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Abstract

When performing material testing today, a so called tensile test is usually per-
formed. During this test, a homogeneous displacement field over the entire
specimen is assumed and the force versus displacement field is recorded. This
is often not enough information to be able to calibrate advanced material mod-
els. Before this thesis, experiments were made on two different polymers using
the so called ARAMIS system, which have the advantage that it can measure
displacements and strains on any point in a specimen. This makes it possible
to determine if a material behaves inhomogeneously.

The objective of this thesis is to establish a method which automatically
identifies the material parameters for a given material model in order to make
an accurate computer simulation.

The parameter identification is based on solving the so called inverse prob-
lem where a least square function is to be minimized. This is performed using
experimental data from the ARAMIS system as input for a optimization loop
that uses the Nelder-Mead simplex algorithm. This optimization loop is imple-
mented in a Python script that uses Abaqus as the FE-solver.

The parameter identification has been tested on some of Abaqus built in
material models and also on a toolbox called PolyUMod that contains various
material models suitable for simulating polymers.

From the simulations, it was concluded that the parameter identification
process works and is applicable. It turned out that the least square function is
non-convex and more than one local minima exists. The parameter identifica-
tion is therefore greatly dependent of the starting values and several parameter
identifications with different starting values are needed.
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Chapter 1
Introduction

Tetra Pak is a company that was founded in Lund, Sweden 1951. Today it is
located all around the world and has almost 20000 employees. It is one of the
world’s leading manufacturer of various cartons for the food industry.

In order to be competitive in today’s market, it is necessary to be both
cost and time efficient. When designing a new product, physical prototypes are
made to be able to make manual physical testings to know how the product
behaves at various loads, i.e. drop-testing. To make prototypes of each idea
is a expensive and time consuming approach since prototypes are not easy or
cheap to make. If one instead could make virtual tests in a computer using i.e.
the finite element method there is a chance to eliminate some of the physical
prototypes that does not result in satisfying computer simulations.

L 4 .’
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Figure 1.1: Different packages from Tetra Pak

In order for the simulations to be consistent with reality, it is necessary to
have a material model with corresponding material parameters (e.g. modulus
of elasticity) that accurately describes how the material behaves at arbitrary
loads.

The objective of this thesis is to establish a method which identifies the
material parameters needed in order to make an accurate computer simulation,
using i.e. the finite element method. The finite element software Abaqus is used
in this thesis as the FE-solver. The set of material parameters varies with the
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choice of material model. In the present work the material parameters will be
identified for two different types of polymers, HDPE (High-density polyethylene)
and LDPE (Low-density polyethylene).

The parameters are identified using a uniaxial tensile test on a dog-bone
shaped specimen with the so called ARAMIS system. Based on the displace-
ments and strains that are obtained from the experimental tests, the parameters
are identified using a Nelder-Mead simplex algorithm optimization loop.



Chapter 2
Theory

The following chapter describes the basics of constitutive modeling. First, some
basic continuum mechanics relations are introduced and after this a short de-
scription of a few cornerstones of constitutive modeling of mechanical properties
during a arbitrary load are presented. This theory will be the foundation in this
thesis of which the material models and finite element expression are based on.

Large and small bold letters in this chapter will represent second and first
order tensors respectively.

For further motivation and more detailed explanations the interested reader
is referred to [9] and [11].

2.1 Kinematic relations

To be able to establish a ground on which strains and stresses are obtained,
kinematic relations describing the motion of a body during deformation needs
to be presented. In this theory, the flow of particles are described. A particle is
described as an infinitesimal part of the material that one wants to be able to
describe throughout some deformation. Consider a particle P that is initially
located in a so called "reference configuration", where the shape and all ini-
tial stresses and strains are known. The subscript o will denote the reference
configuration. P has the original coordinate x° which are called the material
coordinates. The flow of every particle in the body from the reference to the
current configuration can be denoted as @ (x°,t) where ¢ is the time.

The reference configuration is initially at ¢ = 0 and therefore ° = p(x°,0)
and x° = (x°,y°,2°). When describing the motion of the particle originally
located at z° in the current configuration it is convenient to refer the displace-
ments to the reference configuration. This gives that

x(x®,t) = p(x°,t) = x° + u(x°, 1) (2.1)
where u = (ug, uy, u,) is the displacement vector.

Let dx® denote a vector between P and a neighboring particle in the reference
configuration and dx in the current configuration. The total deformation of da°
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Reference configuration Current configuration

€

Figure 2.1: Reference configuration and current configuration

is given by

dx = Fdx° (2.2)

where F' is the so called deformation gradient. This tensor describes how a
line segment in the reference configuration, dx° rotates, translates and changes
shape in to dx due to the deformation.

The determinant of the deformation gradient is called the Jacobian, i.e.

J = detF (2.3)

Using the assumption that the mass of the body is conserved, i.e. p°dv® =
pdv where dv® and dv is the volume of the undeformed and deformed body
respectively, it can be shown that

dv L_7>0 (2.4)

dv®  p
which according to (2.3) indicates that detF # 0. This means that a unique
solution to (2.2) exists and

dz® = Fldx (2.5)

holds. This means that every particle in the body has a unique position.

As well as there is a change of the volume in the body, there is also a
change of the area due to deformation. Let da®(!) and da°® denote vectors
between neighboring particles in the reference configuration. These two vectors
represents an area, ds° that after deformation transfers to de®) and da® with
the area ds in the current configuration, see Fig. 2.2.

Define the vector da® and da as

da® = n°ds®

2.
da = nds (2:6)



Strain tensor 5

Reference configuration Current configuration

Ada’®

dz)

Figure 2.2: Infinitesimal surface element in the reference and current configura-
tion

where n°, n, ds® and ds denote the normal vectors and infinitesimal areas of
the reference and current configuration respectively. The vectors da® and da
are calculated from the definition of vector cross product according to

da® = dz°W x dz°?

da = dzV xde® (2.7)

Let now dx° denote an arbitrary vector. Multiplying this with (2.6a) gives
the volume dv® as dv® = (dz°)Tda®. This volume will after deformation trans-
form to dv according to (2.4) and this gives

deTda = J (dz°)T da® (2.8)
d
v dv°

Inserting (2.2) in (2.8) and using that dx® is arbitrary results in

da = JF "da® (2.9)

This is the so called Nanson’s formula that will be used later on.

2.2 Strain tensor

The strain tensor needs to be derived in order to measure the deformation of
the body and will be used later in Chapter 3 for the finite element expression.
Consider the length of dz° in the reference configuration to be di°? = dz°% +
dy°? + dz°? and in the current configuration di? = dx? + dy? + dz?, i.e.

dl°? = dz°T dz°

di? = dxTdx (2.10)

Using (2.2) in (2.10a) gives

di? = de®T FT Fdz® (2.11)
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Using (2.10) and (2.11) gives

di* — di°? = 2z°T Epdx® (2.12)

where the strain tensor is defined by

1 E:vz Ezy E:nz
Eq = 5(FTF -I)=|E,, E, E,. (2.13)
Ezm Ezy Ezz

This is often called the Green-Lagrange’s strain tensor. Since E is symmetric
it turns out to be appropriate to use a column matrix instead according to

EIZIJ
Eyy
EZZ
2E,,
2By,
2E,. |

(2.14)

2.3 Stress tensors

In order to continue the investigation of kinematic relations, some different
stresses needs to be presented. These will also be used for the finite element
expression in Chapter 3.

The traction vector ¢ needs to be defined to derive the stress tensors and
this is defined by

t= <AP> (2.15)
AA AA—0

where AP is an incremental force vector acting on an incremental surface area
AA, see Fig. 2.3.

Figure 2.3: Incremental force acting on incremental area
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Reference configuration Current configuration

tO

Figure 2.4: Reference configuration and current configuration

For the two different configurations in Fig. 2.4, one can define two different
types of stresses, Cauchy and nominal. The Cauchy theorem states that the
traction vector, ¢ is linear in n according to

t=Tn (2.16)

where T is the Cauchy stress tensor defined as

011 012 013
T= |01 o022 o023 (2.17)

031 032 033

The Cauchy is defined as the force divided by the deformed surface area in
the current configuration as

tds = df (2.18)

and the nominal stress is defined from the reference configuration as the force
divided by the undeformed surface area which gives

t°ds® = df (2.19)

From this the assumption was made that the force df is the same in the reference
and current configuration as

df =1°ds° = tds (2.20)
Making use of Cauchy’s theorem, we find that the following must hold
t° = Pn° (2.21)

where P is known as the first Piola-Kirchhoff stress tensor. To know how this
is related to Cauchy’s stress tensor, we use (2.16) and (2.21) in (2.20) to obtain

Pn°ds® = Tnds (2.22)
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We now make use of Nanson’s formula (2.9) to find the relation between the
first Piola-Kirchhoff and the Cauchy stress tensor to be

P=JrTF " (2.23)

As it turns out, the relation (2.23) is non-symmetric and it is convenient to
obtain a stress that is symmetric. This is done by multiplying (2.23) with F~!
to obtain the second Piola-Kirchhoff stress tensor defined by

So=F'P=JF'TF " (2.24)

Like the strain tensor, this square matrix is reduced to a column matrix accord-
ing to

s, ]

Syy

S

S= |7 2.25

o (225)

Syz

_SJ;Z_

2.4 Small strain elasticity

If a material behaves only linearly elastic it is known as a Hooke material. This
can be represented in a rheological model by a spring according to Fig. 2.5. The
spring with stiffness F expands linearly according to Hooke’s law, 0 = Fe where
in this simple case € = ¢° where the superscript e refers to that the strain is
only elastic.

Figure 2.5: Illustration of a elastic material model

2.5 Elasto-Plasticity

As an illustration of the elasto-plastic response, consider the rheological model
below. The elastic part is represented by the spring with stiffness £ and the
plastic, by the friction element with yield stress oy in Fig. 2.6.

When o > 0 in Fig. 2.6 the spring expands linearly according to Hooke’s law
and when the stress reaches o, the spring has reached its final length and
the friction element starts to move, representing the plastic strain, e?. The
total strain e is now defined by € = € + ¢ and the stress-strain relation is
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o Ty0

Figure 2.6: Illustration of a elasto-plastic material model

o = E(e — €P). This is known as ideal-plastic behavior and a illustration of this
is shown in Fig. 2.7a).

When the material is loaded only within its elastic region (o < gy9) it will
return to its original state when unloaded, see Fig. 2.7b).

oA oA oA
Oyo |- i Oyo Ty0 4
— - S—— >
eP €® € e eP €’ €
(a) Ideal-plastic response (b) Elastic response (c) Elasto-plastic response

Figure 2.7: Loading and unloading of ideal-plastic, elastic and elasto-plastic
response

When introducing the elasto-plastic response in the general case the total
strain tensor is defined by

e=€"+¢€ (2.26)

For a general stress state it turns out to be convenient to define the effective
stress, ocr¢. When the effective stress reach o, the material reaches the plastic
region. This threshold stress can also represent the boundary of the elastic
region in the stress space, see Fig. 2.8a). As an example, the effective stress of
the von Mises criterion is given by

— 2 2 2 2 2 2
Oeff = \/0'11 + 039 + 033 — 011022 — 033022 — 033011 + 30’12 + 30’13 + 30'31

2.5.1 Yield criteria

In order to determine if a stress response is elastic or plastic, a yield criteria is
introduced. The yield criteria is often represented by a surface in the deviatoric
stress space with a function, f describing the surface
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f(r)y=o0 (2.27)
If the loading of the material is within the yield surface, f < 0, the material
behaves elastic. By definition, f > 0 can never occur and this means that if
f =0, plastic response takes place and therefore plastic deformations will grow
and the yield surface might alter shape, change location in the deviatoric stress
plane or a combination of both according to different hardening rules.

2.5.2 Hardening

Before any deformation, the initial yield surface is given by

F(T)=0 (2.28)

When the deformation is plastic, the yield surface can now be expressed by

f(T,Ko) =0 (2.29)

where K, o« = 1,2,...,n contains hardening parameters that are dependent
on the internal parameters. For example, the first hardening parameter can be
dependent on the effective plastic strain, i.e. Ko—1 = Kazl(egff). The inter-
nal parameters describe how the yield surface changes shape, size and location
during plastic deformation.

Current yield

surface, =0 Current yield

surface, f:Q' )

Initial yield Initial yield
surface, F=0 surface, F=0

(a) (b)

Figure 2.8: a) Arbitrary yield surface b) Yield surface of the von Mises criterion

Figure 2.8a) shows an example of initial and current yield surface after hard-
ening for an arbitrary criterion and Fig. 2.8b) of the von Mises criterion.

If the material have been subjected to plastic loading, it will not return to
its original state when unloaded since the plastic deformations will remain, see

Fig. 2.7c).
2.6 Visco-plasticity

Many materials, such as rubber and polymers often behaves visco-plastic. This
means that the stress-strain response is time dependent and are therefore of-
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ten called rate-dependent materials. Materials that do not have this property
is known as rate-independent materials. Figure 2.9 shows the stress-strain re-
sponse of these different types of materials.

o \ '\

~Y
A

(a) (b)

Figure 2.9: a) Illustration of a rate-dependent material b) Illustration of a rate-
independent material

A rheological model of a visco-plastic material can be seen in Fig. 2.10 where
the elastic part is still represented by the spring and the visco-plastic part with
the friction element parallel with the dashpot. The dashpot is commonly known
as a Newton material with the stress-strain relation o = né, where 7 is material
constant and ¢ the strain rate. Since the friction element that represents the
plastic part is parallel with the dashpot, the total strain rate of these two ele-
ments will be referred to as é"P. The total strain rate, including the spring will
now be é = é° + €'P.

740

o \ o
) ————O—

Figure 2.10: Rheological model of visco-plasticity

As can be seen from the experiments in Fig. A.7a) the dashed lines from the
greater test speed lies over the lines form the lower test speed. This indicates
that the HDPE and LDPE materials behaves visco-plastic.

2.7 Hyper-elasticity

Hyper-elasticity, also called Green-elasticity is a good model for non-linear elas-
ticity. The hyper-elastic model is related to the strain energy W defined per
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unit reference volume as

Ermn ~ ~
W (Epn) = /0 Si;(Bw)dE, (2.30)

where the integral is performed from the reference configuration to the deformed
configuration with present strain value E;; and Ekl is an integration variable.
Si; is the second Piola-Kirchoff stress tensor and FEj;; the Lagrangian strain
tensor.

In the one dimensional case the strain energy can be illustrated as the area
under the stress-strain curve, see Fig. 2.11.

oA

-

€
Figure 2.11: Strain energy in a one-dimensional case

Differentiating (2.30) with respect to E;; gives
ow

dW = EdEU and dW = SijdEij (2.31)
Using (2.31) gives
ow
— S \dE:: = 2.32
(3, ~ SuldBi; =0 (2.32)

and since dE;; is an arbitrary strain increment, (2.32) must hold for any strain
increment and therefore the following expression for Hyper-elasticity is obtained

ow
8Eij

In Abaqus, the strain energy W is given on the so called polynomial form.

Sij =

where W = W(E;;) (2.33)

One format (cf. [1]) is given by

N N
_ L . 1 .
W = (T — 3) (I — 3) —(J¢ - 1) 2.34
H%:lCJ( 1—3)" ({2 —3) +i§:1 Di(J ) (2.34)

where N, Cy;, D; are material parameters and J el is the elastic volume ratio.
The invariants I; and I are defined as

Ti=X+X2+72 and TL=A"243243(? (2.35)
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which are known as the first and second deviatoric strain invariants, where
S\i = J’%)\i and \; the principal stretches.

Many material models are based from this polynomial form. The ones used
in this thesis will be described further in Chapter 6.

2.8 Large strain plasticity

For large deformations, the additative split of the strain tensor (2.26) is not
more valid. Instead one uses the so called multiplicative split of the deformation
gradient F' into one elastic and one plastic part, cf. Fig. 2.12.

Reference configuration Current configuration

Intermediate configuration

Figure 2.12: Tllustration of the mapping between configurations with multiplica-
tive split

In Fig. 2.12 an intermediate configuration has been introduced. The in-
termediate configuration is defined from an elastic unloading from the current
configuration. It follows from the definition of the intermediate configuration
that the following holds

dr = F°dT (2.36)
and
dz = FPdx° (2.37)
Inserting (2.37) in (2.36) gives
dex = F°F?dz° (2.38)

Comparing (2.38) with (2.2) shows that
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F = F°FP (2.39)

which is known as the multiplicative split.
For more information about large strain plasticity the interested reader is
referred to [1] and [10].



Chapter 3

The finite element method

The finite element method is a commonly used method to derive solutions to a
physical problem. The physical problems are usually described by differential
equations specified over some area that can be one-, two- or three-dimensional
and is very hard to solve with analytical methods. Instead, the finite element
method is used as a numerical solution technique to the physical problem. In-
stead of trying to solve the differential equations over the entire area, the area
is divided into smaller parts, called elements and the differential equations that
describes the physical problem is approximated over each of the elements.

When making use of the finite element method, a few basic steps are per-
formed. These are

1. Establish the strong formulation of the problem.
2. Obtain the weak formulation of the problem.

3. Make an element wise approximation over the entire body of the unknown
function.

4. Choose the weight function, w.

These steps are performed in Chapter 3.1 to establish the finite element
formulation. For further reading of the finite element method, the reader is
referred to [8].

3.1 Deriving the FEM-formulation

In this section the following steps from the list given above are presented. To
be able to do this, two theorems (Gauss and Green-Gauss theorem) needs to
be presented from the vector calculus.

Gauss’ divergence theorem:

/ divgdV = / q" ' ndS (3.1)
1% S
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Green-Gauss theorem:
/ ¢divgdV = / éqTndS — / (Vo) qadv (3.2)
1% s v

3.1.1 Strong form

The balance for linear momentum of an arbitrary body can be expressed as

/tds—l—/pbdv:/pﬂdv (3.3)
S v v

This is simply Newton’s second law of motion (> F = ma) that states that
the sum of all forces acting on the body is equal to the mass of the body times
acceleration.

Using (2.16) and (3.1) on the first term of (3.3) results in

/(divT + pb — pii)dv =0 (3.4)

v

Since the volume in (3.4) is arbitrary and should hold for any body gives

| divT + pb = pii | (3.5)

This is the strong formulation of the physical problem.

3.1.2 Weak form

Multiplying (3.5) with an arbitrary velocity w and integrate over the body gives
the virtual power expression in the current configuration as

/wTdidev—i-/prbdv:/prildv (3.6)
v v v

Using the Green-Gauss theorem defined by (3.2) and Cauchy’s theorem
(2.16) on the first term of (3.6) gives

/ w! divTdv = / wltds — / Vw : Tdv (3.7)
where the scalar product between matrices was introduced as

A:B= AZJBU sum over all I,J (38)

Inserting (3.7) in (3.6) gives

/thds —/V'w : Tdv+/prbdv = /prildv (3.9)
S v v v

This equation is given in the current configuration. In many cases it turns out
to be convenient to express (3.9) in the reference configuration. It can be proved
that
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/’thdS:/ wlt°ds® (3.10)
~T

/V'w:Tdvz/ E Sdv° (3.11)

/prbdv:/ p°w bdv® (3.12)

/prﬁdv:/ p°w’ didv® (3.13)

The quantities with the ~ indicates that they are a function of time. Using
(3.10)-(3.13) in (3.9) gives

/ pPwTdidv® + / B’ Sdv° — / wlt°ds® — / pPwTbde® = 0| (3.14)

This is the weak formulation of the problem, describing the entire system. The
next step is to discretize this in an element-wise solution for the finite element
approximation.

3.1.3 Approximation and choice of weight function

The displacement field and the acceleration field are approximated as

u=Na, 4=DNa (3.15)

where IN are the global shape functions, a contains the nodal displacements
and u the displacement vector throughout the body.
Now use the approximation according to Galerkin and put

w= Nc (3.16)

where c is an arbitrary vector. Using that E = Bc and inserting (3.15) and
(3.16) in (3.14) results in

c’ ( / p°NT Nadv® + / BT Sdv° — / NTtods® — / pONdev°> =0
(3.17)
Since c is an arbitrary vector, the finite element method description can be

written as

| Mi+ Fipy — Fer =0 (3.18)

where the mass matrix is defined by

M = / p°NT Ndv° (3.19)
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and

Fin = / BT Sdv° (3.20)
UO

Fop = / NTtds® + / p° NTbdv® (3.21)



Chapter 4

Basics of parameter
identification

In order to make realistic simulations, it is necessary to have an appropriate
material model with corresponding parameters.

When selecting appropriate material model, physical testing is first needed
in order to give an idea about what kind of properties the material are having.
For instance, a uniaxial tensile test on a dog-bone shaped specimen could show
whether a material could be described by using only an elasto-plastic model, or
if it is depended on the strain rate, a visco-elastic model would be more appro-
priate. Once the choice of material model is made, the parameter identification
can begin.

In this chapter the various steps of parameter identification are presented.
First, the direct and the inverse method are described in Chapter 4.1 and 4.2 re-
spectively, and it turns out that the inverse method is the most suitable method
for parameter identification.

The parameter identification is made by an optimization based on the ini-
tial guess. A simulation is made and the results are compared with the results
from the experiment. Parameters continuously changes value after each sim-
ulation and the optimization ends when the difference between simulated and
experimental data has reached a minimum.

A validation of the identified parameters is now needed to know if they can
describe the material at some other arbitrary load. This is done by a new
simulation and the results are compared with experimental data that was not
used for the parameter identification.

An approach on how to solve the inverse problem is described in Chapter 4.4.
Finally a detailed description of the Nelder-Mead simplex algorithm, used in the
optimization loop is described in Chapter 4.5.

For further information the reader is referred to [5] and [6].
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4.1 The direct problem

The field equation of a body in equilibrium during static loading is

divT(u) +b=0 (4.1)

where T is the Cauchy stress tensor and b body forces. From this, with a
combination of boundary conditions and a constitutive model, the displacements
can be calculated, giving that the material parameters are known,

K— u(e,K) (4.2)

where e represents the boundary conditions and « the material parameters.
Since the material parameters here are supposed to be known, (4.2) is not
suitable for parameter identification.

4.2 The inverse problem

Let the experimental values of displacements denote u®*? € U, simulated u®"™ €
U, where U represents the observation space for experimental values and U the
observation space for simulated values. The reason why these observation spaces
are not the same is because the sampling frequency differs from each other. To
be able to compare the experimental data with the simulated, an observation
operator M : U — U has to be introduced. This is simply a linear interpolation
operator and using this on u*""™ gives that Mwu*"™ € U and the simulated values
are now comparable with the experimental.
The inverse problem of (4.2) can now be described as

Find k : Mu®" (e, k) = u? (4.3)

Generally, this problem can not be satisfied exactly. Instead one tries to min-
imize the difference between simulated and experimental values using a least-
square function of (4.3) in an optimization loop. This gives

f(r) = %"Musjm(o, K)— u”“'puz — w (4.4)
K
In general, this equation is non-convex and does therefore not have a unique
solution.
A description of the least square function can be found in [4].

4.3 The correlation matrix

Sometimes it is hard to find the solution to (4.4). This is often the case when
small variations of u®*? may lead to large variations of the material parameters,
K. The reason for this can either be that the material model contains many pa-
rameters, or that one or many parameters are linearly dependent of each other.
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Parameters that are linearly dependent implies that different combinations of
the parameter values can give the same results for the error function, cf. (4.4).
This has no significance when investigating the load case that was used for the
parameter identification, but to be sure that the parameters can describe other
load cases as well, the importance of a validation is understood.

To be able to calculate the parameters linear dependency, the so called cor-
relation matrix can be introduced. This is build from the definition of a scalar
product where the angle between to vectors are calculated from

® Aup™ Auy™ 1,1 45
iy = : e[, :
08 Lij = Taaz Az < 1Y (45)
where
. ausim
Aus'™ = 4.6
upm = 08 (4.6)

The correlation matrix indicates the variation of how the displacement w%"™
varies with respect to the i:th parameter in k.

If | cos @;;| = 1 the parameters are linearly dependent and no unique solution
might exist. cos ®;; = 0 implies that the parameters are linearly independent
and they describe different properties of the deformation which lead to that they
can individually be assigned values, independent of each other. Another case
is when the derivative in (4.6) is equal to zero. This means that the simulated
result is independent of k; and this will be denoted by NaN. When this happens,
the parameters are either not activated, or insufficient data was recorded during
the experiment to capture a certain behavior that would be needed.

Example 3.1 Consider a uniaxial test where only the elongation and force is
recorded, see Fig. 4.1. With this data alone it is impossible to describe even the
simplest linearly elastic model, since this both contains Young’s modulus and
Poission’s ratio, see (6.1). Since no information about the elongation perpen-
dicular to the force was recorded, the Poission’s ratio can not be determined.
This would lead to

AupAu,
bp, = ———————— = NaN 4.7
08 LEv = Rapl ] (4.7

F
— ———

5

Figure 4.1: Uniaxial tensile test with corresponding global force-displacement
diagram
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The correlation matrix can be calculated even though no physical data exists.
Generally speaking the correlation matrix could be a helpful tool when designing
experiments if a specific material model is to be used. This is a good way to
determine what kind of experiment that needs to be performed to be able to
determine all parameters.

4.4 Solution to the inverse problem

To solve the inverse problem, an optimization on (4.4) needs to be done and
one can use several different minima search algorithms. In general, (4.4) is non-
convex which indicates that several local minima may exist, see Fig.4.2a). This
requires the use of an algorithm that may overcome local minima in order to find
an optimal solution. If one would use a gradient-based method, local minima
would be difficult to overcome, instead a good approach is to use the Nelder-
Mead simplex algorithm. This is a so called deterministic algorithm which
means that it always gives the same result when using the same starting values.
It does not use gradients to find the solution, instead it uses function evaluations
which leads to that local minima may be overcome. On the other hand, this
requires more calculations than a gradient based method and therefore converges
more slowly. A more detailed description of the Nelder-Mead algorithm is found
in Chapter 4.5.

Local minimum

(a) (b)

Figure 4.2: a) Non-convex function b) Convex function

4.4.1 Constraints

It is convenient to introduce constraints on each material parameter to ensure
that no parameters are assigned values that is not allowed due to physical re-
strictions, i.e. that Young’s modulus never can be negative. Doing this enables
each parameter to have its own lower and upper value of what it can adopt.

Since the magnitude of the parameters can vary, i.e. Young’s modulus is
significantly higher than Poisson’s ratio, it is convenient to normalize the pa-
rameters according to

Ri — KR

Ri= —— " ¢ 0,1] (4.8)

R| — Ry

From (4.8) the normalized parameter %; is obtained from its original parameter
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k; and can now only adopt values between zero and one. x, and x; corresponds
to the upper and lower limits of the parameter.

Different type of experimentally sampled variables can be used in (4.4), e.g.
displacements, forces and strains. Since the magnitude of the different variables
can differ greatly from each other, a normalization of (4.4) is done according to

exp

) = 0 [MeEE D

(4.9)

al

where a contains the variables.
To make the optimization loop search only within the boundaries, a penalty
function is introduced to (4.9) as

l
f+<f+ Z [e_C(E’“_O) + eC(E’“_l)} (4.10)
k

Penalty

where [ is the number of parameters in k. The penalty term increases the func-
tion value drastically when the optimization loop is searching near a parameters
boundaries, and a solution close to or outside the boundaries is thus avoided.
This forces the optimization loop to only search within the boundaries.

Figure 4.3: Illustration of the penalty function with two parameters

4.5 The Nelder-Mead (simplex) algorithm

As previously mentioned, the Nelder-Mead (simplex) algorithm is a so called
deterministic, non-gradient method of searching for a minimum of a given func-
tion. This means that no derivatives needs to be calculated and it always gives
the same result when using same initial values. The function is continuously
searching within an area called a simplex. A simplex in R" is a set of n+1
points @1, ...,&, in R™ such that the set of vectors {x; —xp::i=1...n} is
linearly independent in R™. This simply means that if the function is in the
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two-dimensional space, the simplex becomes a triangle, in the three-dimensional
space a tetrahedron etc. During the parameter identification, the dimension (n)
of the space is equal to the number of material parameters.

(a) (b) (c) (d) (e) ()

Figure 4.4: a) Original b) Reflection ¢) Expansion d) Outward contraction e)
Inward contraction f) Shrink

The simplex can transform in five different ways that can be seen in Fig. 4.4
where the simplex is represented by a triangle. The transformations are based
on the vertices function values that are all calculated and evaluated during the
optimization process. A more detailed description of how this is done is found
below.

Working procedure of the Nelder-Mead algorithm

The simplex with n + 1 vertices are initially generated from an initial input
point kg € R". From this point, the remaining n vertices are usually calculated
from

Iij:K0+hj6j, jil,...,’ﬂ,

where h; is a step size in the direction of the unit vector e; € R™.
The objective function to be minimized is denoted as f. k,, and Ky, denotes
the smallest and largest function value of the corner points in the simplex, i.e.

f(km) = Kgngigﬂf(ﬂj), f(kn) = lgl}lgagﬂf('ﬁj)

The second largest value of the corner points is represented by the point k-
As previously mentioned, five different transformations of the simplex can be
performed during the optimization according to Fig. 4.4. These are controlled
by four parameters, « for reflection, § for expansion, v for contraction and § for
shrinkage. These numerical parameters are chosen so that a > 0, 8 > 1, 8 > «,
0<~vy<landO<d < 1. Standard values used in most implementations are

1 1
0421, /8:27 7257 625
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The first step in one iteration is to calculate the function value of each corner
point k; to determine which has the worst (highest) value; f(xas). After this,
the center of gravity of the face of the simplex opposite to this point is calculated
as

1
’4'9:E Z Kj

KjZRM

From this, the so called "reflection point" is calculated from

Kr =Kg+a(kg — Kar)

Figure 4.5: Initial simplex

Depending on the function value of f(k,), different transformations will be
made of the simplex and the function value is evaluated according to

e Reflection
If f(km) < f(kr) < f(kpr) put

Rnew = Kr

and terminate the iteration.

e Expansion
If f(k,) < f(Kkpm) it seems that the simplex is moving in a good direction
and can therefore try to expand the simplex according to

KRe = Ry +ﬂ(K’r _K/g)

and put

ke if f(ke) < f(Ky)

KRnew ‘=

K, otherwise

and terminate the iteration.
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o Contraction
If f(k,) > f(Kks), calculate the contraction point k. in two cases.
1. Outward If f(km) < f(ky) < f(kar) calculate
Koe = Kg +V(Kr — Kg)

If now f(Roc) < £(ser) put
Rnew = Koc

and terminate the iteration. Otherwise, perform a shrink transfor-
mation.

2. Inward
If f(k,) > f(rkpr) calculate

KRic = Ky + ’Y(K’M - K’g)

If now f(kic) < f(kpr) put
Rpew ‘= Ric

and terminate the iteration. Otherwise, perform a shrink transfor-
mation.

e Shrinkage
If contraction is unsuccessful a shrinkage transformation is made and n
new vertices are calculated as

Kj=0(Kj+Kn), Jj=1,....n
and then restart the iteration step.

The optimization loop ends when | f (k%) — f (k1| < tol where tol is a tolerance
value for accepted convergence.

As an illustration of how the simplex alters shape during a minima search,
see Fig. 4.6.

The interested reader is referred to [4] and [7].
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The Nelder-Mead (simplex) algorithm
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Figure 4.6: Illustration of the Nelder-Mead algorithm with two parameters

where the simplex changes shape and moves towards a minima






Chapter 5

ARAMIS tensile test

The most common material testing performed in the industry today is a so
called uniaxial tensile test. At these types of test, a homogeneous displacement
field is assumed. To be able to have a controlled displacement field, a dog-bone
shaped specimen is most commonly used. This is though often not the case for
many types of polymers. During the loading, force and elongation is recorded.
This is done today at Tetra Pak using a vision system that only record force
and elongation in one direction with a limited number of points.

In order to record more information from the tensile test, a more advanced
test needs to be performed. Therefore a cooperation with the external supplier,
GOM (Gesellschaft fiir Optische Messtechnik) in Germany was started. The
reason for the cooperation is because GOM has a so called ARAMIS system
that can record displacements in more than one direction at any given point
on a test specimen. This makes it possible to more accurately capture the
deformation of the specimen and determine any inhomogeneous deformation.

Pattern applied on the specimen

[mage processing

Undeformed Specimen

ARAMIS

Deformation Analysis

(a)

Figure 5.1: a) A mounted test in the ARAMIS system b) Applied pattern on
specimen c) Image processing
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The goal of the cooperation with GOM is to evaluate their testing equipment
and see if the ARAMIS system can help improve the simulations by finding
better material parameters compared to the one used today at Tetra Pak.

The ARAMIS system is a vision system that uses a technique called digital
image correlation (DIC) with two cameras that continuously records a prede-
fined pattern that follows the deformation of the specimen during the load.
This has the benefit that no contact with the test specimen exists, minimizing
the risk of measurement error. The setup of the ARAMIS system is shown in
Fig. 5.1. When the loading is complete, it is possible to extract data from the
points of interest to a text file. In this thesis the points shown in Fig. 5.2 are
extracted and evaluated. The reason for the evenly distributed points in the
four quadrants is to know if the test specimen is straightly attached in the test

rig.

N e
\
12345
A . e o
Tmm
B
lmm y ° o ° o v
. © T .
Die ¢ ¢ ° l_x
origin of
El e ¢ ¢ ¢ o coordinate
\ system

—

/ maximum width N\

Figure 5.2: Points extracted in the ARAMIS system

The idea behind using the ARAMIS system instead of the one Tetra Pak
is currently using today is to more accurately capture the deformation of a
specimen. The data obtained from the experiment can be used to i.e. calibrate
a specific material model such that the simulations becomes more consistent
with reality.

In this report, tests have been made on two different polymers; HDPE (High-
density polyethylene) and LDPE (Low-density polyethylene) at two different
test speeds (50 mm/min and 100 mm/min). Four tests on each polymer and
test speed was made to account for measuring errors/deviations.

Figure 5.3 - 5.4 shows the longitudinal strain on a specimen in the ARAMIS
system on a HDPE and LDPE polymer with a test speed of 50 mm /min.
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(a) 0.0 sec. (b) 0.6 sec. (c) 1.2 sec.

(d) 1.8 sec. (e) 2.4 sec. (f) 3.2 sec.

Figure 5.3: Longitudinal strain, HDPE 50 mm /min

(d) 5.6 sec. (e) 8.6 sec. (f) 10.6 sec.

Figure 5.4: Longitudinal strain, LDPE 50 mm /min
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5.1 Physical test

The test is displacement controlled from one of the clamps whereas the other
remain fixed and the force from the clamps are measured during the load. In
Fig. 5.5 the specimen has been sprayed with a stochastic pattern on which the
cameras applies a grid. With this grid, the cameras can identify each points
movement, during the deformation. The points of interest, see Fig. 5.2 are
extracted after the experiment.

Figure 5.5: a) Stochastic pattern on dog-bone specimen b) Grid applied on the
specimen

When choosing points to extract data from it is appropriate to do this ac-
cording to Fig. 5.2. With these points and the symmetry planes, see Fig. 5.6a)
it is possible to detect if the specimen is straightly attached in the test rig. The
alignment is of vital importance when comparing simulated and experimental
data since the boundary conditions in the computer model states that the spec-
imen is completely straight, more about this in Chapter 7. All of the tests have
been made until fracture occurs and as mentioned before, four tests on each
polymer and test speeds was made to account for measuring errors/deviations.
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5.2 Results and conclusions

To check if the specimen is straightly attached, the points with index 3 can be
checked so that their displacements in the x-direction remain unchanged during
the loading.

0.00
Symmetry|plane x-dir. E
N\ # =
\ / 3 —-0.05
12 45 x .
Al oo ¢ oo —
Symmetry plauewyfdir. AY 3
g . _ £
) fo—o @
B e o . RIS
originof O
El oo e o | coordinate % -0.10
) \\syslem a
rs N
’ ‘ 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Time [s]

(a) (b)

Figure 5.6: a) Symmetry planes of the specimen b) x-displacements of middle
points (A3-E3)

Looking at Fig. 5.6b) one can see that the displacements at the symmetry line
in the x-direction is non-zero which indicates that the specimen is not straightly
attached. To compensate for this, the relative displacement is calculated from

uiwj,rel = Uq5 — U3 (51)
where the index i refers to A-E and j to 1-5. This has also been done in the
y-direction'. The results from the ARAMIS tensile test are presented in Ap-
pendix A. The results shows that both HDPE and LDPE have large deformation
for all test speeds near the nodge. It can also be concluded that the displace-
ment field varies greatly from each individual point and the material is therefore
inhomogeneous as expected. There is also a significant difference between the
two test speeds which indicates that the material response is time-dependent.

IThe motivation for this compensation is thoroughly described in Chapter 7






Chapter 6
Specific material models

The following chapter describes the different material models used in the pa-
rameter identification. A few of Abaqus own built in models have been used and
also a toolbox for Abaqus made by Ph. D. Jorgen Bergstrom called PolyUMod.
The PolyUMod material library contains a set of material models which are
often used for describing polymers.

6.1 Elasto-plastic

The simplest material model is given by the case when the material behaves
only linearly elastic. According to Hooke’s law the constitutive matrix D is
defined by

1-v v v 0 0 0
v 1—v v 0 0 0
D= B o 0 161/ %(122u) 8 8 (6.1)
(I+v)1—=2v) | o o o 0 ia-2v) o
0 0 0 0 1(1-2v)

The plastic part is added with linearly splitted yield stresses with corre-
sponding fixed effective plastic strains according to Fig. 6.1 where

Oy = Uy(€§ff) (6.2)
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Figure 6.1: Illustration of the yield stresses as function of effective plastic strains

The material parameters that are used in the optimization for the elasto-
plastic model can be found in Table 6.1.

Table 6.1: Material parameters used in the elasto-plastic model

Elasto-plastic model

Index Symbol Unit Description
1 E Pa Young’s modulus

2 v - Poisson’s ratio
3 040 Pa Initial yield stress
4 Oyl Pa Second yield stress
5 Oy2 Pa Third yield stress
n+3 Tyn Pa n:th* yield stress

*n is the number of yield stresses chosen to be optimized
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6.2 Hyper-elasto-plastic

From the theory of hyper-elasticity in Chapter 2.7 it is known that the strain
energy W serves as a potential function for the stresses according to (2.33).
In this section the various strain energy expressions for the different hyper-
elastic material models that are used in the simulations are presented [1]. These
describes the elastic behavior of the material model and the plastic deformations
are added in the same manner as the elasto-plastic model according to (6.2)
where Abaqus uses the multiplicative split according to (2.39).

6.2.1 Neo-Hookean form

The strain energy function for the Neo-Hookean material model is defined as

W= Cro(Th — 3) + Di(Jel )2 (6.3)
1

where Chg and D; are elastic material parameters that depend on the initial
shear stress pog and bulk modulus K respectively according to

Ho 2
== d Dy =— A4
Cio 5 an R (6.4)
The material parameters that are used in the optimization can be found in
Table 6.2.

Table 6.2: Material parameters used in the Neo-Hookean model

Neo-Hookean model

Index Symbol Unit Description

1 Cio Pa Elastic material parameter 1
2 Dy Pa~! Elastic material parameter 2
3 Oy0 Pa  Initial yield stress
4 Oyl Pa  Second yield stress
5 Oy2 Pa Third yield stress

n-+3 Tyn Pa  n:th* yield stress

*n is the number of yield stresses chosen to be optimized

6.2.2 Arruda-Boyce form
The strain energy function for the Arruda-Boyce material model is defined as

1 — —2 11 —=3 19
= -0 -3+ (T -+ — (T —2T) + ——— (6.
W ”{2( 1= 3+ gonz =9+ gggaa U = 20+ 75505 (69)

4 519 s 1 [((JH? -1 o
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where p, A\, and D are elastic material parameters that depend on the initial
shear stress pg and bulk modulus Ky according to

1 42 -1 2
99 513 039 ) i D

o (14— + + = (6.6)
p=Ho 5A2, T 17508 T Q756 ' 6737HAS. ‘

= X

The material parameters that are used in the optimization can be found in
Table 6.3.

Table 6.3: Material parameters used in the Arruda-Boyce model

Arruda-Boyce model

Index Symbol Unit Description

1 1 Pa  Elastic material parameter 1
2 Am - Elastic material parameter 2
3 D Pa~! Elastic material parameter 3
4 Oy0 Pa Initial yield stress
5 Oyl Pa  Second yield stress
6 Oy2 Pa  Third yield stress

n+4 Oyn Pa  n:th* yield stress

*n is the number of yield stresses chosen to be optimized

6.2.3 Mooney-Rivlin form

The strain energy function for the Mooney-Rivlin material model is defined as

_ _ 1
W = Cio(T1 —3) + Co1 (I — 3) + D—(Jel —1)2 (6.7)
1

where C1g, Cop1 and D are elastic material parameters that depend on the initial
shear stress p¢ and bulk modulus Ky according to
2

Ho
= — D = — .
010 + 001 5 and 1 K(] (6 8)

The material parameters that are used in the optimization can be found in
Table 6.4.
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Table 6.4: Material parameters used in the Mooney-Rivlin model

Mooney-Rivlin model

Index Symbol Unit Description

1 C1o Pa  Elastic material parameter 1
2 Co1 Pa Elastic material parameter 2
3 Dy Pa~! Elastic material parameter 3
4 Ty0 Pa  Initial yield stress
5 Oyl Pa  Second yield stress
6 Oy2 Pa Third yield stress

n+4 Tyn Pa  n:th* yield stress

*n is the number of yield stresses chosen to be optimized

6.3 PolyUMod

The following section will describe the material models used in the simulations
from Jorgen Bergstroms material library PolyUMod. As a helpful tool for the
calibration of these models, the PolyUMod comes with a calibration tool. This
tool uses the global force versus displacement field data from the experiments
as input and give good starting points of the initial values of the parameters
with corresponding constraints. Each material model is briefly explained and
for a more detailed explanation of how each specific model is build the reader
is referred to [2] and [3]. The superscript e, p and v in the equations refers
to the elastic, plastic and viscous part. Subscripts in capital letters refers to
the network it represents, i.e. A refers to network A. The various networks are
illustrated in each models rheological representation.

6.3.1 Bergstrom-Boyce

The Bergstrom-Boyce model has been shown to give good results for predicting
large-strain and time-dependent behavior for both soft biomaterials and tradi-
tional engineering rubbers.

The model is build from two parallel networks as can be seen in the rheolog-
ical model in Fig. 6.2.



40 Specific material models

Wil

Figure 6.2: Illustration of the Bergstrém Boyce material model

The stresses acting in network A is obtained from

p LT/ AL)

T)= ————— —2
TN L1/

dev[b*] + k(J — 1)I (6.9)
and network B
7. Sk LTOF/A)
B = Toxer -1
JEAG L71(1/AL)

where £(z) = coth(z) —1/z, known as the Lengevin function. \* = (tr[b*]/3)"/?
where b* = J 23FFT by = (J5) 23F%(FS)T, Jg = det[F%] and Ny =
(tr[b5]/3)"/2.

The total stress response is given by

devb%] + k(Jg — I (6.10)

T=T,+Tp (6.11)

Since there is a viscous dashpot in network B, a equation describing the
viscous flow is needed. The rate-equation for this viscous flow is given by

A p— T "
Y5 =30 —1+8° [R (Tb - Tcut)] (6.12)
where 49 = 1/s is a constant introduced to ensure dimensional consistency. R
is a ramp function defined as R(z) = (z + |z])/2, X = (tr[(FFT)%]/3)Y/? and
finally the effective stress driving the viscous flow is 7 = ||dev[T'5]|| -

The material parameters used in the Bergstrom-Boyce model are summarized
in Table 6.5.
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Table 6.5: Material parameters used in the Bergstrom-Boyce model

Bergstrém Boyce model

Index Symbol Unit Description

1 " Pa  Shear modulus of network A
2 AL - Locking stretch

3 K Pa  Bulk modulus

4 S - Relative stiffness of network B
5 13 - Strain adjustment factor

6 C - Strain exponential

7 TBase Pa Flow resistance

8 m - Stress exponential

9 Tout Pa  Cut-off stress for flow

6.3.2 Hybrid model

The Hybrid model is a material model developed for predicting the large strain
time-dependent behavior of ultra-high molecular weight polyethylene. It is also
a good model for other types of thermoplastics.

The model can be illustrated in a rheological model according to Fig. 6.3.

Figure 6.3: Illustration of the Hybrid material model

For a given deformation state, the Cauchy stress expression is given by

T - %(ZME‘”‘ + Atr[ED) (6.13)

where
_ E \— Ev
F=5a+0) T 0+rna-2)
The stresses acting in network A is obtained from

J¢ = det[F*] (6.14)

= ! KA £_I(W/AL) p* D
fa = 1+q{Jw* i(1/ay) Qv+ s(T -1 (6.15)

HA * Y, D* 215* *\2
= | IbP" — —=1— (b?
+q 7 {1 3 (b¥*)
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and network B

1 e
T, _ 5B { pa L ()\B/)‘L)dev[bg]_FH(Jg_l)I (6.16)

L+q LJgAGg L£71(1/AL)

HA . ex 2*[26* ex\2
— | I{b" — I-(b
vl e - 20 2|

where J? = det[F?], A&y = (tr[bly]/3)'/2, b** = (JP)~2/3FF7,

b = (JO)2BFFT, It = tr[b*] and I} = b* : b*. sp is a parameter that
specifies the relative stiffness of network B compared to network A. During
deformation sp evolves according to

LéB:—OzB(SB—SBf)"yp (617)

where sp in the undeformed state is sp;, and spy in the fully transformed state.
The time derivative of the visco-elastic deformation gradient of network B is
given by

(6.18)

mp
U . TB
poTEne 7 (T}’g““[l + R(p3/ﬁ)]>
dev[T
() S g
B
where 75 = ||dev|[T 5]||r is the effective shear stress driving the viscoelastic flow
and pp = —tr[T g]/3 is the hydrostatic pressure.

The time rate of change of network P is given by

p

. TP m
F' = L’FF = 4 ( _ ) 6.19
T L+ B /7 (0:19)
TP
-(RE)TLV[ IReFr = 4rNr
TP
where 72 = ||dev[T?]||F is the effective shear stress driving the plastic flow and

p? = —tr[T?]/3 is the hydrostatic pressure. TF = T — [F*(T 4 + T3)F']/J¢
is the stress acting on the relaxed configuration convected to the current con-
figuration.

The material parameters used in the Hybrid model are summarized in Ta-

ble 6.6.
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Table 6.6: Material parameters used in the Hybrid model

Hybrid model

Index Symbol Unit Description
1 E Pa  Young’s modulus
2 v - Poisson’s ratio
3 A Pa  Shear modulus A
4 AL - Locking stretch
5 q - Relative contribution of Is of network A
6 K Pa Bulk modulus
7 SBi - Initial stiffness B
8 sy - Final stiffness B
9 ap - Transition rate stiffness B
10 Tb]ise Pa Flow resistance B
11 mp - Stress exponent B
12 D Pa  Pressure dependence of flow
13 T e Pa  Flow resistance p
14 mP - Stress exponent p

6.3.3 Three network

The Three network model is a material model developed for thermoplastic ma-
terials. It is similar to the Hybrid model but is designed to be more numerically

efficient.

The model can be illustrated in a rheological model according to Fig. 6.4.

C

Al ———
I———

il

Figure 6.4: Illustration of the three network material model

The stress acting in network A is obtained from

0 — 0o

L0 /M)

Tx 1A |:1 —+

TG

and network B

devb$ ]+ k(J4 — 1)1 (6.20)

devlb%] + k(Jg — 1)1 (6.21)

0 | L7H1/AL)

1B 0 —60] L7105/ r)
Tp=—2_|1+-—

o J,‘;)\?{ 0 | L7Y(1/Ar)
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where 6 is the current temperature and 6, is a reference temperature. The
effective shear modulus is taken to evolve with plastic strain according to

fp = —Blus — pBslia (6.22)

where pup in the undeformed state is pp;, and ppy in the fully transformed
state. The stress acting in network C is given by

g1 £ (2
Te = L) re [1 + b Aeo} (“) dev[b*] (6.23)
L+q | Jx 0 | p— (%)

203
+r(J — 1)1 + q”7c [I;‘b* — 32 I- (b*)ﬂ }

The total stress response in the system is given by

T=Ts+Tp+T¢c (6.24)

The effective deviatoric flow rate for network A is given by

] ) TA mA 0 n
= _— — 6.25
TaT (fAJraR(pA)) (90) (6:25)
and network B
) ) TB mB 9 n
= _ — 6.26
B (fB+aR(PB)> (90) (6.26)
where 74 = ||dev[TA]||lr, 78 = ||dev[TB]l|F, pa = —tr[T4]/3 and pp =

—tr[T5]/3.
The material parameters used in the Three network model are summarized
in Table 6.7.
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Table 6.7: Material parameters used in the three network model

Three network model

Index Symbol Unit Description

1 A Pa  Shear modulus of network A

2 0 T Temperature factor

3 AL - Locking stretch

4 K Pa Bulk modulus

5 Ta Pa Flow resistance of network A

6 a - Pressure dependence of flow

7 ma - Stress exponential of network A

8 n - Temperature exponential

9 HBi Pa  Initial shear modulus of network B
10 1B Pa  Final shear modulus of network B
11 15} - Evolution rate of up

12 B Pa Flow resistance of network B

13 mp - Stress exponential of network B

14 te Pa  Shear modulus of network C

15 q - Relative contribution of Is of network C
16 « T—'  Thermal expansion coefficient

—_
~J
>

S
—

Thermal expansion reference temperature







Chapter 7

Method

In this chapter a description of the method and geometry will be performed. A
discussion of the assumptions made on the geometry will also be described.

7.1 Geometry

The geometry of the specimen is a so called dog-bone with a nodge in the middle
according to Fig. 7.1.

| 25 | 25 |

20

75

Figure 7.1: Dog-bone specimen [mm]

To be able to save time and computer power during the simulations, symme-
try on the geometry in Fig. 7.1 will be used. Figure 7.2a) shows the symmetric
part of the geometry. In order for the ARAMIS system to perform the tensile
test, the clamps on the machine holds on a relatively big part of the geometry.
To account for this, a smaller part of the symmetric geometry will be considered
as seen in Fig. 7.2b) where the material held by the clamps is removed. From
this geometry, the left side will be subjected to a displacement controlled load
in Abaqus.
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Figure 7.2: a) Symmetry part b) Part used in simulations [mm]

The part will be meshed according to Fig. 7.3 where three- and four-node
isoparametric elements are used. To save even more computer power and sim-
ulation time and due to the fact that the specimen is relatively thin, the body
will be treated as a two-dimensional body with plane-stress conditions and a
thickness of 0.6mm.

<R
R

Figure 7.3: Finite element mesh consisting of 70 three-node elements and 2688
four-node elements with plane stress condition with applied boundary conditions

Table 7.1 shows the displacements of the clamps from the ARAMIS system
just before the material begins to break in the material'. When simulating the
tensile test for the optimization, the half average value will be considered?. Since
symmetry is assumed, a boundary condition will enforce that the y-directions
in C points will remain zero at all times. This has to be accounted for in the
measurement data since thus is not the case from the ARAMIS system.

ITests 2-4 on HDPE 100mm/min where unsuccessful and only incomplete data was
recorded during the tests
2The half value is used because only half of the body is considered in the simulations
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Table 7.1: Displacement of the clamps for all tests

Displacement clamps [mm]

Test: 1 2 3 4 Avg
HDPE 50mm//min 199 | 1.97 | 1.99 | 1.91 | 1.97
HDPE 100mm/min | 1.86 - - - 1.86

LDPE 50mm /min 5.97 | 5.88 | 5.85 | 5.78 | 5.87
LDPE 100mm/min | 4.25 | 4.10 | 4.23 | 4.23 | 4.2

The relative displacements will be calculated in the same manner as (5.1) ac-
cording to

ul" = ugs — ucy (7.1)

where index k and [ refers to A-C and 1-3 respectively®.

7.1.1 Optimization procedure

The optimization procedure is done according to the method described in Chap-
ter 4. A description of the procedure can be seen in Fig. 7.4 where initial values
are put in to Python that writes the values to the material file and uses Abaqus
as the FE-solver. When analysis is completed, the values are extracted in to
Python where the error measure f is calculated. If f > tol Python writes new
values to the material file and the optimization loop continues until f < tol and
the values are accepted.

Initial values

N > %
S : %, %%
) python(x,y % @;@ﬁ
4 5
Accept parameters if
f<tol \OOQ
< (R)pons O 7 HABAQUS
et \1:0 SIMULIA
&
Q
Q @l v python(x,y) <::g ©
6/0(,/ a7 @e\\'
19/@ QQ/
~

Figure 7.4: Flow chart

3Why only these points are considered is because symmetry is used and only the points in
the second quadrant will be used in the simulations






Chapter 8

Test calibration

In this chapter a calibration of two example problems will be performed. The
motivation for this is to validate the underlying theory for the parameter iden-
tification process as described in Chapter 4. The conclusions of these examples
will be presented in the end of this chapter. The calibration will be based on
the global force versus displacement field and also displacements on a number
of chosen points in the body. The geometries of the two examples are shown in
Fig. 8.1.

(a) (b)

Figure 8.1: a) Problem 1 b) Problem 2

Usually, experimental data are subjected to measurement errors, making it
complicated to solve the inverse problem given by (4.4). Instead, when ver-
ifying if the theory of parameter identification works, numerically generated
experimental data will be used in the calibrations. The data will be created
by a uniaxial tensile test on both examples where symmetry will be used. The
specimens are given an elasto-plastic material model with von Mises isotropic
hardening, see Chapter 6.1. When calibrating the material parameters, the ex-
act same geometry is used with the same material model, but with a different
set of material parameters. If the calibration is successful, this would result in
the same set of parameters with a small function value, f given by (4.10).
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8.1 Problem 1

Test calibration

The experimental data for problem 1 will be generated from the points on the
geometry shown in Fig. 8.2 and the material parameters are given known values

according to Table 8.1.

Table 8.1: Material parameters used to create virtual experimental data

E v

O'yo

O'yl

O'yg

O'yg O'y

=

3000 0.27 8

25

35 50

Point 1
Point 2
Point 3
Point 4

I,

Figure 8.2:
dots

I

Geometry and boundary conditions. Measurement points in colored

The results from the parameter identification with the highest and lowest
function value are shown in Fig. 8.3. Both runs are shown to give an idea
of how much the simulation with the highest function value differs from the
simulation with the best. The start and end values for the parameters are given
in Table 8.2 and 8.3 respectively. The correlation matrix is given by (8.1).

Table 8.2: Material parameters at the start of the parameter identification pro-

cess

E

174 040 Oyl 0y2 Oy3 Oy4
Start' 3500 0.22 12 29 39 54
Start> 3300 0.25 10 271 37 52
1 —0.029 0.27 —0.226 —0.116 NaN NaN
—0.020 1  —0.03 0.056 0.006 NaN NaN
027 —0.03 1 —0.765 —0.792 NaN NaN

cos®;; = | —0.226 0.056 —0.765 0.282 NaN NaN (8.1)
—0.116 0.006 —0.792 0.282 1  NaN NaN

NaN NaN NaN NalN NalN NaN NalN
NaN NaN NaN NaN NaN NaN NaN



Problem 1

53

Table 8.3: Material parameters at the end of the parameter identification process

Force [N]

Displacement x-dir. Point 1,2,3,4 [mm]

o
N

Displacement y-dir. Point 1,2,3,4 [mm]

E v 040 Oyl

Oy2 Oy3 Oy4 f

End!
End?

4544 0.338 9.17
3007 0.2706 7.99

17.27
14.99

28.7
24.92

40.23 46.68 0.57
39.73 48.78 0.025
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Figure 8.3: Results from simulations compared to virtual experimental data
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8.2 Problem 2

The experimental data for problem 2 will be generated from the points on the
geometry shown in Fig. 8.4 and the material parameters are given known values
according to Table 8.4.

Table 8.4: Material parameters used to create virtual experimental data

E 14 Ty0 Oy1 Oy2 Oy3 Oy4 Oy5
1000 022 10 15 20 25 35 30

= Point 1
—— Point 2

Point 3
Point 4
Point 5
— Point 6

Figure 8.4: Geometry and boundary conditions. Measurement points in colored
dots

The results from the parameter identification with the highest and lowest
function value are shown in Fig. 8.5 and 8.6. The parameters start and end
values are given in Table 8.5 and 8.6 respectively. The first and fourth run are
shown to give an idea of how much the simulation with the highest function
value differs from the simulation with the best. The correlation matrix is given
by (8.2).

Table 8.5: Material parameters at the start of the parameter identification pro-
cess

Start’ 800 027 13 18 23 28 38 53
Start?> 900 02 8 13 18 23 33 48
Start> 1100 0.24 12 17 22 27 37 52
Start* 1050 02 9 16 19 26 34 51
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Table 8.6: Material parameters at the end of the parameter identification process

E v 040 Oyl Oy2 Oy3 Oy4 Oy5 f
End! 1364 0.265 114 16.7 23.2 28.6 38.8 54.1 0.39
End? 884 0.219 8.8 13.3 17.6  21.7 33.8 46.5 0.15
End® 1200 0.24 11.1 16.4 22,5 27.1 36.4 55 0.29
End? 990 0.219 9.85 14.78 19.7 24.7 34 51.75 0.038
1 0.126 0.594 —-0.41 —0.39 —0.056 —0.063 NaN
0.126 1 0.002 —0.052 0.063 0.043 0.048 NaN
0.594 0.002 1 —0.358 —0.76 —0.257 —0.121 NaN
cos®ij = | T35 0003 076 0158 1. 0567 0341 NeN (82)
—0.056 0.043 —0.257 —0.131 0.567 1 0.438 NaN
—0.063 0.048 —0.121 —0.092 0.341 0.438 1 NaN

NaN NaN NaN N

aN NaN NaN NaN NaN
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Figure 8.5: Results from simulations compared to virtual experimental data
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Test calibration
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Figure 8.6: Results from simulations compared to virtual experimental data
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8.3 Conclusions

Figure 8.3, 8.5 and 8.6 shows how well adjusted the simulated data from the
best run is with the experimental results of the two problem examples. Since
the simulated curves fit the experimental results very well, the parameter iden-
tification seems to be successful which can be confirmed from Table 8.3 and 8.6
where there is a small function value on the second and fourth run respectively.
Why some of the parameters deviates significantly more from the correct value
than the other parameters can be explained by (8.1) and (8.2) where the NaN
expression indicates that these parameters are not activated during this test.
There is simply not enough plastic deformation in the body to activate these
and therefore impossible to calibrate.

From (8.1) and (8.2) one can see there is a very small correlation between
Young’s modulus and Poisson’s ratio. This confirms that they describe two
different behaviors of the material and are possible to identify with this type of
model which confirms that the correlation matrix is a good tool for determining
the parameters linear dependency.

One discovery that was made during this calibration is the great importance
of what the initial values are. Table 8.3 and 8.6 shows that if a start value is
far away from the corre