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Abstract

Polycrystalline materials are defined as materials that contain several grains
oriented in different directions. The material model used for polycrystalline
materials can for example be crystal plasticity where each grain, on a micro-
scopic level is observed in the aspects of stresses and stiffness.

What many do not realize is that a computer’s graphics card also include a
processing hardware, GPU (Graphics Processing Unit) that have previously only
been used in calculations related to computer graphics. This type of hardware
consist of a multi-core processing unit to do massively parallel calculations. This
technology can have a big impact on the computationally demanding analysis
as crystal plasticity.

In this thesis a FE analysis, where the material behavior is described by a crystal
plasticity model, has been changed to be executed on the GPU, this resulted in
a speed up dependant of the number of grains considered. The result have only
speed up impact when the number of grains are over 400, around 1200 the total
speed up are around 2 times the original CPU program. Although the results
show a positive increase in speed, this is not a programming structure that is
suitable for GPU calculation, due to many constraints of syntax and a memory
management that is not suitable for the GPU.
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Chapter 1

Introduction

In the material model crystal plasticity for polycrystalline materials each grain,
on a microscopic level is observed in the aspects of stresses and stiffness. In
recent years the development of graphics cards has made it possible to use a new
programming technology that uses the graphics card’s multi- core processing
unit to do massively parallel calculations. This technology can have a big impact
on the computationally demanding analysis of polycrystalline materials.

GPU programming is evaluated by implementing crystal plasticity FE analysis
on a Cook’s membrane where grain stiffness and tension are calculated on the
graphic card. The influence the number of grain has on the calculation speed is
also examined by changing the number of grains in the analysis.

1.1 Objectives

The purpose of this thesis is to study the use of parallel programming when
solving FE equations using polycrystalline materials. The programming ar-
chitecture evaluated is CUDA in the language FORTRAN through Portland
Groups compiler CUDA FORTRAN.

1.2 Disposition

The report begins with a short background on CUDA and also on modeling
of polycrystalline materials. The next chapter starts with the numerical im-
plementation followed by the implementation and the changes due to the im-
plementation of CUDA architecture. The last chapter consists of results and
conclusions.



Chapter 2

Background - CUDA and
GPU programming

2.1 CUDA

Regular programs typically uses the computer’s CPU (Central Processing Unit)
to solving calculation problems. What many do not realize is that a computer’s
graphics card also include a processing hardware, GPU (Graphics Processing
Unit) that have previously only been used in calculations related to computer
graphics. In recent years, a massive performance development has been taking
place on the graphics cards due to the demands of the gaming industry.

In 2007 the graphics card developer NVIDIA introduced a new technology called
CUDA (Compute Unified Device Architecture) that is an architecture that have
made it possible to handle calculations on both the CPU and the GPU using the
programming language C. This have made it possible to use the big advantage
of parallel calculation on the multi core GPU.

After NVIDIA’s launch several software companies processed the technology,
such as the Portland Group, which has developed a FORTRAN compiler see
section 2.2. Also EM Photonics, which has developed a library corresponding
to LAPACK performing linear algebra calculations in parallel on the GPU for
more info see section 2.3.



2.1.1 CUDA Overview

Some of NVIDIAs CUDA architecture terminology is listed below and will be
used throughout the thesis.

Host Application or data handled by the CPU.

Device Application or data handled by the GPU.
Kernel Application written to be executed on the GPU.
Thread An execution of a kernel with a given index.
Block A group of threads.

Grid A group of blocks. The grid is handled and executed on a single device
(GPU chip)

MP The GPU chips are organized in a collection of multiprocessors (MP) where
one MP is responsible of handling one or more blocks in a grid. When the
number of blocks are bigger than number of MPs a schedule will determine
which block will be executed.

SP Each MP is divided into a number of stream processors (SP). Where each
SP is handling one or more threads in a block.

The total amount of CUDA cores are defined by MP x SP.

In this context a application can be a main-, sub- program or function.



2.1.2 CUDA Memory Overview

CUDA memory spaces differs from the usual host memory, first because it is
a hardware card that comes with its own synchronous dynamic random access
memory (SDRAM), corresponding to an ordinary RAM memory which every
computer has. In order to execute a program on the GPU, this requires that
memory transfers from the host memory to the memory allocated on the device.
Then, to examine the results it is necessary to transfer it back to the host from
the device.

» Device code can: (Device) Grid
— R/W per-thread registers Block (0, 0) Block(1, 0)

— R/W per-thread local memory

— R/W per-block shared memory
— R/W per-grid global memory

Thread (0, 0) | Thread (1, 0)|  Thread (0, 0) | Thread (1, 0)
171 1 11

— Read only per-grid constant
memory
» Host code can

— R/W per grid global and Host
constant memories

Figure 2.1: CUDA memory overview [2]

Global Memory

As seen in figure 2.1 the global memory is accessible during read or write from
the host and also from the unique threads in the device. This is a big memory
stored off chip in a bank of SDRAM chips, which makes it very slow to access.
The reason for this is that the location on SDRAM tends to have long access
latencies and also a finite access bandwidth. This can result in a poor execution
time with too many threads with global memory requests. This memory type
can also be called device memory.

Shared Memory

A small memory located on the chip, divided between the blocks. This memory
is only accessible for threads within the block that are executed by the current
MP. Due to the fact that it is stored on the chip contribute to high access
performance.



Constant Memory
A read-only memory type for the device but read or write accessible for the

host. Constant memory is also located on the chip which makes the access
performance very high.

Registers
A scalar memory type that is assigned to each thread. It is handled by, and
located on, the MP which makes the access performance very good. When

registers runs out each thread gets assigned local memory which is located in
the global memory.

Local Memory

A read or write memory for each thread located on the global memory which
makes it also very slow to access.

2.1.3 Specification TESLA C2050

The card used in this thesis is NVIDIA TESLA C2050, the specification is shown
below.

CUDA Capability version: 2.0

Number of cores: 14 (MP) x 32 (SP) = 448
Clock rate: 1.15 GHz

Total amount of global memory: 2817982464 bytes

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 32768

Maximum size of each dimension of a block: 1024 x 1024 x 64
Maximum size of each dimension of a grid: 65535 x 65535 x 1




2.2 PGI CUDA Fortran

The Portland Group Inc have developed a compiler called PGI CUDA Fortran
which has a built-in support for using CUDA architecture in addition to stan-
dard FORTRAN.

CUDA C and also CUDA Fortran are lower-level explicit programming models
together with a library of runtime components that gives the programmer a
direct control of most aspects of GPU programming.

When NVIDIA launched CUDA the main area was computational parallel pro-
gramming, this through various libraries and a C compiler, CUDA C. CUDA
fortran as well as CUDA C is a lower-level explicit programming model with
many runtime library components.

CUDA Fortran makes it possible to use the following operations in a fortran
program

-Declaring variables that are allocated in the GPU device memory
-Allocating dynamic memory in the GPU device memory

-Copying data from the host memory to the GPU memory , and back
-Writing subroutines and functions to execute on the GPU

-Invoking GPU subroutines from the host

CUDA Fortran is built by using the PGI Fortran compiler with the filename
extension .cuf which is a free-format CUDA Fortran. Although the flag -Mcuda
is required by the PGI Fortran compiler.



2.2.1 SUBROUTINE and FUNCTIONS

To designate where a subroutine or function will be executed is defined through
additional attributes as:

Attributes(host)

This type of declaration is the same as in standard FORTRAN, and is also the
default when no attribute is declared and will just mean that the subroutine is
executed on the host.

Attributes(global)

A subroutine with the attribute global is a kernel subroutine or also called device
kernel, because it is executed on the device. Invoking of a device kernel is done
by the use of special chevron, which determines the number of thread blocks
that will be used and the number of threads containing in each thread block.

Parallelization is done according to the number of threads and blocks that are
specified when invoking the device kernel. The device kernel will then be ex-
ecuted in parallel with the only difference that the internal variables threadidx
and blockidr will vary between 1 and the number of threads and blocks that
you define at the call of the device kernel. By calling a device kernel with 1,1
within chevrons makes it a non parallel execution. This can be usefull if you
want to call a subroutine that will be execution on the GPU as serial code.

Example:

attributes(global) subroutine kernel(...)

To invoke a device kernel:

call kernel<<<dimGrid,dimBlock>>>(...)

Attributes(device)

A subroutine or function with the attribute device will be compiled for execution
on the device. This type of subroutine or function can only be invoked by
another subroutine with the attribute device or global and must also appear in
the same MODULE as the subroutine that invoked it.

Example:

attributes(device) subroutine deviceSub(...)

attributes(device) function deviceFunc(...)



Restrictions on the device subprogram

A subroutine or function with the attribute global or device is a device sub-
program and has to satisfy some restrictions. It can’t call a host subroutine or
function, neither can it be recursive. There are also restriction in standard For-
tran intrinsic functions, for example MATMUL is not allowed. Input and output
statements as for example READ,WRITE and PRINT are not allowed either.
Objects with the attribute pointer or allocatable are not allowed in subprograms
and neither are automatic arrays without fixed size. Device subprogram can’t
handle a temporary array definition for example

A= (/1,1,1/)

which is the standard way to assign an array, instead it have to be done element
wise.

2.2.2 Variable attributes

Device data

The attribute device define the array to be in the global memory space. The
declaration of device data is made according to:

double precision, device :: a(10)

When calling a device subprograms with dummy arguments, to get the corre-
sponding size a integer with the attribute value have to be declared. Integer
with the attribute value don’t have to be located on the device memory which
can be usefull in other cases as well.

attributes(global) subroutine dev_kernel(a,b,n)
double precision, dimension(un,n) :: a,b
integer, value :: n

here are ¢ and b dummy arrays and n dummy argument.

Shared data
The attribute shared defines the array to be located at the chip (in the shared
memory) and must follow the same criterion as the device data type.

double precision, shared :: a(10)

Constant data

The attribute constant defines the array to be of the type constant data and
can be define according to

double precision, constant :: a(10)

As defined in section 2.1.2, constant data can only be written by the host.
Constant data arrays have to be fixed size and can not be allocatable.



Data transfer

Data transfers by using standard F90 assignment are shown below, here the
variable a and b are host arrays while adev and bdev are device arrays located
on the global memory slot.

a = adev
adev = a
b = a + adev

The assignment shown below are not legal because of where the actual compu-
tation will be performed is not explicit defined

a = adev + bdev
adev = adev + a

As shown in figure 2.1 on page 4 data transfer between shared memory and host
is not allowed.

2.2.3 Compute compatibility

To let the compiler know what kind of hardware that is used for the calculation
PGI have a flag that determine the kind of compute compatibility of the hard-
ware. The compute compatibility is defined by NVIDIA and will just determine
which kind of CUDA version that is used on the graphic card. The version
determine the amount of memory in the different slots, how many threads and
block that is available and even what kind of functions that are allowed. One
import function that is only available in version 1.3 or higher is double-precision
operation.

According to section 2.1.3, TESLA C2050 is of compute compatibility 2.0, then
the flag looks like -ta=nwvidia,cc20



2.2.4 Examples

To describe the benefits of using GPU parallelization and the differences com-
pared to serial CPU programs follows here an example of a matrix multiplication
that is well suited to parallelize using CUDA.

This program parallelizes using sub matrix multiplication and to avoid global
memory request, the sub matrices are copied to the shared memory. As de-
scribed in section 2.2.3 the hardware that is used is of compute compatibility
2.0 that makes it possible to use maximum sub matrix sizes of 32x32 otherwise
the shared memory block will be too small.

Time to calculate Matrix multiplication

1200~
—— GPU matmul
sun
1000 ——intel -O3
— pgfortran three nestled loop
‘\
800~ ﬂ
[
£ wor AL
: ||
WG
nw
‘ ﬂ W“W
400 ﬁ ‘ WW
ﬂ I I
ﬁ I M [
W
| ] |
200~ ‘ | | ‘L [V
\ﬂ | [
| b
gﬂ‘ fw'h»’““
0 B R J

\
0 2000 4000 6000 8000 10000 12000
Number of rows and cols

Figure 2.2: Example comparing MATMUL

A possible reason for the unusual appearance of intel-O3 can be that the curve
is created by ALLOCATE and DEALLOCATE a certain matrix size that can
be divided by 32 in a do loop, because this is the best way to use the GPU code.
This may have contributed to the irregular appearance of the graphs in figure
2.2.
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GPU times faster than SUN

Times faster

Passes 1 at 100 rows/cols

I I
0 2000 4000 6000 8000 10000 12000
Number of rows and cols

Figure 2.3: Example comparing MATMUL

From figure 2.2 is it clearly seen the advantage of using the GPU. Often you can
find test results that show the result where the GPU code is compared to a not
optimized CPU application as the test with PGFORTRAN in order to make
the GPU version look better. Figure 2.2 shows also how big the difference is
between compilers and the different kind of optimizations. The non- optimized
PGFORTRAN took 7 hours to calculated a matrix multiplication of 10592 rows
and cols compared to the fastest GPU which took 26 seconds. As figure 2.3 shows
the benefits start already when the size is 100 x 100 and have dramatically big
impact on speed over that.

The code used for GPU matmul can be seen on next page and illustrates many
different kinds of syntax differences to ordinary FORTRAN.
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module mmul_mod
use cudafor
contains

11 mmul_kernel computes A*B into C where A is NxM, B is MxL, C is then NxL

attributes(global) subroutine mmul_kernel( A, B, C, N, M, L )
double precision, device :: A(N,M), B(M,L), C(N,L)
integer, value :: N, M, L
integer :: i, j, kb, k, tx, ty

!'1! submatrices are declared to be in CUDA shared memory
double precision, shared :: Asub(32,32), Bsub(32,32)

111 the value of C(i,j) being computed, a temporary scalar
double precision :: Cij

' Start execution, first get my thread indices
tx = threadidx’x
ty = threadidxiy

'1! This thread computes C(i,j) = sum(A(i,:) * B(:,3j))
i = (blockidx%x-1) * 32 + tx
j = (blockidx%y-1) * 32 + ty

Cij = 0DO

!'11 Do the k loop in chunks of 32, the block size
do kb = 1, M, 32

111 Fill the submatrices; each of 32x32 threads in the thread block loads
11! one element of Asub and Bsub

Asub(tx,ty) = A(i,kb+ty-1)

Bsub (tx,ty) = B(kb+tx-1,j)

11! Wait until all elements are filled
call syncthreads()

'11 Multiply the two submatrices; ! Each of the 32x32 threads accumulates the
11! dot product for its element of C(i,j)

do k = 1,32
Cij = Cij + Asub(tx,k) * Bsub(k,ty)
enddo

!'11 Synchronize to make sure all threads are done reading the submatrices before
11 overwriting them in the next iteration of the kb loop
call syncthreads()

enddo

12



Each of the 32x32 threads stores its element to the global C array
C(i,j) = Cij

end subroutine mmul_kernel

The host routine to drive the matrix multiplication

subroutine mmul( A, B, C )

assumed shape input arrays
double precision, dimension(:,:) :: A, B, C

! Array dimensions

integer :: N, M, L

! allocatable device arrays

double precision, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev

! dim3 variables to define the grid and block shapes, predefined in cudafor

type(dim3) :: dimGrid, dimBlock
integer :: r

! Begin execution, first determine the sizes of the input arrays

N = size( A, 1)
M = size( A, 2 )
L = size( B, 2 )

! Allocate the device arrays using FO0 ALLOCATE

allocate( Adev(N,M), Bdev(M,L), Cdev(N,L) )

! Copy A and B to the device using F90 array assignments

Adev = A(1:N,1:M)
Bdev = B(1:M,1:L)

! Create the grid and block dimensions

dimGrid = dim3( N/32, L/32, 1)
dimBlock = dim3( 32, 32, 1)

! Launch the GPU kernel, wait for completion

call mmul_kernel<<<dimGrid,dimBlock>>>( Adev, Bdev, Cdev, N, M, L )
r = cudathreadsynchronize()

! Copy the results back

C(1:N,1:L) = Cdev

! Deallocate device arrays and exit

deallocate( Adev, Bdev, Cdev )

end subroutine mmul
end module mmul_mod

13



2.3 CULA

CULA is a linear algebra library that utilzes CUDA architcture to improve
computational speed. This is a way to use GPU parallel computing without any
experience of CUDA. CULA contains of librarys familiar to LAPACK interface,
which contains for examples of system solvers, eigenvalues routines, singular
value decomposition. This can be used in C, C++, FORTAN, Python and even
MATLAB through compiling a mex file.

The only requirements for using CULA is that an NIVIDA GPU with CUDA
support is install, to use double-precision operation the graphic card must be of
at least compute compability 1.3 see section 2.2.3.

To illustrate CULA, a program solving the linear equation system Ka = f is
shown below.

subroutine EQ_SOLVE(K,F,INF0)
implicit none

external CULA_INITIALIZE
external CULA_DGESV
external CULA_SHUTDOWN

double precision,intent(in) s K(G:yt)
double precision,intent(inout) :: F(:)
integer,intent (inout) :: INFO
integer :: NRHS=1, ndof
integer, allocatable :: IPIV(:)

integer :: CULA_INITIALIZE, CULA_DGESV, STATUS

ndof=size(K,1)
allocate(IPIV(ndof),STAT=status)

STATUS = CULA_INITIALIZEQ)

STATUS

CULA_DGESV( ndof, NRHS,K, ndof, IPIV, F, ndof, INFO )
call CULA_SHUTDOWN

deallocate (IPIV)

end subroutine eq_solve

14



Chapter 3

Background - Crystal
plasticity

3.1 Polycrystalline materials

Polycrystalline materials are defined as materials that contain several grains
oriented in different directions. In large deformation, crystal plasticity models
is often used and reflect the dislocations that occur in the material as slip
within a discrete slip system. Dislocations are defects in crystal structures,
caused by movement of atoms in the crystal. The movement of dislocations is
the mechanism behind plastic deformation.

This makes the model more accurate when studying deformation in polycrys-
talline materials, because the internal physics are considerad in a microscopic
level.

In this thesis the crystal structure FCC is considered which contains three slip
directions on four closed-packed planes, austenitic steel is a material of this
crystal structure.

Figure 3.1: FCC crystal structure with the plane (1,1,1) highlighted

15



3.1.1 Crystal plasticity model

Current

Reference configuration

configuration

Intermediate
configuration

Figure 3.2: Multiplicative split of the deformation gradient

The motion of particles in a body can be described by a particle changing posi-
tion from one to another. To observed this movement the deformation gradient
F is introduced that maps the line segments from the reference configuration to
the current configuration. To separate the reversible and the irreversible part
of the deformation gradient a new stress-free intermediate configuration is in-
troduced. This results in a multiplicative split of the deformation gradient, cf.

31, 141,

F =F°F? (3.1)

The time rate of the irreversible part of the deformation gradient is found by
introducing the plastic velocity gradient, IP

FP = IPF? (3.2)

The plastic deformation takes places on specific slip planes in a crystal plasticity
model. For FCC, the slip occurs in {111}(101) and the plastic evolution is
governed by [P on a macroscopic scale, here formed as the sum of the shear rate
in all slip systems, cf. [8]. Here {} specify a family of planes and () a family
of directions where slip occurs. The superscript « in equations (3.3) denotes an
index which range from 1 to n, where n is the number of slip systems.

16



"= 4"M"®N® (3.3)

a=1

Here is N the normal direction to the slip plane and M the slip direction
both defined in the intermediate configuration. Since the material directions
in the intermediate configuration are chosen to be coincident with the material
directions in the reference configuration the orientation of the slip system is not
updated. This can be viewed in figure 3.2.

The slip rate 4* is determined by a function containing the resolved shear
stresses,

Y =g(7%,...) (3.4)

The resolved shear stress can be seen as the shear stress acting on the slip plane
in the slip direction. Using the slip direction and the vector normal to the slip
plane described above, the resolved shear stress in intermediate configuration is
introduce as

7%= M*IN* (3.5)
where ¥ is the Mandel stress ¥ = R°TRT (F° = R°U*®) here R® and U*® are
the rotation and stretch of the elastic part of the deformation.

Due to that the intermediate configurations slip directions and slip planes are
assumed to be coherent with the orientation of the reference configuration, this
implies that the intermediate configuration is an isoclinic configuration, cf. [5].

Specific model, plastic part

The slip rate is then modeled by a power law, according to equation (3.6)

o - |7_a_ba| " a a
¥ —70(G0+Ga sgn(7% — b%) (3.6)

Here the parameters 49 and m are introduced as reference slip rate and rate
sensitivity. The resolved back stress b is introduced due to the directional
resistance of dislocation movements on slip system level. This results in a kine-
matic hardening on macroscopic level.

The first part of the slip resistance is GGy and reflects the lattice friction and is a
constant material parameter, cf. [6]. The second part G* manifest dislocation
movements due to short-range interaction between dislocations.

G*=Q hapg” (3.7)
B=1

17



where the cross hardening is defined as hag = dag + ¢(1 — 0ag)
Back stresses are local on each slip direction and are taken as b = Hv®

To determine v* an evolution law similar to Armstrong - Frederick, cf. [1] is
used according to equation (3.8). The evolution law for g% is used in similar
way to equation (3.8) according to [9] see equation (3.9)

Y =% — Ru®|y7| (3.8)
. |7 —b%| .
“=(1—-Bg¢g¥)———]1" 3.9
g =( g )GO+GQ ol (3.9)

In the plastic part following constants are material parameters, G slip resis-
tance, m rate sensitivity, Q and H hardening, ¢ latent-hardening, R the satu-
ration of v*, B the saturation of g*

Specific model, elastic part
The second Piola-Kirchhoff stress tensor is defined as
S = (Fr)y~Y(Co)~'=(FrT)~! (3.10)

where the Mandel stress tensor can be calculated as

oYe
oCe’

3 =2p,C* C®=FTF° (3.11)

and the thermodynamically properties are determined by the choice of the
Helmholtz free energy function as

poYc(CE,J) = K%((ln)J)Q + G - tr((InU*®) 4 (InU ) %<?) (3.12)

In the elastic part the material parameters are G the shear modulus and K the
bulk modulus. pg is the mass density in the reference configuration. An index i
was introduced in (3.12) to denote isochoric, i.e. volume preserving, quantities.

18



3.1.2 Numeric implementation

The crystal plasticity model is implemented in an ordinary Lagrangian formu-
lated FE program. The differences is that the stresses and stiffness are calculated
on a microscopic level in each grain. The algorithmic stiffness tensor is defined
in each grain as dS = DTS : dE this can be calculated as

d 0
DTS — i (7)) S ()T (3.13)
this is solved numerical by an Euler backward method where all the quantities
above are calculated in state n + 1. A common number of grains can be about
400 in each integration point but can also be well over 1000. This makes it a
very demanding analysis. For example an analysis with 372 four-node elements
with 400 grains in each integration point will take about a week with 600 load
step if run as a serial program on a desktop computer.

In this thesis an example considering a cyclic loading of Cook’s membrane is
performed. The dimension of the geometry can be seen in figure 3.3 where
Hy = 44mm, Hs = 16mm and L = 48mm. The geometry is modeled by
372 four-node fully integrated plane strain elements. In figure 3.3 u is a pre-
scribed displacement, because the right-hand side of the structure is clamped
the displacement can be applied in a single point. The displacement is described
according to u = 2.5sin(35t) where ¢ is the time in seconds. The number of
crystals in each integration point was then varied between 1 and 1200.

The result and the numerical implementation from the analyses are according
to cf. [7].

u

Hy

N

N

\
oy | N

N

N

N

N L

Figure 3.3: Geometry of Cook’s membrane
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The deformation gradient F' is assumed to be equal in all grain which is a result
of the Taylor assumption, introduced by Taylor, c¢f. [10]. This assumption
has the disadvantage of being kinematically over-constrain resulting in a too
stiff response. According to the Taylor assumption the second Piola-Kirchhof
stresses and the algorithmic stiffness tensor is then obtained through the average
over all the grains.

The overall scheme can be viewed in figure 3.4

Deformation gradient F

Crystal gr =1
Internal variablest
Stresses, S
ATS, D!

Crystal gr = 2
Internal variables?
Stresses, S? o o o
ATS, D?

Crystal gr = ngr
Internal variables™?"
Stresses, S™9"
ATS, D"

— _1 N~ngr gr
5= ngr Zgr:l S

1 ZnQT D9r

~ ngr gr=1

Figure 3.4: Structure of the grain calculations
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Chapter 4

Implementation

4.1 CUDA implementation of crystal plasticity

After analyzing the structure of the program the advantage of parallel program-
ming is in the calculation of the algorithmic stiffness tensor and the second
Piola-Kirchhoff stress tensor for each grain. This is because every grain calcu-
lation is independent from other grains. This can be viewed in figure 3.4.

The calculation of the stiffness tensor and stress tensor must be preformed
within a device kernel according to 2.2.2 on page 8 and must also be placed in
the same MODULE together with the other routines containing device code.
To avoid data traffic between the host and the device the internal variables in
the subroutine must be declared as device data. This results in that the only
variables transferred between the host and device is the deformation gradient
and the two output variables; the algorithmic stiffness tensor and the second
Piola-Kirchhoff stress tensor.

In order to manage calculation of the average value of the algorithmic stiffness
tensor and the second Piola-Kirchhoff stress tensor an another subroutine has
to be created, that doesn’t contain any parallellized parts. But it still has to
be a device kernel because it has to be called from the host and the calculation
contains device data. In this subroutine the calls to the memory of type global
data has been reduce to improve speed.

As mentioned in 2.2.1 at page 7, subroutines and functions declared with the
attribute device or global can’t contain any calls of host code or use the FOR-
TRAN command MATMUL. This criterion have made a big impact on the
original code, because every subroutine and even the eigenvalue solver had to
be rewritten and put in the same MODULE as the device kernel mentioned
above.
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module
contains
subroutine main(...)
call initY(...)

do for all elements
do for all intergration points

copy F to device
call polyUpd<<<dimGrid,dimBlock>>>(...)
call sumD<<<1,1>>>(...)
copy D and S to host
end do
end do
end subroutine main
attributes(global) subroutine polyUpd(...)
Executes the amounts of times that is defined in dimGrid and dimBlock
where gr defines the grain number as:
gr = (blockIdx%x-1)*blockDim}x + threadIldx%x
end subroutine polyUpd

attribute(global) subroutine sumD(...)

Anverage calculation of the algorithmic stiffness tensor and
the second Piola-Kirchoff stress tensor

end subroutine sumD

end module
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Chapter 5

Results and Conclusion

5.1 Speed increase

Time comparison between GPU code and original code
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Figure 5.1: Shows the time improvement

The results in figure 5.1 shows one load step in a geometry containing 372 fully
integrated four-node elements. As the figure shows, the original code is almost
linear and takes 1 s per grain. The GPU code has a little different gradient first
of all because of the big cost of data transfer but also because the clock rate
is about half compared to the CPU. The benefits shown here are greater when
using larger number of grains.

23



GPU code times faster than the original code
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Figure 5.2: Shows the time improvement

In figures 5.1 and 5.2 the points are marked at 448 grains, this is a breaking
point corresponding to the hardware, which has 448 cores. After this point a
schedule manage the execution, which results in higher time development.

I have also tested to make some changes to the program that makes it very
unstable in the meaning that all numbers of grains are not possible to calculate.
This would increase the speed for 1024 grain to 372s which is almost 3 times
faster then the original code, compared to figure 5.2 were the GPU code is not
even 2 times faster.

Because CUDA FORTRAN demands large differences in syntax to get the code
compiled. The same type of analys, 1024 grains takes about 3578 s in serial
mode on the CPU. If you then compare the results then the parallelization is
5.9 times faster.

This is not an optimal program structure to run on the graphics card as shown
in figure 5.2 and compared to figure 2.3 on page 11. The main reason is the
large number of global memory requests as a result of the large number of matrix
calculation.
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5.2 Conclusion

The major part of the work in this thesis has been to get the code compiled
using CUDA which is difficult work, because of the restriction in a device kernel
and also the fact that all subroutines must be in the same module. This has
resulted in a module with 1800 lines of device code, which is not preferable.
Because it makes it very hard to compile and also it will probably involve a
large number of global memory request.

The next problem was that the architecture memory handling and trying to
remove the a big time consumer, the large request of global memory.

Although the structure of the program contained many elements that are not
particularly attractive for GPU programming, the result was still positive to the
extent that it went faster.

5.2.1 Recommendation

Here is a list that you should start to consider before beginning to implement
CUDA.

- Is the serial code optimized, otherwise start there.

- Can the calculations be performed in parallel, for example does it contain a
loop that consist of calculation independent from each other.

- Try to figure out a good way to use the different kind of memory slot to make
it better. First of all through avoid transfers between the host and the device.

- Also to use sub calculations that can be located on the shared memory. This
will lower the amount of global memory request.

- Don’t use it on a program structure that contains more than 20 lines of code.
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