for low cost. If you compare the two parameters with respect
to computational cost, it is much cheaper to increase the support domain then the
number of integration point.

A comments also has to be made about Figure 6.8. A magnification of the mesh
has been done in the end of the necking phase. It should be notice that the mesh
should be quadratic. It is not hard to see that this kind of mesh can not give any
reasonable results, a remeshing is necessary.
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(a)

(b)

(c)

(d)

Figure 6.8: A plot of the deformed mesh under necking simulation: a) RKPM, begin-
ning of necking b) FEM, beginning of necking c) RKPM at the end of simulation d)
FEM at the end of simulation.
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Chapter 7

Conclusions

This master thesis contains an introduction to mesh less methods and their applica-
tions. Due to the large material only a overview have been presented and some of the
basic methods has been further investigated.

Two of the most known mesh free methods have been implemented and tested, the
EFG method and RKPM. The results shows that the difference is small even if the
theory in many ways differs. The methods implemented can be considered to be the
classic variants, i.e. no modification is made. The last years many articles has been
written in order to improve for example

• Shape functions so they fulfill Kronecker delta property

• Integration in order to avoid the larger number of integration points

• Coupling with FEM to speed up calculation

• Adaptation of support domain to lower the computational cost

and so on. But none of these new variants have been implemented or discussed in this
report. The implementation give accurate result compared to analytical and FEM
solutions. But as pointed out in many articles the method needs many integration
points, and the solution is sensitive for parameter changes.

As mentioned before the methods were very similar and therefore only RKPM was
further developed to large deformations problem. Introducing more complex material
models and handling geometric non-linearities is very similar compared to FEM. The
results shows that mesh free methods like FEM seems to capture the characteristics
that the model try to simulate. For example in cyclic loading with plasticity model
or necking of a bar with elasto-plastic model.

Also in large deformation analysis the simplest choice is made concerning which con-
figuration the calculation is made in. For simplicity only a total Lagrange formulation
has been used. This have the benefit that the shape function values are the same

49



during the simulation. But this choice feels intuitive strange, to calculate on the ini-
tial body when it is highly deformed. But a updated Lagrange formulation would
have been much more complicated. For example, should the support domain deform
with the body? In that case no search have to be made, because the support domain
should contain the same nodes during the simulation. But in my opinion the large
deformation would lead to a highly deformed support domain and maybe give rise to
same problem as in FEM. But with a constant support domain new search and calcu-
lation has to be made through the simulation, and that would not be computational
possible. The best solution in my opinion would be a updated Lagrange with constant
support domain and the shape functions are updated in a clever way. Another way
would be not to calculate new shape functions in every time step, maybe just every
twenty or so. In the articles I have read, most seems to use a total Lagrange formula-
tion. Someone used a updated, but with a support domain that deforms with the body.

Concerning improvement of the method, much have all ready been done. But a
clever integration method and a easy implemented shape functions that fulfill Kro-
necker delta property would be preferable. But what I miss most when study all this
articles, is an investigation of what impact different parameters have on the solution.
Examples of parameters are number of nodes, number of integration points, size of
support domain and number of coefficients in basis. In my numerical examples there
have been no unified results in this question. For the beam in bending, number of
integration points played an significant role. But for the example of necking, number
of integration points almost have no influence, instead the support domain had a great
impact. So maybe there is not any general answer to this question, but more compre-
hensive research in this subject would improve the efficiency of the mesh free methods.

Concerning the future of mesh free methods, in my opinion they will never com-
pletely replace FEM. But in special applications they have a good chance to be part
of the future. The most realistic option is a combination of mesh free and FEM dis-
cretization of a body. I do not think it is unrealistic that in a few years when you
solve a large deformation problem in a commercial program, you specify the region
with large deformation and that region is discretized with only nodes. But before that
happen more investigation of mesh free methods have to be made concerning accuracy
and stabilization and improvement of especially integration technique.
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