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Abstract

When performing material testing today, a so called tensile test is usually per-

formed. During this test, a homogeneous displacement �eld over the entire

specimen is assumed and the force versus displacement �eld is recorded. This

is often not enough information to be able to calibrate advanced material mod-

els. Before this thesis, experiments were made on two di�erent polymers using

the so called ARAMIS system, which have the advantage that it can measure

displacements and strains on any point in a specimen. This makes it possible

to determine if a material behaves inhomogeneously.

The objective of this thesis is to establish a method which automatically

identi�es the material parameters for a given material model in order to make

an accurate computer simulation.

The parameter identi�cation is based on solving the so called inverse prob-

lem where a least square function is to be minimized. This is performed using

experimental data from the ARAMIS system as input for a optimization loop

that uses the Nelder-Mead simplex algorithm. This optimization loop is imple-

mented in a Python script that uses Abaqus as the FE-solver.

The parameter identi�cation has been tested on some of Abaqus built in

material models and also on a toolbox called PolyUMod that contains various

material models suitable for simulating polymers.

From the simulations, it was concluded that the parameter identi�cation

process works and is applicable. It turned out that the least square function is

non-convex and more than one local minima exists. The parameter identi�ca-

tion is therefore greatly dependent of the starting values and several parameter

identi�cations with di�erent starting values are needed.





Contents

Preface III

Abstract V

1 Introduction 1

2 Theory 3

2.1 Kinematic relations . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Strain tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Stress tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Small strain elasticity . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Elasto-Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 Yield criteria . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Visco-plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Hyper-elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Large strain plasticity . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The �nite element method 15

3.1 Deriving the FEM-formulation . . . . . . . . . . . . . . . . . . . 15

3.1.1 Strong form . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Weak form . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Approximation and choice of weight function . . . . . . . 17

4 Basics of parameter identi�cation 19

4.1 The direct problem . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 The correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Solution to the inverse problem . . . . . . . . . . . . . . . . . . . 22

4.4.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 The Nelder-Mead (simplex) algorithm . . . . . . . . . . . . . . . 23

5 ARAMIS tensile test 29

5.1 Physical test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Results and conclusions . . . . . . . . . . . . . . . . . . . . . . . 33



VIII CONTENTS

6 Speci�c material models 35

6.1 Elasto-plastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Hyper-elasto-plastic . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Neo-Hookean form . . . . . . . . . . . . . . . . . . . . . . 37

6.2.2 Arruda-Boyce form . . . . . . . . . . . . . . . . . . . . . . 37

6.2.3 Mooney-Rivlin form . . . . . . . . . . . . . . . . . . . . . 38

6.3 PolyUMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.1 Bergström-Boyce . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.2 Hybrid model . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.3 Three network . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Method 47

7.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.1 Optimization procedure . . . . . . . . . . . . . . . . . . . 49

8 Test calibration 51

8.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9 Results 59

9.1 Elasto-plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.2 Hyper-elasto-plastic . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2.1 Neo-Hookean form . . . . . . . . . . . . . . . . . . . . . . 61

9.2.2 Arruda-Boyce form . . . . . . . . . . . . . . . . . . . . . . 62

9.2.3 Mooney-Rivlin form . . . . . . . . . . . . . . . . . . . . . 63

9.3 PolyUMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.3.1 Bergström-Boyce . . . . . . . . . . . . . . . . . . . . . . . 64

9.3.2 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.3.3 Three network . . . . . . . . . . . . . . . . . . . . . . . . 66

9.4 Summary - Results . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10 Concluding remarks 69

10.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A ARAMIS results 73

A.1 HDPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.2 LDPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B Results from simulations HDPE 50mm/min 79

B.1 Elasto-plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.2 Neo-Hooke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.3 Arruda-Boyce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.4 Mooney-Rivlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.5 Bergström-Boyce . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.6 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS IX

B.7 Three network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C Correlation matrix for monotone versus cyclic loading 95

Bibliography 96





Chapter 1

Introduction

Tetra Pak is a company that was founded in Lund, Sweden 1951. Today it is

located all around the world and has almost 20000 employees. It is one of the

world's leading manufacturer of various cartons for the food industry.

In order to be competitive in today's market, it is necessary to be both

cost and time e�cient. When designing a new product, physical prototypes are

made to be able to make manual physical testings to know how the product

behaves at various loads, i.e. drop-testing. To make prototypes of each idea

is a expensive and time consuming approach since prototypes are not easy or

cheap to make. If one instead could make virtual tests in a computer using i.e.

the �nite element method there is a chance to eliminate some of the physical

prototypes that does not result in satisfying computer simulations.

Figure 1.1: Di�erent packages from Tetra Pak

In order for the simulations to be consistent with reality, it is necessary to

have a material model with corresponding material parameters (e.g. modulus

of elasticity) that accurately describes how the material behaves at arbitrary

loads.

The objective of this thesis is to establish a method which identi�es the

material parameters needed in order to make an accurate computer simulation,

using i.e. the �nite element method. The �nite element software Abaqus is used

in this thesis as the FE-solver. The set of material parameters varies with the
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choice of material model. In the present work the material parameters will be

identi�ed for two di�erent types of polymers, HDPE (High-density polyethylene)

and LDPE (Low-density polyethylene).

The parameters are identi�ed using a uniaxial tensile test on a dog-bone

shaped specimen with the so called ARAMIS system. Based on the displace-

ments and strains that are obtained from the experimental tests, the parameters

are identi�ed using a Nelder-Mead simplex algorithm optimization loop.
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Theory

The following chapter describes the basics of constitutive modeling. First, some

basic continuum mechanics relations are introduced and after this a short de-

scription of a few cornerstones of constitutive modeling of mechanical properties

during a arbitrary load are presented. This theory will be the foundation in this

thesis of which the material models and �nite element expression are based on.

Large and small bold letters in this chapter will represent second and �rst

order tensors respectively.

For further motivation and more detailed explanations the interested reader

is referred to [9] and [11].

2.1 Kinematic relations

To be able to establish a ground on which strains and stresses are obtained,

kinematic relations describing the motion of a body during deformation needs

to be presented. In this theory, the �ow of particles are described. A particle is

described as an in�nitesimal part of the material that one wants to be able to

describe throughout some deformation. Consider a particle P that is initially

located in a so called "reference con�guration", where the shape and all ini-

tial stresses and strains are known. The subscript ◦ will denote the reference

con�guration. P has the original coordinate x◦ which are called the material

coordinates. The �ow of every particle in the body from the reference to the

current con�guration can be denoted as ϕ(x◦, t) where t is the time.

The reference con�guration is initially at t = 0 and therefore x◦ = ϕ(x◦, 0)

and x◦ = (x◦, y◦, z◦). When describing the motion of the particle originally

located at x◦ in the current con�guration it is convenient to refer the displace-

ments to the reference con�guration. This gives that

x(x◦, t) = ϕ(x◦, t) = x◦ + u(x◦, t) (2.1)

where u = (ux, uy, uz) is the displacement vector.

Let dx◦ denote a vector between P and a neighboring particle in the reference

con�guration and dx in the current con�guration. The total deformation of dx◦



4 Theory

Figure 2.1: Reference con�guration and current con�guration

is given by

dx = F dx◦ (2.2)

where F is the so called deformation gradient. This tensor describes how a

line segment in the reference con�guration, dx◦ rotates, translates and changes

shape in to dx due to the deformation.

The determinant of the deformation gradient is called the Jacobian, i.e.

J = detF (2.3)

Using the assumption that the mass of the body is conserved, i.e. ρ◦dv◦ =

ρdv where dv◦ and dv is the volume of the undeformed and deformed body

respectively, it can be shown that

dv

dv◦
=

ρ

ρ◦
= J > 0 (2.4)

which according to (2.3) indicates that detF 6= 0. This means that a unique

solution to (2.2) exists and

dx◦ = F−1dx (2.5)

holds. This means that every particle in the body has a unique position.

As well as there is a change of the volume in the body, there is also a

change of the area due to deformation. Let dx◦(1) and dx◦(2) denote vectors

between neighboring particles in the reference con�guration. These two vectors

represents an area, ds◦ that after deformation transfers to dx(1) and dx(2) with

the area ds in the current con�guration, see Fig. 2.2.

De�ne the vector da◦ and da as

da◦ = n◦ds◦

da = nds
(2.6)
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Figure 2.2: In�nitesimal surface element in the reference and current con�gura-

tion

where n◦, n, ds◦ and ds denote the normal vectors and in�nitesimal areas of

the reference and current con�guration respectively. The vectors da◦ and da

are calculated from the de�nition of vector cross product according to

da◦ = dx◦(1)×dx◦(2)

da = dx(1)×dx(2) (2.7)

Let now dx◦ denote an arbitrary vector. Multiplying this with (2.6a) gives

the volume dv◦ as dv◦ = (dx◦)T da◦. This volume will after deformation trans-

form to dv according to (2.4) and this gives

dxT da︸ ︷︷ ︸
dv

= J (dx◦)T da◦︸ ︷︷ ︸
dv◦

(2.8)

Inserting (2.2) in (2.8) and using that dx◦ is arbitrary results in

da = JF−T da◦ (2.9)

This is the so called Nanson's formula that will be used later on.

2.2 Strain tensor

The strain tensor needs to be derived in order to measure the deformation of

the body and will be used later in Chapter 3 for the �nite element expression.

Consider the length of dx◦ in the reference con�guration to be dl◦2 = dx◦2 +

dy◦2 + dz◦2 and in the current con�guration dl2 = dx2 + dy2 + dz2, i.e.

dl◦2 = dx◦T dx◦

dl2 = dxT dx
(2.10)

Using (2.2) in (2.10a) gives

dl2 = dx◦TF TF dx◦ (2.11)
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Using (2.10) and (2.11) gives

dl2 − dl◦2 = 2x◦TE�dx
◦ (2.12)

where the strain tensor is de�ned by

E� =
1

2
(F TF − I) =

Exx Exy Exz
Eyx Eyy Eyz
Ezx Ezy Ezz

 (2.13)

This is often called the Green-Lagrange's strain tensor. Since E� is symmetric

it turns out to be appropriate to use a column matrix instead according to

E =



Exx
Eyy
Ezz

2Exy
2Eyx
2Exz


(2.14)

2.3 Stress tensors

In order to continue the investigation of kinematic relations, some di�erent

stresses needs to be presented. These will also be used for the �nite element

expression in Chapter 3.

The traction vector t needs to be de�ned to derive the stress tensors and

this is de�ned by

t =

(
∆P

∆A

)
∆A→0

(2.15)

where ∆P is an incremental force vector acting on an incremental surface area

∆A, see Fig. 2.3.

Figure 2.3: Incremental force acting on incremental area
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Figure 2.4: Reference con�guration and current con�guration

For the two di�erent con�gurations in Fig. 2.4, one can de�ne two di�erent

types of stresses, Cauchy and nominal. The Cauchy theorem states that the

traction vector, t is linear in n according to

t = Tn (2.16)

where T is the Cauchy stress tensor de�ned as

T =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.17)

The Cauchy is de�ned as the force divided by the deformed surface area in

the current con�guration as

tds = df (2.18)

and the nominal stress is de�ned from the reference con�guration as the force

divided by the undeformed surface area which gives

t◦ds◦ = df (2.19)

From this the assumption was made that the force df is the same in the reference

and current con�guration as

df = t◦ds◦ = tds (2.20)

Making use of Cauchy's theorem, we �nd that the following must hold

t◦ = Pn◦ (2.21)

where P is known as the �rst Piola-Kirchho� stress tensor. To know how this

is related to Cauchy's stress tensor, we use (2.16) and (2.21) in (2.20) to obtain

Pn◦ds◦ = Tnds (2.22)
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We now make use of Nanson's formula (2.9) to �nd the relation between the

�rst Piola-Kirchho� and the Cauchy stress tensor to be

P = JTF−T (2.23)

As it turns out, the relation (2.23) is non-symmetric and it is convenient to

obtain a stress that is symmetric. This is done by multiplying (2.23) with F−1

to obtain the second Piola-Kirchho� stress tensor de�ned by

S� = F−1P = JF−1TF−T (2.24)

Like the strain tensor, this square matrix is reduced to a column matrix accord-

ing to

S =



Sxx
Syy
Szz
Sxy
Syx
Sxz


(2.25)

2.4 Small strain elasticity

If a material behaves only linearly elastic it is known as a Hooke material. This

can be represented in a rheological model by a spring according to Fig. 2.5. The

spring with sti�ness E expands linearly according to Hooke's law, σ = Eε where

in this simple case ε = εe where the superscript e refers to that the strain is

only elastic.

Figure 2.5: Illustration of a elastic material model

2.5 Elasto-Plasticity

As an illustration of the elasto-plastic response, consider the rheological model

below. The elastic part is represented by the spring with sti�ness E and the

plastic, by the friction element with yield stress σy0 in Fig. 2.6.

When σ > 0 in Fig. 2.6 the spring expands linearly according to Hooke's law

and when the stress reaches σy0 the spring has reached its �nal length and

the friction element starts to move, representing the plastic strain, εp. The

total strain ε is now de�ned by ε = εe + εp and the stress-strain relation is
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Figure 2.6: Illustration of a elasto-plastic material model

σ = E(ε− εp). This is known as ideal-plastic behavior and a illustration of this

is shown in Fig. 2.7a).

When the material is loaded only within its elastic region (σ < σy0) it will

return to its original state when unloaded, see Fig. 2.7b).

(a) Ideal-plastic response (b) Elastic response (c) Elasto-plastic response

Figure 2.7: Loading and unloading of ideal-plastic, elastic and elasto-plastic

response

When introducing the elasto-plastic response in the general case the total

strain tensor is de�ned by

ε = εe + εp (2.26)

For a general stress state it turns out to be convenient to de�ne the e�ective

stress, σeff . When the e�ective stress reach σy0 the material reaches the plastic

region. This threshold stress can also represent the boundary of the elastic

region in the stress space, see Fig. 2.8a). As an example, the e�ective stress of

the von Mises criterion is given by

σeff =
√
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ33σ22 − σ33σ11 + 3σ2
12 + 3σ2

13 + 3σ2
31

2.5.1 Yield criteria

In order to determine if a stress response is elastic or plastic, a yield criteria is

introduced. The yield criteria is often represented by a surface in the deviatoric

stress space with a function, f describing the surface
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f(T ) = 0 (2.27)

If the loading of the material is within the yield surface, f < 0, the material

behaves elastic. By de�nition, f > 0 can never occur and this means that if

f = 0, plastic response takes place and therefore plastic deformations will grow

and the yield surface might alter shape, change location in the deviatoric stress

plane or a combination of both according to di�erent hardening rules.

2.5.2 Hardening

Before any deformation, the initial yield surface is given by

F (T ) = 0 (2.28)

When the deformation is plastic, the yield surface can now be expressed by

f(T ,Kα) = 0 (2.29)

where Kα, α = 1, 2, . . . , n contains hardening parameters that are dependent

on the internal parameters. For example, the �rst hardening parameter can be

dependent on the e�ective plastic strain, i.e. Kα=1 = Kα=1(εpeff ). The inter-

nal parameters describe how the yield surface changes shape, size and location

during plastic deformation.

(a) (b)

Figure 2.8: a) Arbitrary yield surface b) Yield surface of the von Mises criterion

Figure 2.8a) shows an example of initial and current yield surface after hard-

ening for an arbitrary criterion and Fig. 2.8b) of the von Mises criterion.

If the material have been subjected to plastic loading, it will not return to

its original state when unloaded since the plastic deformations will remain, see

Fig. 2.7c).

2.6 Visco-plasticity

Many materials, such as rubber and polymers often behaves visco-plastic. This

means that the stress-strain response is time dependent and are therefore of-
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ten called rate-dependent materials. Materials that do not have this property

is known as rate-independent materials. Figure 2.9 shows the stress-strain re-

sponse of these di�erent types of materials.

(a) (b)

Figure 2.9: a) Illustration of a rate-dependent material b) Illustration of a rate-

independent material

A rheological model of a visco-plastic material can be seen in Fig. 2.10 where

the elastic part is still represented by the spring and the visco-plastic part with

the friction element parallel with the dashpot. The dashpot is commonly known

as a Newton material with the stress-strain relation σ = ηε̇, where η is material

constant and ε̇ the strain rate. Since the friction element that represents the

plastic part is parallel with the dashpot, the total strain rate of these two ele-

ments will be referred to as ε̇vp. The total strain rate, including the spring will

now be ε̇ = ε̇e + ε̇vp.

Figure 2.10: Rheological model of visco-plasticity

As can be seen from the experiments in Fig. A.7a) the dashed lines from the

greater test speed lies over the lines form the lower test speed. This indicates

that the HDPE and LDPE materials behaves visco-plastic.

2.7 Hyper-elasticity

Hyper-elasticity, also called Green-elasticity is a good model for non-linear elas-

ticity. The hyper-elastic model is related to the strain energy W de�ned per
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unit reference volume as

W (Emn) =

∫ Emn

0

Sij(Ẽkl)dẼij (2.30)

where the integral is performed from the reference con�guration to the deformed

con�guration with present strain value Eij and Ẽkl is an integration variable.

Sij is the second Piola-Kircho� stress tensor and Eij the Lagrangian strain

tensor.

In the one dimensional case the strain energy can be illustrated as the area

under the stress-strain curve, see Fig. 2.11.

Figure 2.11: Strain energy in a one-dimensional case

Di�erentiating (2.30) with respect to Eij gives

dW =
∂W

∂Eij
dEij and dW = SijdEij (2.31)

Using (2.31) gives

(
∂W

∂Eij
− Sij)dEij = 0 (2.32)

and since dEij is an arbitrary strain increment, (2.32) must hold for any strain

increment and therefore the following expression for Hyper-elasticity is obtained

Sij =
∂W

∂Eij
where W = W (Eij) (2.33)

In Abaqus, the strain energy W is given on the so called polynomial form.

One format (cf. [1]) is given by

W =

N∑
i+j=1

Cij(I1 − 3)i(I2 − 3)j +

N∑
i=1

1

Di
(Jel − 1)2i (2.34)

where N , Cij , Di are material parameters and Jel is the elastic volume ratio.

The invariants I1 and I2 are de�ned as

I1 = λ̃2
1 + λ̃2

2 + λ̃2
3 and I2 = λ̃

(−2)
1 + λ̃

(−2)
2 + λ̃

(−2)
3 (2.35)
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which are known as the �rst and second deviatoric strain invariants, where

λ̃i = J−
1
3λi and λi the principal stretches.

Many material models are based from this polynomial form. The ones used

in this thesis will be described further in Chapter 6.

2.8 Large strain plasticity

For large deformations, the additative split of the strain tensor (2.26) is not

more valid. Instead one uses the so called multiplicative split of the deformation

gradient F into one elastic and one plastic part, cf. Fig. 2.12.

Figure 2.12: Illustration of the mapping between con�gurations with multiplica-

tive split

In Fig. 2.12 an intermediate con�guration has been introduced. The in-

termediate con�guration is de�ned from an elastic unloading from the current

con�guration. It follows from the de�nition of the intermediate con�guration

that the following holds

dx = F edx (2.36)

and

dx = F pdx◦ (2.37)

Inserting (2.37) in (2.36) gives

dx = F eF pdx◦ (2.38)

Comparing (2.38) with (2.2) shows that
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F = F eF p (2.39)

which is known as the multiplicative split.

For more information about large strain plasticity the interested reader is

referred to [1] and [10].



Chapter 3

The �nite element method

The �nite element method is a commonly used method to derive solutions to a

physical problem. The physical problems are usually described by di�erential

equations speci�ed over some area that can be one-, two- or three-dimensional

and is very hard to solve with analytical methods. Instead, the �nite element

method is used as a numerical solution technique to the physical problem. In-

stead of trying to solve the di�erential equations over the entire area, the area

is divided into smaller parts, called elements and the di�erential equations that

describes the physical problem is approximated over each of the elements.

When making use of the �nite element method, a few basic steps are per-

formed. These are

1. Establish the strong formulation of the problem.

2. Obtain the weak formulation of the problem.

3. Make an element wise approximation over the entire body of the unknown

function.

4. Choose the weight function, w.

These steps are performed in Chapter 3.1 to establish the �nite element

formulation. For further reading of the �nite element method, the reader is

referred to [8].

3.1 Deriving the FEM-formulation

In this section the following steps from the list given above are presented. To

be able to do this, two theorems (Gauss and Green-Gauss theorem) needs to

be presented from the vector calculus.

Gauss' divergence theorem:∫
V

divqdV =

∫
S

qTndS (3.1)



16 The �nite element method

Green-Gauss theorem:∫
V

φdivqdV =

∫
S

φqTndS −
∫
V

(∇φ)TqdV (3.2)

3.1.1 Strong form

The balance for linear momentum of an arbitrary body can be expressed as∫
s

tds+

∫
v

ρbdv =

∫
v

ρüdv (3.3)

This is simply Newton's second law of motion (
∑
F = ma) that states that

the sum of all forces acting on the body is equal to the mass of the body times

acceleration.

Using (2.16) and (3.1) on the �rst term of (3.3) results in∫
v

(divT + ρb− ρü)dv = 0 (3.4)

Since the volume in (3.4) is arbitrary and should hold for any body gives

divT + ρb = ρü (3.5)

This is the strong formulation of the physical problem.

3.1.2 Weak form

Multiplying (3.5) with an arbitrary velocity w and integrate over the body gives

the virtual power expression in the current con�guration as∫
v

wTdivT dv +

∫
v

ρwT bdv =

∫
v

ρwT üdv (3.6)

Using the Green-Gauss theorem de�ned by (3.2) and Cauchy's theorem

(2.16) on the �rst term of (3.6) gives∫
v

wTdivT dv =

∫
s

wT tds−
∫
v

∇w : T dv (3.7)

where the scalar product between matrices was introduced as

A : B = AijBij sum over all i,j (3.8)

Inserting (3.7) in (3.6) gives∫
s

wT tds−
∫
v

∇w : T dv +

∫
v

ρwT bdv =

∫
v

ρwT üdv (3.9)

This equation is given in the current con�guration. In many cases it turns out

to be convenient to express (3.9) in the reference con�guration. It can be proved

that
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∫
s

wT tds =

∫
s◦
wT t◦ds◦ (3.10)

∫
v

∇w : T dv =

∫
v◦
Ê
T
Sdv◦ (3.11)

∫
v

ρwT bdv =

∫
v◦
ρ◦wT bdv◦ (3.12)

∫
v

ρwT üdv =

∫
v◦
ρ◦wT üdv◦ (3.13)

The quantities with the � indicates that they are a function of time. Using

(3.10)-(3.13) in (3.9) gives

∫
v◦
ρ◦wT üdv◦ +

∫
v◦
Ê
T
Sdv◦ −

∫
s◦
wT t◦ds◦ −

∫
v◦
ρ◦wT bdv◦ = 0 (3.14)

This is the weak formulation of the problem, describing the entire system. The

next step is to discretize this in an element-wise solution for the �nite element

approximation.

3.1.3 Approximation and choice of weight function

The displacement �eld and the acceleration �eld are approximated as

u = Na, ü = Nä (3.15)

where N are the global shape functions, a contains the nodal displacements

and u the displacement vector throughout the body.

Now use the approximation according to Galerkin and put

w = Nc (3.16)

where c is an arbitrary vector. Using that Ê = Bc and inserting (3.15) and

(3.16) in (3.14) results in

cT
(∫

v◦
ρ◦NTNädv◦ +

∫
v◦
BTSdv◦ −

∫
s◦
NT t◦ds◦ −

∫
v◦
ρ◦NT bdv◦

)
= 0

(3.17)

Since c is an arbitrary vector, the �nite element method description can be

written as

Mä+ F int − F ext = 0 (3.18)

where the mass matrix is de�ned by

M =

∫
v◦
ρ◦NTNdv◦ (3.19)
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and

F int =

∫
v◦
BTSdv◦ (3.20)

F ext =

∫
s◦
NT t◦ds◦ +

∫
v◦
ρ◦NT bdv◦ (3.21)



Chapter 4

Basics of parameter

identi�cation

In order to make realistic simulations, it is necessary to have an appropriate

material model with corresponding parameters.

When selecting appropriate material model, physical testing is �rst needed

in order to give an idea about what kind of properties the material are having.

For instance, a uniaxial tensile test on a dog-bone shaped specimen could show

whether a material could be described by using only an elasto-plastic model, or

if it is depended on the strain rate, a visco-elastic model would be more appro-

priate. Once the choice of material model is made, the parameter identi�cation

can begin.

In this chapter the various steps of parameter identi�cation are presented.

First, the direct and the inverse method are described in Chapter 4.1 and 4.2 re-

spectively, and it turns out that the inverse method is the most suitable method

for parameter identi�cation.

The parameter identi�cation is made by an optimization based on the ini-

tial guess. A simulation is made and the results are compared with the results

from the experiment. Parameters continuously changes value after each sim-

ulation and the optimization ends when the di�erence between simulated and

experimental data has reached a minimum.

A validation of the identi�ed parameters is now needed to know if they can

describe the material at some other arbitrary load. This is done by a new

simulation and the results are compared with experimental data that was not

used for the parameter identi�cation.

An approach on how to solve the inverse problem is described in Chapter 4.4.

Finally a detailed description of the Nelder-Mead simplex algorithm, used in the

optimization loop is described in Chapter 4.5.

For further information the reader is referred to [5] and [6].
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4.1 The direct problem

The �eld equation of a body in equilibrium during static loading is

divT (u) + b = 0 (4.1)

where T is the Cauchy stress tensor and b body forces. From this, with a

combination of boundary conditions and a constitutive model, the displacements

can be calculated, giving that the material parameters are known,

κ 7→ u(•, κ) (4.2)

where • represents the boundary conditions and κ the material parameters.

Since the material parameters here are supposed to be known, (4.2) is not

suitable for parameter identi�cation.

4.2 The inverse problem

Let the experimental values of displacements denote uexp ∈ U , simulated usim ∈
U , where U represents the observation space for experimental values and U the

observation space for simulated values. The reason why these observation spaces

are not the same is because the sampling frequency di�ers from each other. To

be able to compare the experimental data with the simulated, an observation

operatorM : U → U has to be introduced. This is simply a linear interpolation

operator and using this on usim gives thatMusim ∈ U and the simulated values

are now comparable with the experimental.

The inverse problem of (4.2) can now be described as

Find κ :Musim(•, κ) = uexp (4.3)

Generally, this problem can not be satis�ed exactly. Instead one tries to min-

imize the di�erence between simulated and experimental values using a least-

square function of (4.3) in an optimization loop. This gives

f(κ) =
1

2

∥∥Musim(•, κ)− uexp
∥∥2 → min︸︷︷︸

κ

(4.4)

In general, this equation is non-convex and does therefore not have a unique

solution.

A description of the least square function can be found in [4].

4.3 The correlation matrix

Sometimes it is hard to �nd the solution to (4.4). This is often the case when

small variations of uexp may lead to large variations of the material parameters,

κ. The reason for this can either be that the material model contains many pa-

rameters, or that one or many parameters are linearly dependent of each other.
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Parameters that are linearly dependent implies that di�erent combinations of

the parameter values can give the same results for the error function, cf. (4.4).

This has no signi�cance when investigating the load case that was used for the

parameter identi�cation, but to be sure that the parameters can describe other

load cases as well, the importance of a validation is understood.

To be able to calculate the parameters linear dependency, the so called cor-

relation matrix can be introduced. This is build from the de�nition of a scalar

product where the angle between to vectors are calculated from

cos Φij =
∆usimi ∆usimj

||∆usimi ||||∆usimj ||
∈ [−1, 1] (4.5)

where

∆usimi =
∂usim

∂κi
(4.6)

The correlation matrix indicates the variation of how the displacement usim

varies with respect to the i:th parameter in κ.

If | cos Φij | = 1 the parameters are linearly dependent and no unique solution

might exist. cos Φij = 0 implies that the parameters are linearly independent

and they describe di�erent properties of the deformation which lead to that they

can individually be assigned values, independent of each other. Another case

is when the derivative in (4.6) is equal to zero. This means that the simulated

result is independent of κi and this will be denoted byNaN . When this happens,

the parameters are either not activated, or insu�cient data was recorded during

the experiment to capture a certain behavior that would be needed.

Example 3.1 Consider a uniaxial test where only the elongation and force is

recorded, see Fig. 4.1. With this data alone it is impossible to describe even the

simplest linearly elastic model, since this both contains Young's modulus and

Poission's ratio, see (6.1). Since no information about the elongation perpen-

dicular to the force was recorded, the Poission's ratio can not be determined.

This would lead to

cos ΦEν =
∆uE∆uν

||∆uE ||||∆uν ||
= NaN (4.7)

Figure 4.1: Uniaxial tensile test with corresponding global force-displacement

diagram
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The correlation matrix can be calculated even though no physical data exists.

Generally speaking the correlation matrix could be a helpful tool when designing

experiments if a speci�c material model is to be used. This is a good way to

determine what kind of experiment that needs to be performed to be able to

determine all parameters.

4.4 Solution to the inverse problem

To solve the inverse problem, an optimization on (4.4) needs to be done and

one can use several di�erent minima search algorithms. In general, (4.4) is non-

convex which indicates that several local minima may exist, see Fig.4.2a). This

requires the use of an algorithm that may overcome local minima in order to �nd

an optimal solution. If one would use a gradient-based method, local minima

would be di�cult to overcome, instead a good approach is to use the Nelder-

Mead simplex algorithm. This is a so called deterministic algorithm which

means that it always gives the same result when using the same starting values.

It does not use gradients to �nd the solution, instead it uses function evaluations

which leads to that local minima may be overcome. On the other hand, this

requires more calculations than a gradient based method and therefore converges

more slowly. A more detailed description of the Nelder-Mead algorithm is found

in Chapter 4.5.

(a) (b)

Figure 4.2: a) Non-convex function b) Convex function

4.4.1 Constraints

It is convenient to introduce constraints on each material parameter to ensure

that no parameters are assigned values that is not allowed due to physical re-

strictions, i.e. that Young's modulus never can be negative. Doing this enables

each parameter to have its own lower and upper value of what it can adopt.

Since the magnitude of the parameters can vary, i.e. Young's modulus is

signi�cantly higher than Poisson's ratio, it is convenient to normalize the pa-

rameters according to

κi =
κi − κu
κl − κu

∈ [0, 1] (4.8)

From (4.8) the normalized parameter κi is obtained from its original parameter
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κi and can now only adopt values between zero and one. κu and κl corresponds

to the upper and lower limits of the parameter.

Di�erent type of experimentally sampled variables can be used in (4.4), e.g.

displacements, forces and strains. Since the magnitude of the di�erent variables

can di�er greatly from each other, a normalization of (4.4) is done according to

f(κ) =
∑
i

∣∣∣∣Masimi (•,κ)− aexpi

aexpi

∣∣∣∣ (4.9)

where a contains the variables.

To make the optimization loop search only within the boundaries, a penalty

function is introduced to (4.9) as

f ← f +

l∑
k

[
e−c(κk−0) + ec(κk−1)

]
︸ ︷︷ ︸

Penalty

(4.10)

where l is the number of parameters in κ. The penalty term increases the func-

tion value drastically when the optimization loop is searching near a parameters

boundaries, and a solution close to or outside the boundaries is thus avoided.

This forces the optimization loop to only search within the boundaries.

Figure 4.3: Illustration of the penalty function with two parameters

4.5 The Nelder-Mead (simplex) algorithm

As previously mentioned, the Nelder-Mead (simplex) algorithm is a so called

deterministic, non-gradient method of searching for a minimum of a given func-

tion. This means that no derivatives needs to be calculated and it always gives

the same result when using same initial values. The function is continuously

searching within an area called a simplex. A simplex in Rn is a set of n+1

points x1, . . . ,xn in Rn such that the set of vectors {xi − x0 :: i = 1 . . . n} is
linearly independent in Rn. This simply means that if the function is in the
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two-dimensional space, the simplex becomes a triangle, in the three-dimensional

space a tetrahedron etc. During the parameter identi�cation, the dimension (n)

of the space is equal to the number of material parameters.

(a) (b) (c) (d) (e) (f)

Figure 4.4: a) Original b) Re�ection c) Expansion d) Outward contraction e)

Inward contraction f) Shrink

The simplex can transform in �ve di�erent ways that can be seen in Fig. 4.4

where the simplex is represented by a triangle. The transformations are based

on the vertices function values that are all calculated and evaluated during the

optimization process. A more detailed description of how this is done is found

below.

Working procedure of the Nelder-Mead algorithm

The simplex with n + 1 vertices are initially generated from an initial input

point κ0 ∈ Rn. From this point, the remaining n vertices are usually calculated

from

κj = κ0 + hjej , j = 1, . . . , n

where hj is a step size in the direction of the unit vector ej ∈ Rn.
The objective function to be minimized is denoted as f . κm and κM denotes

the smallest and largest function value of the corner points in the simplex, i.e.

f(κm) = min
1≤j≤n+1

f(κj), f(κM ) = max
1≤j≤n+1

f(κj)

The second largest value of the corner points is represented by the point κm.

As previously mentioned, �ve di�erent transformations of the simplex can be

performed during the optimization according to Fig. 4.4. These are controlled

by four parameters, α for re�ection, β for expansion, γ for contraction and δ for

shrinkage. These numerical parameters are chosen so that α > 0, β > 1, β > α,

0 < γ < 1 and 0 < δ < 1. Standard values used in most implementations are

α = 1, β = 2, γ =
1

2
, δ =

1

2
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The �rst step in one iteration is to calculate the function value of each corner

point κj to determine which has the worst (highest) value; f(κM ). After this,

the center of gravity of the face of the simplex opposite to this point is calculated

as

κg =
1

n

∑
κj 6=κM

κj

From this, the so called "re�ection point" is calculated from

κr = κg + α(κg − κM )

Figure 4.5: Initial simplex

Depending on the function value of f(κr), di�erent transformations will be

made of the simplex and the function value is evaluated according to

• Re�ection

If f(κm) < f(κr) < f(κM ) put

κnew := κr

and terminate the iteration.

• Expansion

If f(κr) ≤ f(κm) it seems that the simplex is moving in a good direction

and can therefore try to expand the simplex according to

κe = κg + β(κr − κg)

and put

κnew :=


κe if f(κe) < f(κr)

κr otherwise

and terminate the iteration.
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• Contraction

If f(κr) ≥ f(κm), calculate the contraction point κc in two cases.

1. Outward If f(κm) ≤ f(κr) < f(κM ) calculate

κoc = κg + γ(κr − κg)

If now f(κoc) ≤ f(κr) put

κnew := κoc

and terminate the iteration. Otherwise, perform a shrink transfor-

mation.

2. Inward

If f(κr) ≥ f(κM ) calculate

κic = κg + γ(κM − κg)

If now f(κic) < f(κM ) put

κnew := κic

and terminate the iteration. Otherwise, perform a shrink transfor-

mation.

• Shrinkage

If contraction is unsuccessful a shrinkage transformation is made and n

new vertices are calculated as

κj := δ(κj + κm), j = 1, . . . , n

and then restart the iteration step.

The optimization loop ends when |f(κnm)−f(κn+1
m )| < tol where tol is a tolerance

value for accepted convergence.

As an illustration of how the simplex alters shape during a minima search,

see Fig. 4.6.

The interested reader is referred to [4] and [7].
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(a) It. 1 (b) It. 4 (c) It. 7

(d) It. 10 (e) It. 13 (f) It. 16

(g) It. 19 (h) It. 22 (i) It. 25

(j) It. 28

Figure 4.6: Illustration of the Nelder-Mead algorithm with two parameters

where the simplex changes shape and moves towards a minima





Chapter 5

ARAMIS tensile test

The most common material testing performed in the industry today is a so

called uniaxial tensile test. At these types of test, a homogeneous displacement

�eld is assumed. To be able to have a controlled displacement �eld, a dog-bone

shaped specimen is most commonly used. This is though often not the case for

many types of polymers. During the loading, force and elongation is recorded.

This is done today at Tetra Pak using a vision system that only record force

and elongation in one direction with a limited number of points.

In order to record more information from the tensile test, a more advanced

test needs to be performed. Therefore a cooperation with the external supplier,

GOM (Gesellschaft für Optische Messtechnik) in Germany was started. The

reason for the cooperation is because GOM has a so called ARAMIS system

that can record displacements in more than one direction at any given point

on a test specimen. This makes it possible to more accurately capture the

deformation of the specimen and determine any inhomogeneous deformation.

(a) (b) (c)

Figure 5.1: a) A mounted test in the ARAMIS system b) Applied pattern on

specimen c) Image processing
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The goal of the cooperation with GOM is to evaluate their testing equipment

and see if the ARAMIS system can help improve the simulations by �nding

better material parameters compared to the one used today at Tetra Pak.

The ARAMIS system is a vision system that uses a technique called digital

image correlation (DIC) with two cameras that continuously records a prede-

�ned pattern that follows the deformation of the specimen during the load.

This has the bene�t that no contact with the test specimen exists, minimizing

the risk of measurement error. The setup of the ARAMIS system is shown in

Fig. 5.1. When the loading is complete, it is possible to extract data from the

points of interest to a text �le. In this thesis the points shown in Fig. 5.2 are

extracted and evaluated. The reason for the evenly distributed points in the

four quadrants is to know if the test specimen is straightly attached in the test

rig.

Figure 5.2: Points extracted in the ARAMIS system

The idea behind using the ARAMIS system instead of the one Tetra Pak

is currently using today is to more accurately capture the deformation of a

specimen. The data obtained from the experiment can be used to i.e. calibrate

a speci�c material model such that the simulations becomes more consistent

with reality.

In this report, tests have been made on two di�erent polymers; HDPE (High-

density polyethylene) and LDPE (Low-density polyethylene) at two di�erent

test speeds (50 mm/min and 100 mm/min). Four tests on each polymer and

test speed was made to account for measuring errors/deviations.

Figure 5.3 - 5.4 shows the longitudinal strain on a specimen in the ARAMIS

system on a HDPE and LDPE polymer with a test speed of 50 mm/min.
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(a) 0.0 sec. (b) 0.6 sec. (c) 1.2 sec.

(d) 1.8 sec. (e) 2.4 sec. (f) 3.2 sec.

Figure 5.3: Longitudinal strain, HDPE 50 mm/min

(a) 0.0 sec. (b) 1.6 sec. (c) 3.6 sec.

(d) 5.6 sec. (e) 8.6 sec. (f) 10.6 sec.

Figure 5.4: Longitudinal strain, LDPE 50 mm/min
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5.1 Physical test

The test is displacement controlled from one of the clamps whereas the other

remain �xed and the force from the clamps are measured during the load. In

Fig. 5.5 the specimen has been sprayed with a stochastic pattern on which the

cameras applies a grid. With this grid, the cameras can identify each points

movement during the deformation. The points of interest, see Fig. 5.2 are

extracted after the experiment.

(a) (b)

Figure 5.5: a) Stochastic pattern on dog-bone specimen b) Grid applied on the

specimen

When choosing points to extract data from it is appropriate to do this ac-

cording to Fig. 5.2. With these points and the symmetry planes, see Fig. 5.6a)

it is possible to detect if the specimen is straightly attached in the test rig. The

alignment is of vital importance when comparing simulated and experimental

data since the boundary conditions in the computer model states that the spec-

imen is completely straight, more about this in Chapter 7. All of the tests have

been made until fracture occurs and as mentioned before, four tests on each

polymer and test speeds was made to account for measuring errors/deviations.
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5.2 Results and conclusions

To check if the specimen is straightly attached, the points with index 3 can be

checked so that their displacements in the x-direction remain unchanged during

the loading.

(a) (b)

Figure 5.6: a) Symmetry planes of the specimen b) x-displacements of middle

points (A3-E3)

Looking at Fig. 5.6b) one can see that the displacements at the symmetry line

in the x-direction is non-zero which indicates that the specimen is not straightly

attached. To compensate for this, the relative displacement is calculated from

ux,relij = uij − ui3 (5.1)

where the index i refers to A-E and j to 1-5. This has also been done in the

y-direction1. The results from the ARAMIS tensile test are presented in Ap-

pendix A. The results shows that both HDPE and LDPE have large deformation

for all test speeds near the nodge. It can also be concluded that the displace-

ment �eld varies greatly from each individual point and the material is therefore

inhomogeneous as expected. There is also a signi�cant di�erence between the

two test speeds which indicates that the material response is time-dependent.

1The motivation for this compensation is thoroughly described in Chapter 7





Chapter 6

Speci�c material models

The following chapter describes the di�erent material models used in the pa-

rameter identi�cation. A few of Abaqus own built in models have been used and

also a toolbox for Abaqus made by Ph. D. Jörgen Bergström called PolyUMod.

The PolyUMod material library contains a set of material models which are

often used for describing polymers.

6.1 Elasto-plastic

The simplest material model is given by the case when the material behaves

only linearly elastic. According to Hooke's law the constitutive matrix D is

de�ned by

D =
E

(1 + ν)(1− 2ν)


1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1

2 (1−2ν) 0 0

0 0 0 0 1
2 (1−2ν) 0

0 0 0 0 0 1
2 (1−2ν)

 (6.1)

The plastic part is added with linearly splitted yield stresses with corre-

sponding �xed e�ective plastic strains according to Fig. 6.1 where

σy = σy(εpeff ) (6.2)
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Figure 6.1: Illustration of the yield stresses as function of e�ective plastic strains

The material parameters that are used in the optimization for the elasto-

plastic model can be found in Table 6.1.

Table 6.1: Material parameters used in the elasto-plastic model

Elasto-plastic model

Index Symbol Unit Description

1 E Pa Young's modulus

2 ν - Poisson's ratio

3 σy0 Pa Initial yield stress

4 σy1 Pa Second yield stress

5 σy2 Pa Third yield stress
...

...
...

...

n+3 σyn Pa n:th* yield stress

*n is the number of yield stresses chosen to be optimized
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6.2 Hyper-elasto-plastic

From the theory of hyper-elasticity in Chapter 2.7 it is known that the strain

energy W serves as a potential function for the stresses according to (2.33).

In this section the various strain energy expressions for the di�erent hyper-

elastic material models that are used in the simulations are presented [1]. These

describes the elastic behavior of the material model and the plastic deformations

are added in the same manner as the elasto-plastic model according to (6.2)

where Abaqus uses the multiplicative split according to (2.39).

6.2.1 Neo-Hookean form

The strain energy function for the Neo-Hookean material model is de�ned as

W = C10(I1 − 3) +
1

D1
(Jel − 1)2 (6.3)

where C10 and D1 are elastic material parameters that depend on the initial

shear stress µ0 and bulk modulus K0 respectively according to

C10 =
µ0

2
and D1 =

2

K0
(6.4)

The material parameters that are used in the optimization can be found in

Table 6.2.

Table 6.2: Material parameters used in the Neo-Hookean model

Neo-Hookean model

Index Symbol Unit Description

1 C10 Pa Elastic material parameter 1

2 D1 Pa−1 Elastic material parameter 2

3 σy0 Pa Initial yield stress

4 σy1 Pa Second yield stress

5 σy2 Pa Third yield stress
...

...
...

...

n+3 σyn Pa n:th* yield stress

*n is the number of yield stresses chosen to be optimized

6.2.2 Arruda-Boyce form

The strain energy function for the Arruda-Boyce material model is de�ned as

W = µ

{
1

2
(I1 − 3) +

1

20λ2
m

(I
2

1 − 9) +
11

1050λ4
m

(I
3

1 − 27) +
19

7000λ6
m

(6.5)

·(I4

1 − 81) +
519

673750λ8
m

(I
5

1 − 243)

}
+

1

D

(
(Jel)2 − 1

2
− lnJel

)
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where µ, λm and D are elastic material parameters that depend on the initial

shear stress µ0 and bulk modulus K0 according to

µ = µ0

(
1 +

3

5λ2
m

+
99

175λ4
m

+
513

875λ6
m

+
42039

67375λ8
m

)−1

and D =
2

K0
(6.6)

The material parameters that are used in the optimization can be found in

Table 6.3.

Table 6.3: Material parameters used in the Arruda-Boyce model

Arruda-Boyce model

Index Symbol Unit Description

1 µ Pa Elastic material parameter 1

2 λm - Elastic material parameter 2

3 D Pa−1 Elastic material parameter 3

4 σy0 Pa Initial yield stress

5 σy1 Pa Second yield stress

6 σy2 Pa Third yield stress
...

...
...

...

n+4 σyn Pa n:th* yield stress

*n is the number of yield stresses chosen to be optimized

6.2.3 Mooney-Rivlin form

The strain energy function for the Mooney-Rivlin material model is de�ned as

W = C10(I1 − 3) + C01(I2 − 3) +
1

D1
(Jel − 1)2 (6.7)

where C10, C01 andD1 are elastic material parameters that depend on the initial

shear stress µ0 and bulk modulus K0 according to

C10 + C01 =
µ0

2
and D1 =

2

K0
(6.8)

The material parameters that are used in the optimization can be found in

Table 6.4.
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Table 6.4: Material parameters used in the Mooney-Rivlin model

Mooney-Rivlin model

Index Symbol Unit Description

1 C10 Pa Elastic material parameter 1

2 C01 Pa Elastic material parameter 2

3 D1 Pa−1 Elastic material parameter 3

4 σy0 Pa Initial yield stress

5 σy1 Pa Second yield stress

6 σy2 Pa Third yield stress
...

...
...

...

n+4 σyn Pa n:th* yield stress

*n is the number of yield stresses chosen to be optimized

6.3 PolyUMod

The following section will describe the material models used in the simulations

from Jörgen Bergströms material library PolyUMod. As a helpful tool for the

calibration of these models, the PolyUMod comes with a calibration tool. This

tool uses the global force versus displacement �eld data from the experiments

as input and give good starting points of the initial values of the parameters

with corresponding constraints. Each material model is brie�y explained and

for a more detailed explanation of how each speci�c model is build the reader

is referred to [2] and [3]. The superscript e, p and v in the equations refers

to the elastic, plastic and viscous part. Subscripts in capital letters refers to

the network it represents, i.e. A refers to network A. The various networks are

illustrated in each models rheological representation.

6.3.1 Bergström-Boyce

The Bergström-Boyce model has been shown to give good results for predicting

large-strain and time-dependent behavior for both soft biomaterials and tradi-

tional engineering rubbers.

The model is build from two parallel networks as can be seen in the rheolog-

ical model in Fig. 6.2.
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Figure 6.2: Illustration of the Bergström Boyce material model

The stresses acting in network A is obtained from

TA =
µ

Jλ∗
L−1(λ∗/λL)

L−1(1/λL)
dev[b∗] + κ(J − 1)I (6.9)

and network B

TB =
sµ

JeBλ
e∗
B

L−1(λe∗B /λL)

L−1(1/λL)
dev[be∗B ] + κ(JeB − 1)I (6.10)

where L(x) = coth(x)−1/x, known as the Lengevin function. λ∗ = (tr[b∗]/3)1/2

where b∗ = J−2/3FF T , be∗B = (JeB)−2/3F eB(F eB)T , JeB = det[F eB ] and λe∗B =

(tr[be∗B ]/3)1/2.

The total stress response is given by

T = TA + TB (6.11)

Since there is a viscous dashpot in network B, a equation describing the

viscous �ow is needed. The rate-equation for this viscous �ow is given by

γ̇vB = γ̇0(λvB − 1 + ξ)C
[
R

(
τ

τbase
− τ̂cut

)]m
(6.12)

where γ̇0 ≡ 1/s is a constant introduced to ensure dimensional consistency. R

is a ramp function de�ned as R(x) = (x+ |x|)/2, λvB = (tr[(FF T )vB ]/3)1/2 and

�nally the e�ective stress driving the viscous �ow is τ = ||dev[TB ]||F .
The material parameters used in the Bergström-Boyce model are summarized

in Table 6.5.
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Table 6.5: Material parameters used in the Bergström-Boyce model

Bergström Boyce model

Index Symbol Unit Description

1 µ Pa Shear modulus of network A

2 λL - Locking stretch

3 κ Pa Bulk modulus

4 s - Relative sti�ness of network B

5 ξ - Strain adjustment factor

6 C - Strain exponential

7 τBase Pa Flow resistance

8 m - Stress exponential

9 τ̂cut Pa Cut-o� stress for �ow

6.3.2 Hybrid model

The Hybrid model is a material model developed for predicting the large strain

time-dependent behavior of ultra-high molecular weight polyethylene. It is also

a good model for other types of thermoplastics.

The model can be illustrated in a rheological model according to Fig. 6.3.

Figure 6.3: Illustration of the Hybrid material model

For a given deformation state, the Cauchy stress expression is given by

T =
1

Je
(2µEe + λtr[Ee]I) (6.13)

where

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
, Je = det[F e] (6.14)

The stresses acting in network A is obtained from

TA =
1

1 + q

{
µA

Jpλp∗
L−1(λp∗/λL)

L−1(1/λL)
dev[bp∗] + κ(Jp − 1)I (6.15)

+q
µA
J

[
I∗1b

p∗ − 2Ip∗2

3
I− (bp∗)2

]}
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and network B

TB =
sB

1 + q

{
µA

JeBλ
e∗
B

L−1(λe∗B /λL)

L−1(1/λL)
dev[be∗B ] + κ(JeB − 1)I (6.16)

+q
µA
J

[
I∗1b

e∗ − 2Ie∗2
3
I− (be∗)2

]}
where Jp = det[F p], λp∗B = (tr[bp∗B ]/3)1/2, bp∗ = (Jp)−2/3FF T ,

be∗ = (Je)−2/3FF T , I∗1 = tr[b∗] and I∗2 = b∗ : b∗. sB is a parameter that

speci�es the relative sti�ness of network B compared to network A. During

deformation sB evolves according to

ṡB = −αB(sB − sBf )γ̇p (6.17)

where sB in the undeformed state is sBi, and sBf in the fully transformed state.

The time derivative of the visco-elastic deformation gradient of network B is

given by

Ḟ
v

B = LvBF
v
B = γ̇0

(
τB

τ baseB [1 +R(pB/p̂)]

)mB

(6.18)

·(FeB)−1 dev[TB ]

τB
Fp

where τB = ||dev[TB ]||F is the e�ective shear stress driving the viscoelastic �ow

and pB = −tr[TB ]/3 is the hydrostatic pressure.

The time rate of change of network P is given by

Ḟ
p

= LpFp = γ̇0

(
τp

τpbase[1 +R(pp/p̂)]

)mp

(6.19)

·(Re)>
dev[Tp]

τp
ReFp ≡ γ̇pNp

where τp = ||dev[Tp]||F is the e�ective shear stress driving the plastic �ow and

pp = −tr[Tp]/3 is the hydrostatic pressure. Tp = T − [F e(TA + TB)F eT ]/Je

is the stress acting on the relaxed con�guration convected to the current con-

�guration.

The material parameters used in the Hybrid model are summarized in Ta-

ble 6.6.
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Table 6.6: Material parameters used in the Hybrid model

Hybrid model

Index Symbol Unit Description

1 E Pa Young's modulus

2 ν - Poisson's ratio

3 µA Pa Shear modulus A

4 λL - Locking stretch

5 q - Relative contribution of I2 of network A

6 κ Pa Bulk modulus

7 sBi - Initial sti�ness B

8 sBf - Final sti�ness B

9 αB - Transition rate sti�ness B

10 τBbase Pa Flow resistance B

11 mB - Stress exponent B

12 p̂ Pa Pressure dependence of �ow

13 τpbase Pa Flow resistance p

14 mp - Stress exponent p

6.3.3 Three network

The Three network model is a material model developed for thermoplastic ma-

terials. It is similar to the Hybrid model but is designed to be more numerically

e�cient.

The model can be illustrated in a rheological model according to Fig. 6.4.

Figure 6.4: Illustration of the three network material model

The stress acting in network A is obtained from

TA =
µA

JeAλ
e∗
A

[
1 +

θ − θ0

θ̂

]
L−1(λe∗A /λL)

L−1(1/λL)
dev[be∗A ] + κ(JeA − 1)1 (6.20)

and network B

TB =
µB

JeBλ
e∗
B

[
1 +

θ − θ0

θ̂

]
L−1(λe∗B /λL)

L−1(1/λL)
dev[be∗B ] + κ(JeB − 1)1 (6.21)
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where θ is the current temperature and θ0 is a reference temperature. The

e�ective shear modulus is taken to evolve with plastic strain according to

µ̇B = −β[µB − µBf ]γ̇A (6.22)

where µB in the undeformed state is µBi, and µBf in the fully transformed

state. The stress acting in network C is given by

TC =
1

1 + q

 µC

Jλ∗

[
1 +

θ − θ0

θ̂

] L−1
(
λ∗

λL

)
L−1

(
1
λL

)dev[b∗] (6.23)

+κ(J − 1)1+ q
µC
J

[
I∗1b

∗ − 2I∗2
3
I− (b∗)2

]}
The total stress response in the system is given by

T = TA + TB + TC (6.24)

The e�ective deviatoric �ow rate for network A is given by

γ̇A = γ̇0

(
τA

τ̂A + aR(pA)

)mA (
θ

θ0

)n
(6.25)

and network B

γ̇B = γ̇0

(
τB

τ̂B + aR(pB)

)mB (
θ

θ0

)n
(6.26)

where τA = ||dev[TA]||F , τB = ||dev[TB ]||F , pA = −tr[TA]/3 and pB =

−tr[TB ]/3.

The material parameters used in the Three network model are summarized

in Table 6.7.
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Table 6.7: Material parameters used in the three network model

Three network model

Index Symbol Unit Description

1 µA Pa Shear modulus of network A

2 θ̂ T Temperature factor

3 λL - Locking stretch

4 κ Pa Bulk modulus

5 τ̂A Pa Flow resistance of network A

6 a - Pressure dependence of �ow

7 mA - Stress exponential of network A

8 n - Temperature exponential

9 µBi Pa Initial shear modulus of network B

10 µBf Pa Final shear modulus of network B

11 β - Evolution rate of µB
12 τ̂B Pa Flow resistance of network B

13 mB - Stress exponential of network B

14 µC Pa Shear modulus of network C

15 q - Relative contribution of I2 of network C

16 α T−1 Thermal expansion coe�cient

17 θ0 T Thermal expansion reference temperature





Chapter 7

Method

In this chapter a description of the method and geometry will be performed. A

discussion of the assumptions made on the geometry will also be described.

7.1 Geometry

The geometry of the specimen is a so called dog-bone with a nodge in the middle

according to Fig. 7.1.

Figure 7.1: Dog-bone specimen [mm]

To be able to save time and computer power during the simulations, symme-

try on the geometry in Fig. 7.1 will be used. Figure 7.2a) shows the symmetric

part of the geometry. In order for the ARAMIS system to perform the tensile

test, the clamps on the machine holds on a relatively big part of the geometry.

To account for this, a smaller part of the symmetric geometry will be considered

as seen in Fig. 7.2b) where the material held by the clamps is removed. From

this geometry, the left side will be subjected to a displacement controlled load

in Abaqus.
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(a) (b)

Figure 7.2: a) Symmetry part b) Part used in simulations [mm]

The part will be meshed according to Fig. 7.3 where three- and four-node

isoparametric elements are used. To save even more computer power and sim-

ulation time and due to the fact that the specimen is relatively thin, the body

will be treated as a two-dimensional body with plane-stress conditions and a

thickness of 0.6mm.

Figure 7.3: Finite element mesh consisting of 70 three-node elements and 2688

four-node elements with plane stress condition with applied boundary conditions

Table 7.1 shows the displacements of the clamps from the ARAMIS system

just before the material begins to break in the material1. When simulating the

tensile test for the optimization, the half average value will be considered2. Since

symmetry is assumed, a boundary condition will enforce that the y-directions

in C points will remain zero at all times. This has to be accounted for in the

measurement data since thus is not the case from the ARAMIS system.

1Tests 2-4 on HDPE 100mm/min where unsuccessful and only incomplete data was

recorded during the tests
2The half value is used because only half of the body is considered in the simulations
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Table 7.1: Displacement of the clamps for all tests

Displacement clamps [mm]

Test: 1 2 3 4 Avg

HDPE 50mm/min 1.99 1.97 1.99 1.91 1.97

HDPE 100mm/min 1.86 - - - 1.86

LDPE 50mm/min 5.97 5.88 5.85 5.78 5.87

LDPE 100mm/min 4.25 4.10 4.23 4.23 4.2

The relative displacements will be calculated in the same manner as (5.1) ac-

cording to

uy,relkl = ukl − uCl (7.1)

where index k and l refers to A-C and 1-3 respectively3.

7.1.1 Optimization procedure

The optimization procedure is done according to the method described in Chap-

ter 4. A description of the procedure can be seen in Fig. 7.4 where initial values

are put in to Python that writes the values to the material �le and uses Abaqus

as the FE-solver. When analysis is completed, the values are extracted in to

Python where the error measure f is calculated. If f > tol Python writes new

values to the material �le and the optimization loop continues until f < tol and

the values are accepted.

Accept parameters if 
f < tol

Initial values

Figure 7.4: Flow chart

3Why only these points are considered is because symmetry is used and only the points in

the second quadrant will be used in the simulations





Chapter 8

Test calibration

In this chapter a calibration of two example problems will be performed. The

motivation for this is to validate the underlying theory for the parameter iden-

ti�cation process as described in Chapter 4. The conclusions of these examples

will be presented in the end of this chapter. The calibration will be based on

the global force versus displacement �eld and also displacements on a number

of chosen points in the body. The geometries of the two examples are shown in

Fig. 8.1.

(a) (b)

Figure 8.1: a) Problem 1 b) Problem 2

Usually, experimental data are subjected to measurement errors, making it

complicated to solve the inverse problem given by (4.4). Instead, when ver-

ifying if the theory of parameter identi�cation works, numerically generated

experimental data will be used in the calibrations. The data will be created

by a uniaxial tensile test on both examples where symmetry will be used. The

specimens are given an elasto-plastic material model with von Mises isotropic

hardening, see Chapter 6.1. When calibrating the material parameters, the ex-

act same geometry is used with the same material model, but with a di�erent

set of material parameters. If the calibration is successful, this would result in

the same set of parameters with a small function value, f given by (4.10).
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8.1 Problem 1

The experimental data for problem 1 will be generated from the points on the

geometry shown in Fig. 8.2 and the material parameters are given known values

according to Table 8.1.

Table 8.1: Material parameters used to create virtual experimental data

E ν σy0 σy1 σy2 σy3 σy4

3000 0.27 8 15 25 35 50

Figure 8.2: Geometry and boundary conditions. Measurement points in colored

dots

The results from the parameter identi�cation with the highest and lowest

function value are shown in Fig. 8.3. Both runs are shown to give an idea

of how much the simulation with the highest function value di�ers from the

simulation with the best. The start and end values for the parameters are given

in Table 8.2 and 8.3 respectively. The correlation matrix is given by (8.1).

Table 8.2: Material parameters at the start of the parameter identi�cation pro-

cess

E ν σy0 σy1 σy2 σy3 σy4

Start1 3500 0.22 12 19 29 39 54

Start2 3300 0.25 10 17 27 37 52

cos Φij =


1 −0.029 0.27 −0.226 −0.116 NaN NaN

−0.029 1 −0.03 0.056 0.006 NaN NaN
0.27 −0.03 1 −0.765 −0.792 NaN NaN
−0.226 0.056 −0.765 1 0.282 NaN NaN
−0.116 0.006 −0.792 0.282 1 NaN NaN
NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN

 (8.1)
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Table 8.3: Material parameters at the end of the parameter identi�cation process

E ν σy0 σy1 σy2 σy3 σy4 f

End1 4544 0.338 9.17 17.27 28.7 40.23 46.68 0.57

End2 3007 0.2706 7.99 14.99 24.92 39.73 48.78 0.025

(a) Global force vs. displacement run 1 (b) Global force vs. displacement run 2

(c) x-displacement vs. time run 1 (d) x-displacement vs. time run 2

(e) y-displacement vs. time run 1 (f) y-displacement vs. time run 2

Figure 8.3: Results from simulations compared to virtual experimental data
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8.2 Problem 2

The experimental data for problem 2 will be generated from the points on the

geometry shown in Fig. 8.4 and the material parameters are given known values

according to Table 8.4.

Table 8.4: Material parameters used to create virtual experimental data

E ν σy0 σy1 σy2 σy3 σy4 σy5

1000 0.22 10 15 20 25 35 50

Figure 8.4: Geometry and boundary conditions. Measurement points in colored

dots

The results from the parameter identi�cation with the highest and lowest

function value are shown in Fig. 8.5 and 8.6. The parameters start and end

values are given in Table 8.5 and 8.6 respectively. The �rst and fourth run are

shown to give an idea of how much the simulation with the highest function

value di�ers from the simulation with the best. The correlation matrix is given

by (8.2).

Table 8.5: Material parameters at the start of the parameter identi�cation pro-

cess

E ν σy0 σy1 σy2 σy3 σy4 σy5

Start1 800 0.27 13 18 23 28 38 53

Start2 900 0.2 8 13 18 23 33 48

Start3 1100 0.24 12 17 22 27 37 52

Start4 1050 0.2 9 16 19 26 34 51



Problem 2 55

Table 8.6: Material parameters at the end of the parameter identi�cation process

E ν σy0 σy1 σy2 σy3 σy4 σy5 f

End1 1364 0.265 11.4 16.7 23.2 28.6 38.8 54.1 0.39

End2 884 0.219 8.8 13.3 17.6 21.7 33.8 46.5 0.15

End3 1200 0.24 11.1 16.4 22.5 27.1 36.4 55 0.29

End4 990 0.219 9.85 14.78 19.7 24.7 34 51.75 0.038

cos Φij =


1 0.126 0.594 −0.41 −0.39 −0.056 −0.063 NaN

0.126 1 0.002 −0.052 0.063 0.043 0.048 NaN
0.594 0.002 1 −0.358 −0.76 −0.257 −0.121 NaN
−0.41 −0.052 −0.358 1 0.158 −0.131 −0.092 NaN
−0.39 0.063 −0.76 0.158 1 0.567 0.341 NaN
−0.056 0.043 −0.257 −0.131 0.567 1 0.438 NaN
−0.063 0.048 −0.121 −0.092 0.341 0.438 1 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

 (8.2)

(a) Global force vs. displacement run 1 (b) Global force vs. displacement run 4

(c) x-displacement vs. time, point 1,2,3 run 1 (d) x-displacement vs. time, point 1,2,3 run 4

Figure 8.5: Results from simulations compared to virtual experimental data
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(a) x-displacement vs. time, point 4,5,6 run 1 (b) x-displacement vs. time, point 4,5,6 run 4

(c) y-displacement vs. time, point 1,2,3 run 1 (d) y-displacement vs. time, point 1,2,3 run 4

(e) y-displacement vs. time, point 4,5,6 run 1 (f) y-displacement vs. time, point 4,5,6 run 4

Figure 8.6: Results from simulations compared to virtual experimental data
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8.3 Conclusions

Figure 8.3, 8.5 and 8.6 shows how well adjusted the simulated data from the

best run is with the experimental results of the two problem examples. Since

the simulated curves �t the experimental results very well, the parameter iden-

ti�cation seems to be successful which can be con�rmed from Table 8.3 and 8.6

where there is a small function value on the second and fourth run respectively.

Why some of the parameters deviates signi�cantly more from the correct value

than the other parameters can be explained by (8.1) and (8.2) where the NaN

expression indicates that these parameters are not activated during this test.

There is simply not enough plastic deformation in the body to activate these

and therefore impossible to calibrate.

From (8.1) and (8.2) one can see there is a very small correlation between

Young's modulus and Poisson's ratio. This con�rms that they describe two

di�erent behaviors of the material and are possible to identify with this type of

model which con�rms that the correlation matrix is a good tool for determining

the parameters linear dependency.

One discovery that was made during this calibration is the great importance

of what the initial values are. Table 8.3 and 8.6 shows that if a start value is

far away from the correct value the Nelder-Mead algorithm have trouble �nding

the most optimal solution. Once it have converged to a local minima it can

never �nd the global minima. As can be seen in Fig. 8.3, 8.5 and 8.6 there is a

noticeable di�erence between the runs which indicates it is important to try a

number of di�erent starting values and in the end, choose the parameters that

gives the lowest function value. It can also be seen in these �gures that it is

the global force versus displacement �eld that is most dependent of the �nal

parameters, while the displacements in the specimen do not di�er as much.

Therefore it is also concluded that a normalization of the variables according

to (4.9) is important so that every variable gives the same percentage deviation

for the optimization.





Chapter 9

Results

This chapter presents the results from all the various simulations with the ma-

terial models described in Chapter 6. The geometry that was used is the one

shown in Fig. 7.3. Due to lack of time, only simulations on HDPE 50mm/min

were performed. Every material parameter with its start and end values with

corresponding function value are presented in tables in each section. For some

material models, the plastic strains are needed as indata, these are given as sub-

scripts on the yield stresses in brackets. Each table ends with a summary of how

many iterations that was needed for the optimization to converge and the total

time for each simulation with the lowest function value. The motivation for this

is to present an estimation of how long time1 each simulation with each material

model takes. Figure 9.1 shows an example of where a simulation is assumed to

have converged indicated with a red dot. For each simulation the force versus

displacement is presented. The simulations have been performed on a Windows

based computer, running a dual core with 4GB RAM using Abaqus Standard.

Figures showing the displacement in each individual point in the specimen are

given in Appendix B.

Figure 9.1: Illustration of the convergence point in the results

1This is a rough approximation since the number of iterations is greatly dependent of the

starting values
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9.1 Elasto-plasticity

Table 9.1: Start/End values from simulations of the elasto-plastic model

Elasto-plastic model

Mat. par. Start1 End1 Start2 End2 Start3 End3

E 420 409.1 850 573.5 560 573.2

ν 0.22 0.25 0.225 0.247 0.25 0.256

σy0 7.7[0.0] 7.1 8.5[0.0] 6.56 8[0.0] 7.54

σy1 14.7[0.005] 14.4 13.5[0.005] 13.2 13[0.005] 17.46

σy2 21.3[0.01] 21.1 22[0.01] 18.85 20[0.01] 19.1

σy3 24.9[0.1] 25.8 27[0.05] 29.5 36[0.1] 49.7

σy4 33.8[0.6] 33.5 35[0.1] 42.35 37[0.3] 26.8

σy5 - - 41[0.3] 40.4 42[0.6] 50.8

f1 = 94.49 f2 = 68.93 f3 = 68.89

Iterations : 300 | Time/iteration : 36 sec. |
∑
time : 3h : 00min.

T ime/iteration 3D : 48 sec. | f3
3D = 67.6

Figure 9.2: Global force vs. displacement with the elasto-plastic material model,

run 3
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9.2 Hyper-elasto-plastic

9.2.1 Neo-Hookean form

Table 9.2: Start/End values from simulations of the Neo-Hooke model

Neo-Hooke model

Mat. par. Start1 End1 Start2 End2 Start3 End3

C10 70 50.6 110 114.3 70 107.1

D1 0.01 0.013 0.005 0.0053 0.01 0.005

σy0 10[0.0] 5.7 8[0.0] 5.9 10[0.0] 8.6

σy1 18[0.2] 19.5 13[0.005] 16.3 18[0.005] 18.4

σy2 20[0.4] 17.3 20[0.01] 18.2 20[0.01] 19.1

σy3 25[0.6] 20.9 38[0.1] 49.8 25[0.1] 51.6

σy4 36[0.8] 59.8 40[0.3] 36.2 36[0.3] 35.1

σy5 45[1.0] 64.8 45[0.6] 42.1 45[0.6] 48.6

f1 = 82.89 f2 = 69.06 f3 = 69.01

Iterations : 220 | Time/iteration : 34 sec. |
∑
time : 2h : 05min.

Figure 9.3: Global force vs. displacement with the Neo-Hooke material model,

run 3
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9.2.2 Arruda-Boyce form

Table 9.3: Start/End values from simulations of the Arruda-Boyce model

Arruda-Boyce model

Mat. par. Start1 End1 Start2 End2 Start3 End3

µ 175 222 250 87.8 250 220.5

λm 5 6.22 3 1.1 3 5

D 0.015 0.006 0.01 0.005 0.01 0.005

σy0 8[0.0] 4.6 5[0.0] 8.3 5[0.0] 5.5

σy1 13[0.005] 12.8 11[0.005] 13.8 11[0.005] 13.0

σy2 20[0.01] 18.5 15[0.01] 19.9 15[0.01] 20.0

σy3 30[0.1] 37.9 40[0.1] 44.9 40[0.1] 38.0

σy4 36[0.6] 41.7 45[0.3] 48.2 45[0.3] 41.6

σy5 42[1.0] 45.9 50[0.6] 49.0 50[0.6] 50.5

f1 = 70.5 f2 = 69.25 f3 = 69.25

Iterations : 90 | Time/iteration : 25 sec. |
∑
time : 0h : 38min.

Figure 9.4: Global force vs. displacement with the Arruda-Boyce material

model, run 3
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9.2.3 Mooney-Rivlin form

Table 9.4: Material parameters used in the Mooney-Rivlin model

Mooney-Rivlin model

Mat. par. Start1 End1 Start2 End2 Start3 End3

C10 300 217.9 150 298 300 292.7

C01 100 103.3 125 96.1 100 96.7

D1 0.005 0.0057 0.01 0.0051 0.005 0.0052

σy0 8[0.0] 8.2 5[0.0] 2.1 4[0.0] 1.1

σy1 10[0.01] 14.9 11[0.005] 10 10[0.005] 11.5

σy2 30[0.1] 49.8 15[0.01] 16.7 15[0.01] 15.6

σy3 50[0.3] 36.6 40[0.1] 46.5 50[0.1] 52.1

σy4 40[0.6] 47.1 45[0.3] 41.4 40[0.3] 45.5

σy5 45[1.0] 43.5 50[0.6] 47.4 45[0.6] 44.4

f1 = 69.82 f2 = 68.99 f3 = 68.82

Iterations : 170 | Time/iteration : 30 sec. |
∑
time : 01h : 25min.

Figure 9.5: Global force vs. displacement with the Mooney-Rivlin material

model, run 3
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9.3 PolyUMod

9.3.1 Bergström-Boyce

Table 9.5: Start/End values from simulations of the Bergström-Boyce model

Bergström-Boyce model

Mat. par. Start1 End1 Start2 End2 Start3 End3

µ 1 2.6 150 129 6.62 3.52

λL 4 3.98 4 3.38 4.72 5.55

κ 100 81.5 2500 2287 100 80.4

s 3 3.23 3 4.87 19.85 39.4

ξ 0.05 0.052 0.05 0.049 0.15 0.22

C -0.5 -0.52 -0.5 -0.46 -0.47 -0.457

τBase 4 3.55 4 3.79 24.36 29.2

m 5 5.44 5 3.96 23.5 24.5

τ̂cut 0.01 -0.002 0.01 0.011 0.01 0.0017

f1 = 139.17 f2 = 130 f3 = 127.4

Iterations : 250 | Time/iteration : 195 sec. |
∑
time : 13h : 32min.

Figure 9.6: Global force vs. displacement with the Bergström-Boyce material

model, run 3



PolyUMod 65

9.3.2 Hybrid

Table 9.6: Start/End values from simulations of the Hybrid model

Hybrid model

Mat. par. Start1 End1 Start2 End2 Start3 End3

E 500 449 2000 1012 728 569.3

ν 0.46 0.39 0.4 0.25 0.21 0.26

µA 13.32 18.1 20 28.8 22.5 26.3

λL 2.25 1.58 3 3.8 3.15 3.9

q 0.01 0.11 0.03 0.04 0.055 0.04

κ 5000 7459 4000 4882 6000 5781

sBi 10 4 30 10.3 36 37.1

sBf 20.6 88.7 8 5.4 21.5 18.6

αB 223.2 228.2 17 18.4 20 18.1

τBbase 26.6 0 38 34.8 35 33.2

mB 6.28 19.7 12 12.7 4 2.6

p̂ 200 92 300 252.3 300 280.5

τpbase 6.6 26 20 22.4 15 18.0

mp 5 3.8 9 9.3 3.38 4.8

f1 = 104 f2 = 77 f3 = 68.9

Iterations : 450 | Time/iteration : 150 sec. |
∑
time : 18h : 45min.

T ime/iteration 3D : 900 sec. | f3
3D = 68.99

Figure 9.7: Global force vs. displacement with the Hybrid material model, run

3
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9.3.3 Three network

Table 9.7: Material parameters used in the three network model

Three network model

Mat. par. Start1 End1 Start2 End2 Start3 End3

µA 238.9 227.9 192 185.2 100 75.9

θ̂ 999 999.7 999 991 800 843.4

λL 2.28 2.17 3.1 3.0 7.0 7.3

κ 2000 1946 2000 2003 2500 2575

τ̂A 6.05 5.58 7.3 6.7 12.0 11.5

a 1.4E-4 7.4E-3 1.2E-4 5.2E-3 0.007 0.0064

mA 6.9 2.91 9.7 3.1 3 1.41

n 0.01 0.009 0.01 0.008 0.001 0.0018

µBi 76.5 92.5 131.9 133.7 150 145.8

µBf 69.84 69.82 48.3 48.8 60 61.4

β 12.4 12.0 11.1 10 10 9.6

τ̂B 22.6 21.3 25.4 25.5 25 23.2

mB 11.1 10.8 9.7 10.1 15 14.2

µC 7.2 9.6 8.3 9.4 12 13.3

q 0.2 0.12 0.2 0.1 0.1 0.244

α E-7 E-4 E-7 4E-4 2E-5 2.8E-4

θ0 293 293 293 293 293 293

f1 = 129.6 f2 = 129.0 f3 = 126.9

Iterations : 200 | Time/iteration : 210 sec. |
∑
time : 11h : 35min.

Figure 9.8: Global force vs. displacement with the Three-Network material

model, run 3
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9.4 Summary - Results

Figure 9.9 shows a summary from all the simulations, containing the �nal func-

tion values and the simulation times for the runs with the lowest function value

of each material model.

Figure 9.9: Summarize of time and function values for the di�erent material

models
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Concluding remarks

This �nal chapter summarizes the various problem and di�culties that was

encountered during this thesis. Discussions regarding the simulations and results

are given. Finally, suggestions on further work that could be performed are

presented.

10.1 Discussion

As previously mentioned, only simulations on HDPE 50mm/min have been per-

formed. All the simulations have been performed on the same computer, so that

the simulation time is comparable with every material model. As can be seen

in Chapter 9, the �nal function values does not di�er much between the various

material models. The material models that have the most problem simulating

the polymer were the Bergström-Boyce and Three-Network. This is a rather

mysterious behavior since these models contain many parameters that should

be able to be calibrated to get even better results than Abaqus built in models.

Two possible explanations for this are that either are not enough simulations

performed or there could be a numerical error in the Python scipt.

The main di�erence between the simulations is the simulation time for the

optimization to converge. Turning the interest towards Fig. 9.9 one can see

that the Bergström models are taking signi�cantly more computer time than

Abaqus own built in models. One possible reason for this is because they are far

more advanced than Abaqus built in models. Therefore they need more time to

complete the numerical calculations due to a large amount of parameters. The

models showing best results are the Arruda-Boyce and Mooney-Rivlin model

since they shows low function values with short simulation times.

It can be seen from the results in Appendix B that every material model have

trouble capturing the large deformations close to the nodge, speci�cally point

B1 in the y-direction. On the other hand, the contractions in the x-direction for

every point are better captured in the simulations. One possible explanation

for this is that the deformation in the x-direction is much smaller than in the

y-direction.
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To treat the body as a two-dimensional geometry was successful. Table 9.6

shows that the function value is close to the three-dimensional value, and that

the three-dimensional geometry needs more simulation time for one iteration.

Once the script for the parameter identi�cation was established it was easy

to use di�erent material models. The big di�culty was to assign good initial

values with corresponding constraints. This have been an important discovery

since the �nal parameters are greatly dependent on this which can be seen from

the results. Therefore it is important to try out a number of di�erent sets of

starting values of the material parameters. As can be seen from the �gures in

Appendix B.5 and Appendix B.7 for the Bergström-Boyce and Three-Network

models, these results do not seem to be optimal solutions since all the simulated

curves indicates that the material is not sti� enough. Therefore, further simu-

lations with di�erent starting values on the parameters describing the sti�ness

should be performed. The material models that were most di�cult to calibrate

were the ones from the PolyUMod library. This because they are very ad-

vanced and to know each parameters property requires extensive knowledge in

both mathematics and constitutive modeling. The PolyUMod calibration tool

was used for these advanced models to make sure that constraints were given

reasonable values within physical limitations.

Once the parameters are assigned with reasonable values, the optimization

procedure with the Nelder-Mead simplex algorithm seems to be very robust and

a solution to the inverse problem was always found.

One important discussion is the possibility of performing another type of

experiment. The experiment used in this thesis was a simple monotone loading

of the specimen. With this type of experiment it is impossible to evaluate how

the material has hardened during the loading. Therefore an experiment with

cyclic loading which initially loads, unloads and loads again could be made

to know how the material hardens during the loading. This is an important

property to know since many types of packages are subjected to this kind of

load, i.e. the opening procedure of a cap. In Appendix C, (C.1) and (C.2) shows

two correlation matrices from a monotone and a cyclic loading respectively with

the Mooney-Rivlin model. It can be seen that the correlation matrix from the

cyclic load triggers more parameters and lowers their linear dependency which

could mean that this type of test can calibrate both Abaqus built in models

and especially the models from the PolyUMod material library better than the

monotone load.

10.2 Future work

Since there is a time limit of this work there are areas that could not be covered.

During the work new questions came up and ideas developed which could be of

interest to examine.

• Verify the implementation of the Python script.

• Perform new experiments containing cyclic loading. This to be able to
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calibrate the material models better, which in the end can give better

simulations and more accurately capture the behavior of the material.

• Try out di�erent geometries of the test-specimen for the experiments. This

could as well as a cyclic loading help calibrating more parameters in the

material models. This can be examined without a physical experiment in

Abaqus by deriving the correlation matrix for di�erent geometries.

• Run simulations that contain both test speeds to be able to better calibrate

the parameters describing the rate-dependent response.

• Due to the lack of time, simulations on all test speeds and materials was

not made during this work. This could also be done in a future work.





Appendix A

ARAMIS results

The following sections presents the results from the ARAMIS tensile test for

HDPE and LDPE respectively. Each section starts with the global force ver-

sus displacement registered from the clamps. After this, the displacement

�elds for the x and y-directions (relative due to symmetry) for the �ve points

A1,A2,B1,B2,C1 in the second quadrant are presented. The y-displacement for

point C1 is always zero due to the relative value and is therefore not presented.
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A.1 HDPE

Figure A.1: Global force vs. displacement

(a) x-direction (b) y-direction

Figure A.2: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure A.3: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure A.4: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure A.5: Displacement vs. time B2

(a) x-direction

Figure A.6: Displacement vs. time C1
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A.2 LDPE

Figure A.7: Global force vs. displacement

(a) x-direction (b) y-direction

Figure A.8: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure A.9: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure A.10: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure A.11: Displacement vs. time B2

(a) x-direction

Figure A.12: Displacement vs. time C1
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Results from simulations

HDPE 50mm/min

The following sections presents the results from the the simulations in Abaqus

with all the material models. The �gures shows the results from the simulations

with the lowest function value.
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B.1 Elasto-plasticity

Figure B.1: Global force vs. displacement

(a) x-direction (b) y-direction

Figure B.2: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure B.3: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure B.4: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure B.5: Displacement vs. time B2

(a) x-direction

Figure B.6: Displacement vs. time C1
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B.2 Neo-Hooke

Figure B.7: Global force vs. displacement

(a) x-direction (b) y-direction

Figure B.8: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure B.9: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure B.10: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure B.11: Displacement vs. time B2

(a) x-direction

Figure B.12: Displacement vs. time C1
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B.3 Arruda-Boyce

Figure B.13: Global force vs. displacement

(a) x-direction (b) y-direction

Figure B.14: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure B.15: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure B.16: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure B.17: Displacement vs. time B2

(a) x-direction

Figure B.18: Displacement vs. time C1
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B.4 Mooney-Rivlin

Figure B.19: Global force vs. displacement

(a) x-direction (b) y-direction

Figure B.20: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure B.21: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure B.22: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure B.23: Displacement vs. time B2

(a) x-direction

Figure B.24: Displacement vs. time C1
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B.5 Bergström-Boyce

Figure B.25: Global force vs. displacement

(a) x-direction (b) y-direction

Figure B.26: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure B.27: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure B.28: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure B.29: Displacement vs. time B2

(a) x-direction

Figure B.30: Displacement vs. time C1
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B.6 Hybrid

Figure B.31: Global force vs. displacement

(a) x-direction (b) y-direction

Figure B.32: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure B.33: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure B.34: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure B.35: Displacement vs. time B2

(a) x-direction

Figure B.36: Displacement vs. time C1
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B.7 Three network

Figure B.37: Global force vs. displacement

(a) x-direction (b) y-direction

Figure B.38: Displacement vs. time A1

(a) x-direction (b) y-direction

Figure B.39: Displacement vs. time A2
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(a) x-direction (b) y-direction

Figure B.40: Displacement vs. time B1

(a) x-direction (b) y-direction

Figure B.41: Displacement vs. time B2

(a) x-direction

Figure B.42: Displacement vs. time C1
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Correlation matrix for

monotone versus cyclic

loading

Equation (C.1) shows the correlation matrix for the experiment used in this

thesis and (C.2) from a simulation on the same dog-bone specimen during a

cyclic loading using the Mooney-Rivlin material model.

cos Φij =


1 −0.182 0.843 0.315 0.473 0.416 −0.048 −0.402 NaN

−0.182 1 −0.149 −0.195 −0.042 −0.175 0.098 0.179 NaN
0.843 −0.149 1 0.197 0.187 0.510 0.228 −0.262 NaN
0.315 −0.195 0.197 1 0.162 0.014 −0.010 −0.025 NaN
0.473 −0.042 0.187 0.162 1 −0.112 −0.234 −0.040 NaN
0.416 −0.175 0.510 0.014 −0.112 1 −0.576 −0.419 NaN
−0.048 0.098 0.228 −0.010 −0.234 −0.576 1 0.239 NaN
−0.402 0.179 −0.262 −0.025 −0.040 −0.419 0.239 1 NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN

 (C.1)

cos Φij =


1 −0.420 0.484 0.023 0.084 −0.112 −0.317 −0.215 −0.153

−0.420 1 −0.280 −0.079 0.003 0.032 0.070 0.167 0.111
0.484 −0.280 1 0.170 0.158 0.275 0.148 −0.256 −0.157
0.023 −0.079 0.170 1 0.192 0.080 0.013 −0.055 −0.023
0.084 0.003 0.158 0.192 1 0.139 −0.211 −0.093 −0.038
−0.112 0.032 0.275 0.080 0.139 1 −0.629 −0.482 −0.202
−0.317 0.070 0.148 0.013 −0.211 −0.629 1 0.317 0.100
−0.215 0.167 −0.256 −0.055 −0.093 −0.482 0.317 1 0.679
−0.153 0.111 −0.157 −0.023 −0.038 −0.202 0.100 0.679 1

 (C.2)
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