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1. NOTATIONS AND CARTESIAN TENSORS

1.1 Thex;-coordinate system is transformed to thecoordinate system by the trans-
formation matrixA.

1 12 -9 20
A= >E 15 20 O
-16 12 15

Show that the point (A, —1) in thex;-system coincides with the poin+29/25, 4/5,
—3/25) in thex;-system.

1.2 The original cartesian;-coordinate system is rotated an anglabout thexz-axis
togeta ne\/\zx;-coordinate system, see figure.

’
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The relation between the- and thex,-coordinate system can be written in matrix
form as
x=A"x
a) Determine for this special cagé andA

b) Show for this special case that
ATA=1, AA"=1
i.e., thatA is an orthogonal matrix (this ismembperty ofA).
1.3If @ is a scalar, show the following:
a) @, is a first-order tensor.
b) ®,; is a second-order tensor.

c) @, is a zero-order tensor (scalar).



1.4Using the transformation matriA given in1.1, show that the following two planes
coincide:

1 .
2x1 — §x2 +x3=1 expressed in the,-system

L N N expressed in the,-system
—X; + ==X, — ==X, = 5 :
25711572 2573 P i

1.51f b; = a;/+/a;a; , show that; is a unit vector.
1.6 For Kronecker's delta,, show that;;6,, = 6.
1.7 Given the relations

6ij = Sij + 50kk0i)

3
1

Jz = ES[iji
whereo;; ands;; are symmetric second-order tensors, show that:
a) Sii = 0
b) an/aO’,J = Sjj

1.8 Prove that there is no pair of vectarsandb; such thau;b; = 6;;.
1.9For an arbitrary second-order tensey, defines;; by
S[j = Gij - a’5,-j

Determinea such thats; = 0. The quantitys;; is called thedeviatoric partof o;;.
Prove that ifs;; is symmetric, alsg;; is symmetric.

1.10Show that if all components of a tensor vanish in one cootdisgstem, then they
vanish in all other coordinate systems.

1.11Prove the theorem: The sum offéirence of two tensors of the same type is again
a tensor of the same type.



1.12If a;; is a tensor and the componeafs= a;;, then the tensor is calledsymmet-
ric tensor If the componentsg;; = —aj;, then the tensor is said to leti-symmetric
Show that these symmetry properties are conserved undetioate transformations.

1.13Hooke’s law for a linear elastic material can be written
Ojj = Dijklekl (1)

where D, is the elastic sfiness matrix. The expression in (1) is valid in the
coordinate system. If we instead express (1) in a m;emoordinate system we get

G;j = D;jkle;cl
where thex;- andx-coordinates are related to each other by
X, = A;x; — ¢
andA;; is the coordinate transformation matrix. This matrix fglfihe conditions
AkiAkj = 5ij ) AikAjk = 5ij
SinceD;, is a fourth-order tensor, the componehts,; and D;.jk, are related by
D;‘jkl = AimAjnDnpg ArpAig (2)
If (1) expresses Hooke’s law for isotropic materidls;, is given as
Dijx = 2G 1-(5z'k5jl + 6u6) + L51';5k1 (3)
2 1-2v

whereG is the shear modulus ands Poisson’s ratio.
CaIcuIateD;.jk, using (2) and (3) and comment upon the result.

2. STRAIN TENSOR

2.1Prove formally that the Cauchy strain invariants

1 1
91 = €j; 92 = 595 - §€ij€ji 93 = det(GU)
are invariants.
Hint: Determine the invariants in a new coordinate system andhgsgansformation

rules for a tensor. Moreover, since det 1, we have

det(AeA”) = detA - dete - detA = (detA)? - dete = dete



2.2Prove thatlé = %eijejkeki can be expressed as
=X+ )

2.3The displacement field for a deformed body is given by
u; = k(xi, 2x1Xp, 2Xx1X3)

wherek is a constant.

a) Determine the strain tensgy.

b) At the point (1, 2, 3) determine the tensorial shear steaid the engineer-
ing shear strain between the two directions defined by theoganal vectors
(3, 4, 0)and g, —3, 3). Determine also the normal strain in the direction of (3,

4
4, 0).
c) Atthe point (1, 4, 0) determine the principal strains @mel¢dorresponding prin-
cipal directions.

2.4The original cartesiam;-coordinate system is rotated an anglabout thexs-axis
togeta ne\/\zx;-coordinate system, see figure.

’
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The relation between the- and thex,-coordinate system can be written in matrix
form as
x=ATx
In this particular case, we have

cosa —sSina O
AT =| sina cosa O
0 0 1

a) Since the strain tensey; is a second-order tensor, the componentsn the
x;-coordinate system and the corresponding compom'.gritsthex;-coordinate
system are related to each other by

€;<l = AkieijAlj or €/ = A€AT
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Suppose that;; is given by

5 10 O
10
0O 0 -6

Calculate the components qj

b) From the result in a), calculate tla’;;—components when the angleis chosen
asa=45. Comment upon the result.

2.51f the strain tensog;; is given as

+1 5 10 O
0O 0 -6

a) Determine the principal strains and the correspondimgipal directions.

b) Compare the result in a) with the result in probl2mhb) and comment upon the
result.

3. STRESS TENSOR

3.1The deviatoric stress tensgy is defined by
1

Sij = 0jj — —5ij6kk

3
Show that the principal directions fey; andes;; coincide.

3.2Using tensor notation, Hooke’s law for general isotropa&sét behaviour can be

written as 14
1% 1%
€ij = To-ij - Eo'kk5ij (1)
whereE = Young’s modulus ane = Poisson’s ratio.
a) Do the principal directions faf; ande;; coincide or not? Prove your statement.

b) Using matrix notation, Eqn (1) can be writteneas Co where
T
€ = (e11, €20, €33, 2€1, 2€13, 2€23)
T
6 = (011. 622, 033, 012, 013, 023)

Determine the matric.



3.3The original cartesiam;-coordinate system is rotated an anglabout thexs-axis
togeta ne\/\zx;-coordinate system, see figure.

!
X1

;xl

Xy X3
The relation between the- and thex,-coordinate system can be written in matrix
form as
x=A"x
In this particular case, we have

cosa —sSina O
AT =| sina cosa O
0 0 1

a) Since the stress tensey is a second-order tensor, the componentsn the
x;-coordinate system and the corresponding compon:éfritsthex;-coordinate

system are related to each other by
[0';(1] = AyiojjA;;  Or 6 = AcA”

Suppose that;; is given by

5 10 O
0O 0 -6

Calculate the components @;1;..

b) From the result in a), calculate tb’g-components when the angleis chosen
asa=45. Comment upon the result.

3.41f ¢;; is given as

5 10 O
0O 0 -6



a) Determine the principal stresses and the correspondinggal directions.

b) Compare the result in a) with the result in problgrab) and comment upon the
result.

3.5Assume that the coordinate system is colinear with the jpatdirections of the
stress tensor.

a) Determine the traction vectoon the surface, where the outer normal unit vector
nis given byn” = (1, 1, 1)A/3.

b) The component of alongn is called the normal stress, and the component
of t along the surface is called the shear strgsg~or this particular choice of
coordinate system andvector the following notation is often employed:

o, = 6, = octahedral normal stress

T, = 7, = octahedral shear stress.

Show that

2 1 1
TZ = T2 = :—)’Jz Where Jz = Etr(sz) = ESiij[

1
c, =0, = 511 where [ =tro = oy

3.6 A circular disk without any holes and made of an arbitraryemat is loaded along
the circular boundary by a uniform radial presspye> O.

a) Prove that all boundary conditions and equilibrium coods are fulfilled by
the following stress state

011 = 022 = —P1 033 =012 = 013 = 023 = 0

where thex;- andx,-axes are located in the disk plane.

b) Prove that the stress state given above is not a propss dtate, if there also
exists a circular hole in the center of the disk loaded by oumi radial pressure

p2 > 0, unlesg, = p;.
3.7 At a point the following stress state is given
011=02=012=013=023=p and o33=0

a) By hand-calculations, determine the principal streasesdirections and check
that the principal directions are orthogonal.
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b) Same as a), but now use CALFEM or another program; companesults.

c) The original coordinate system is given by #heoordinates. A new,-coordinate
system is chosen to be colinear with the principal diregiofhe relation be-
tween the new and old coordinates can be writtexn as Ax. DetermineA and
show that for the particulad-matrix in question, we hava” A = I,i.e. Ais an
orthogonal matrix (this is a genenaloperty ofA).

d) Demonstrate by inspection that itranatrix given above fulfils Cayley-Hamilton’s
theorem.

3.8 In the x;-coordinate system an arbitrary stress matrixs given. A newx;-
coordinate system is chosen, so that the unit vectors alngt, x,- and x,-axes
are given by the componenfs1 1 0|/v2,[-1 1 0|/v2and[0 0 1],
respectively, in the old coordinate system.

Determine the stress matrix in the new coordinate system, which corresponds to
in the old coordinate system.

3.9For the unit vecton and the parametdr, we can define a stress tengogiven by
6 = knn"

Show that this stress tensor corresponds to pure tensibe iditectiom.

3.10A stress tensor is given by

011 2 1
c= 2 0 2
1 20

Determines;, SO that a section will exist on which the traction vedt@® zero. Deter-
mine a unit vector normal to that section.

4. HYPER—-ELASTICITY

4.1 Prove the following relations

ol, o0l3
- =€ , =~ = €ik€kj

ol _
Y 0€ij

0€,~j B 0€ij
4.2 Determine the results of the partial derivatives
6[1 6]2 aJ3
50'[]- ' aaij ' 50'[]-



4.3Let D,;, be given by

1 v
Dijkl =2G [5(5%5]1 + 5i15jk) + Eéljékll

Show thais;; = D; ;i€ then implies

Gij = 2G |:€U 5ij€kk

1%
1o
Demonstrate also thdy, ;, fulfils the symmetry propertieB; i, = Djix, Dijii = Dijux
andD;jx; = Dy

4.4 For linear isotropic elasticity we have

_1 L
Dijkl =2G _§(5ik5jl + 5i15jk) + Eéljékll

and

Cijkl =

1 [1 %
G §(5ik5jl + 6udj) — méijékl

Show that these expressions fulfil the equation
1
Dijmncmnkl = §(5ik5jl + 5il5jk)

4.5We have;; = C;ji; o, Multiply with D,,;; and show that we obtai); = D,k €.

4.6 We haveos;; = D,y €. Write this equation in matrix forns = De and identify
all terms. For isotropic elasticity show thBtis given by

(1-v v v 0 0 0 |
v 1-v v 0 0 0
D= E v v 1-v 0 0 0
T (1+v)(1-2v)| 0 0 0 i(1-2v) O 0
0O 0 O 0 %(1—2\/) 0

0O O O 0 0 %(1—2\/)

4.7Use superposition of simple loading situations to showttiastrain-stress relation
for an isotropic material can be written as

1 —v —v 0 0 0
v 1 —v 0 0 0
1 v —v 1 0 0 0
“El o o o2mv o0 o |°
0 0 0 0 2&v) O
0O 0 0 O 0 2(1v)



Hint, to obtain the relations between shear strains andstsreuse can be made of
Mohr’s circles of stress and strain.

4.8 For a general isotropic hyper-elastic material the straergy can be written in
term of the strain invariants, i.e.

W= W(INL I~2, I~3)

where
~ ~ 1 ~ 1
It =€, 1Ip= €ij€ji, I3 = SE€ik€kj€ji

2 3
a) Determine the strain-stress relation based on

oW

O;i =
/ aeij

b) Based on a) and that

ow
—= = )«Gkk

1

determine that fourth-order tenspy,, given by
oij = Dy €n
c) Derive the incremental relation

o°wW
0€,~ja€k1

—n! L —
dojj = D, dey where  D;,, =

and identifyD;, ;. Assume that

ow ow
—— and —— are constants
ol, ol

d) In a uniaxial loading situation, i.e. in@— e-graph, identifyD* and D' (the cor-
responding uniaxial quantities). No calculations are sgeasgy, a graphical illus-
tration is sdificient.

4.9 The strain energy can be written BS = %a,-je,-j. Show that it also can be written

asW =30'e=1e"0.

4.10A hyper-elastic material is assumed to possess the folpaamplementary en-

ergy
C=aJ2+b11J2 (1)

whereaq andb are constants.
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a) Derive the constitutive relatian; = ¢;;(ox).

b) For uniaxial tension, the stress-strain behaviour asmspced in the laboratory
can be approximated by

e=10"+10°*

wheres is measured in MPa. Determine the parameieasdb in (1).
c) Forloadingin pure shear where- 100 MPa calculate the corresponding strains.

d) Forthe load defined in ¢), determine the volumetric stegirand compare with
the volumetric strain for a linear elastic isotropic meadéri

4.11 Using two perpendicular symmetry planes show that the gérferthotropic)
hyper-elastic stress-strain relation can be written as

[ Dyy Dip Diz 0O 0 O

Dyy Dy, Dz O 0 O

o= D3y D3 Dz O 0 O
0 0 O Du O 0

0 0 0 O Dss O
0 0 0 0 0 Dge

What will the use of a third symmetry plane yield?

4.12 Similar to (4.7), use simple loading and engineering deding for the elastic
moduli that the othotropic strain-stress relation can héevwr as

'%—%—?—:OOO'
¢+ -p 000
e
— Ex Ey E;
‘"l o o o0Z&oo0]°
0 0 0 020
0 0 0 0 0Z]

Give also a physical interpretation of the elastic constaag well as, assuming hyper-
elasticity comment upon the symmertry regirements.

4.13Derive the constitutive matri corresponding to plane stress for an orthotropic
material.
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5. CAUCHY - ELASTICITY

5.1Consider isotropic hyper-elasticity. The most generahfairof the complementary

energyC is then given by
C=C(I1, J2, J3) (1)

a) Derive the most general hyper-elasticity format= ¢;;(ox;).

b) Write the most general non-linear Hooke formulation fgpér-elasticity ex-
pressed in terms of the non-linear parameteend K. CanG andK depend on
J3?

c) Considerisotropic Cauchy-elasticity. What is the mesteyal Cauchy-elasticity
fOFmate,-j = eij(Uk[)?

d) Write the most general non-linear Hooke formulation fauChy-elasticity ex-
pressed in terms of the nonlinear parameteend K. CanG andK depend on
J3?

e) For which materials are the influencefgfimportant?

f) For nonlinear elasticity, what is theftirence in response during loading and
unloading? Which materials behave like nonlinear elastohuring unloading?

6. REPRESENTATION THEOREMS

6.1 Prove by inspection that

€ = oI + ay6 + az6°

satisfies the conditions of coordinate invariance andaggtr

6.2 Write in index notation the tensor generat@s . .Gg given by

G.=1; G,=N; G3=N?; G,=P; Gs=P?
Gs= NP+ PN: G;,=N?P+ PN?;
Gs = NP>+ P°N

6.3 Derive the constitutive relation for the Maxwell model aie tevin model and
determine the responses for a sudden applied load for tliahioading situation.
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7. HYPO - ELASTICITY

7.1Equation

6ij = Pr€ibij + Po€ij + P3€ri0ij + PaCmn€mnbij
+Ps5(0ik€r; + €ikOk;) + Pe€mmOirOij + P10 mn€mmOi;
+P80imCmn€ndi; + Po(CikOki€l; + €ikOKI0U;)
+ﬂ100—mnénm6ik6kj + ﬂllalmo—mnénlaij
+P1261mCmn€ni Oik O j

may be written as;; = D;;.€,. Determine the tensab, ;.

8. FAILURE AND INITIAL YIELD CRITERIA

8.1For the stress tenset; given by:

- 3 1 1
2 2V2 242
1 11 5 MPa
2v2 4 4
1 5 11
L 22 4 4

a) Find the principal stresses and the corresponding pahdirections.

b) Find the deviatoric stress tensey, and the principal deviatoric stresses s
andss.

c) Determine the deviatoric stress invariastsJ, andJs.
8.2 Answer the following questions and explain the answer.

a) If s; > s, > s3, canss be equal to zero?

b) CanJ, be negative?

c) CanJ; be positive?

8.3 Show that subtracting a hydrostatic stress from a givere sihistress does not
change the principal directions.

8.4 The stress state at a point is given by

30 45 60
[6,]=| 45 20 50| MPa
60 50 10
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Determine the stress invariants J,, J3 and the Lode anglé.

8.5 A metal yields when the maximum shear stress,, reaches the value of 125
MPa. A material element of this metal is subjected to a blastate of stress:

ocpr=0, ox=ac, o03=0

whereq is a constant and is positive. For what values o&(«) will yielding occur?

8.6 For biaxial stress states and adopting the Tresca critedianv the yield curve in
the o10,-coordinate system. Note that in this coordinate systeeutiual convention
of 61 > 0, > 03 IS abandoned.

8.7 A metal yields at a state of plane stress with
oc11= 80MPa o¢5,= 40MPa, o1, = 80 MPa

Assume isotropy, independence of hydrostatic pressuie,egnality of properties
for reversed loading (for instance, that tension and cosgioe gives the same yield
stress).

a) Derive other biaxial states of stress at yield in e €,)-space using the above
informations.

b) Plot the result in part a) in thes{, 6,)-space and estimate the yield stress in
axial tension and in simple shear, respectively, and gmésiof possible error
of your estimate, based on convexity.

c) Determine the yield stresses in b), based on the von Misesicn and the
Tresca criterion, respectively.

8.8 A long circular steel tube having a mean diameter of 254 mm3gdnm wall
thickness is subjected to an internal pressure of 4.83 Mia. ehds of the tube are
closed. The yield stress of the steel is 227 MPa. Find thetiaddi axial tensile load
F which is needed to cause yielding of the tube, based on th&Nses criterion and
the Tresca criterion, respectively.

8.9a) The Coulomb failure criterion can be written as (assémel)
koy — 03 = 0, (1)

wherecs; > 6, > o3 are the principal stresses (tension is considered as\@)siti

For plane stress conditions and considering only princgp@sses show the failure
curve corresponding to (1) in thgo,-coordinate system (where the conventign>
o, > o3 Now is abandoned). Express the uniaxial tensile streng#rims ofs, andk.
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8.10 A simple torsion test of certain material, using a hollowigler specimen as
shown in the figure, shows that the load-deflection curvenesl for a shearing stress
below 125 MPa and that at the stress 125 MPa yielding occlutfse bon Mises yield
criterion is adopted, what is the expected value of the lessiess at which yielding
occur in a tension test specimen as shown in the figure?

bt

— 0.05in.
3in.| %in.» . | 2in.
1in. AR
Shear test Tension test

8.11A closed-ended thin-walled tube of thicknessnd mean radiusis subjected to
an axial tensile forcd’, which is less than the valug necessary to cause yielding. If
a gradually increasing internal presspns now applied, show that the tube will yield
according to the Tresca criterion when

F 1

1 when — < =

pr FO 2
IO'yO B F 1
2(1- £ hen — > =

(1=7) when =23

and according to the von Mises criterion when
2 F
2= 1= (5P
IO'yO \/§ Fo

8.12 Given the yield stresses ando, in uniaxial tension and compression, respec-
tively, find the yield stress in shear resulting from the daling yield criteria: a)
Coulomb, b) Drucker-Prager, c¢) von Mises and d) Tresca.

8.13Show that for a state of plane stress with = o, 61, = T ando,, = 0, both the
Tresca and von Mises yield criterion can be expressed iroitme f

o T
(—)?+(—
Gyo Tyo

=1

How is s, andz,, related for the Tresca and the von Mises criterion, respelg®
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8.14The initial yield criterion of Drucker-Prager is defined by

f=\V3hL+al,—p=0

wherea andp are parameters and

1 1
Jo = Esijsij Sij = 0ij — §5i10'kk I = ok
Consider the stress state
c 7 0
[Gij] = T 0 0
00O

a) Assume that loading takes place such thatc. Calculate the value af for which
yielding starts. Botls > 0 ando < 0 should be considered.

b) In the meridian planey/3J, — I;, draw the shape of the Drucker-Prager yield
criterion and the loading paths given by= ¢. Bothcs > 0 ands < 0 should be
considered.

c) Inthe deviatoric plane illustrate the shape of the Drudkeager yield criterion and
the loading path given by = 0 andr # 0. (one path is dficient). Hint: the
angle is given by

3v3 J. 1
cos(P) = T\FJT‘;‘Z where J; = §s,~kskjsj,-
2

8.15von Mises isotropic criterion can be written as
s[jRjlekl_]-:O or STPS—1=O
where

3
P = 4_2(5ik5jl + 6116 k)

Oyo

Derive the matrixP corresponding t@, ;. Next, use that;; = O to derive an alterna-
tive format of the von Mises isotropic criterion, i.e.

sTPs—1=0  where P#P

8.16Show that
6c'Pc—1=0
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for the special choice

[ F+G ~-F -G 0 0 O]

-F F+H -H O 0 0

po -G -H G+H 0 0 0

0 0 0 2L 0 0

0 0 0O 0 2™ 0

0 0 0O O (O\Y

can be written as
sTPs—1=0

8.17Derive the general format @ andgq in
6'P6—-q'6-1=0

if orthotropy and pressure independent response is assuH®d may independent
parameters does the model have?

8.18The von Mises criterion for orthotropy can be writtencedsPo — 1 = 0 where

A -F -G 0 0 0
-F B -H 0 0 0
p_|G-H c 0 0 o0
| o o o2 o0 o
0O 0 0 024 O

0 0 0 0 0

Establish (imagined) test methods such that all parameterbe determined.

9. INTRODUCTION TO PLASTICITY THEORY

9.1Let the dfective plastic strain rate’ 7 and the &ective stress, s, be defined by

. 2 . 3 ,
crr = (56 N oerr = (5 Sij si)

Show that we then have the convenient properties dhgt = ¢ holds for uniaxial
tension and thaetfj;f = ¢? holds for uniaxial tension if plastic incompressibilityas-
sumed.

9.2 A von Mises material is considered. For isotropic hardenimghave

3
[ = (Esijsij)l/z —-0,=0
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whereas kinematic hardening is given by
£ =205y - af) (s = )2 0,0 = 0
A ijI\>ij ij y0 =
For associated plasticity, derive expressionﬁpr '

9.3Ideal plasticity according to the following criteria is cdered:
a) the von Mises yield criteriony/3J, — ¢,, = 0
b) the Trescayield criteriont; —o3—0,,=0; 01> 022> 03
c) the Drucker - Prager criterior\/B_Jz +al;—p=0
d) the Coulomb criterionke, — o3 — 06,0 =0; 01> 02> 03

A material element is subjected to proportional loading.e Pincipal stresses are
given by (&, o, 0) whereos is an increasing stress value. Find the magnitude of
where the material begins to yield. Adopting the associélted rule, find also the
plastic strain ratef’j' at onset of yielding expressed in terms of the plastic miigtipi.
If the effective plastic strain ratel, . is defined as;, , = (%¢7.6/)Y/2, how is A related

P
to eeff’?
9.4 The same problem as 9.3, but for the principal stressges,(0) and only consid-
ering the von Mises and the Drucker-Prager criteria. Whesiciering the Tresca and
the Coulomb criteria, what problem is encountered if yousthdetermine:;,?

9.5Isotropic hardening of a von Mises material is given by

f(oij. K) = V3J2—0y,— K(x) =0 (1)
where
1 1
Jo = ESlekl ) Skl = Okl — §5k10pp

ando,, is the initial yield stress in tension. The current yieleesso, is then given by
oy(K) = oy, + K(x)

i.e. (1) takes the form

f=v3J2—0,(x) =0 (2)
The associated flow rule provides

i - af :

P =L >

€;j /106,'}' ; A>0 3)
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The dfective plastic strain rate is defined by
- D 2-p -P\1/2
Corr = (§€ij€ij) (4)

Strain hardening is assumed, i.e. the following evolutam for « is assumed

. _ -p
K = €eff

a) Based on (2) and (3) determine the explicit form of the ptastiain rate, i.eef’lf.

b) From the definition (4) prove that we have

€ =4 ()
c) Consider uniaxial tension where
c 00
0 00O

For this stress state prove that yielding requires that
0= O-J’(egff)

d) For the stress state defined by (6), identify the expression

e = ?
3x3
Denotee? by é7 = ¢], and show that in the present case, we have
€ =€

9.6 The initial yield stress i%,o and during uniaxial tension in the plastic regime, we
haveds /de, = H whereH is a constant (i.e. linear hardening). Investigate isatrop
hardening of a von Mises material. Associated plasticitgdspted. Calculate the
resulting elastic and plastic strains at point C for the lbestories:

a) load path ABC
b) load path ADC
c) proportial loading, i.e. load path AC

d) calculate the curve,;; = o./s(e;,,) for the three load cases mentioned above
and comment upon the result.
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A
(O (O’ Gyo)
- vor ——
V3 B C V3
D
A -0
o
. x2dx __ x a 1 xVab
Note: I i = b T bva arCtanT

10. GENERAL PLASTICITY THEORY

10.1Write all nesessary equations to establigh="D;}, €.

10.2The interpretation of the plastic modulus in the uniaxialeces shown in the figure
below.

! H>0
H<O0

Show that this is true for all plasticity models.

12. COMMON PLASTICITY MODELS

. ep -
12.1Frome;; = D;; € Where

9G?
ep
D,-jkl = Diju — Tsijskl
and

1 v
Dij = 2G[§(6ik6jl + 6u6k) + mé,-jék,]
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derive the corresponding matrix format, ie= D*e.

12.2 g Derive the plane strain formula &f = D€ in (12.1). b) Determine also the
expression for the out-of-plane stress ratgs 6,3 andoss.

12.3Using the von Mises model with the initial yield stregs, the following loading
test is conducted:

(6,7) =(0,0) - (20,0,0) = (0, 26,,) — (20y,, 26,.)

Assuming that the behaviour of this material follows thergpic hardening rule, draw
the initial yield surface and the subsequent yield surfatdse s — = space at the ends
of the loading paths. Note that in each loading step, theiwadried proportionally.

12.4Show how i) the isotropic and ii) the kinematic von Misesrmar model behaves
in uniaxial loading when
a) the stress is cycled 4 times betwegrand o,

- €

b) the strain is cycled 4 times betweenand ¢,

t t - €
€yo €o

12.5Using the Drucker-Prager criterion as the yield functjtfa;;, K), and the von
Mises criterion as the plastic potential functigfr, K) in

4 0g
4
€U aGij
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derive the expression for the scafar

15. SOLUTION OF GLOBAL EQUATIONS

15.1Euler forward scheme and Newton-Raphson equilibriumfitema.
Consider a bar with constant ardaand lengthL.
No body forces act on the bar.

//A
| |

e

The equilibrium condition states that

£ (40) =0 )

a) Show that the weak form of (1) is given by

L
d
J £ Acdx = [vAc]t )
o dx

wherev is an arbitrary weight function.

b) The axial displacement = u(x) (measured positive in the-direction) is approxi-
mated by

u= Na

i.e. the axial strairm = ¢(x) becomes

dN
X

e=Ba where B=

Use the Galerkin method to express the equilibrium conait®) as

L
v =[N"Ac]§ - AJ B'cdx; w=0 (3)
0

c¢) As indicated, the behaviour of the bar is approximated kg lorear finite element.
The figure shows the nodal displacement&ndu, as well as the external forcdg
and F, acting on the nodal points.
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’—»Lll ’—»l,{z
! ?

- F — K

e

Show that the equilibrium condition (3) then takes the form
| Rl _A|-1
V= F L 1

d) The behaviour of the material is assumed to be given by thstitative equation

E cdx; w=0 4)

c = E®¢ (5)
where
E? = E(1 - 2ae¢) (6)

andE is Young’s modulus whereasis a dimensionless positive parameter. With this
material model show that the incremental form of (4) takesftnm

AE? [ 1 1] [w ]| [ A
AR ™
(Hint: how does vary along the bar?; how dod%? vary along the bar?)

€)

The boundary conditions are given by
u, =0; F, prescribed (8)

Show that the part of the incremental formulation (7) thatfi;miterest becomes

AE® -
T 2= F, 9)
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Discuss how and (7) and (9) are related to (13.23).
Likewise, show that the part of the equilibrium condition {dat is of interest becomes

w=F—-Ac; yw=0 (10)
Discuss how (4) and (10) are related to (13.15) and (13.16).

f) With the definitions
_ AE°?
=—

the incremental formulation (9) can be written

K a=ur, f=F2 (11)

Ka=f (12)
whereas the equilibrium condition (10) takes the form
We assume = 107,
g) Using the Euler forward scheme, determine the result far kvad stepsf; =
103AE andf, = 2-102AE.
(Result:a; = 103L; a, = 2.25-10°3L).

h) Determine the correct response by integrating (5) exactly
(Result:ay = 1.127- 10°3L ; a, = 2.764- 10°3L).

1) Using the Newton-Raphson approach with 3 equilibriunsitiens in each load step
obtain the response (4 digits-calculations).
(Result:a; = 10°L, a2 = 1.125- 10°L, a5 =1.127- 10°°L

ay =2418-10°L, a5 = 2.741- 10%L, a3 =2.765- 10°°L).

j) Show the results of g), h) and i) in a figure and comment upemehults.

16 INTEGRATION OF ELASTO-PLASTIC CONSTI-
TUTIVE EQUATIONS

16.1For the plane stress case the von Mises yield surface carpbessed in terms of
principal stresses as

_ N ) 2 1/2
f=0.—0y,= [0'1 + 05 — 610’2] — 0y0
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The contact state., i.e. where the stress path intersect with the yield sur€arebe
determined from the condition

1/2

f= [(O’i)z + (03) + 0705 —0,0=0

where
O'fj = O-?j + ¥ Djji A€y
Determine the contact state for the data below
0"" =[o11 062 o033 0:]=[180 —-40 0 O]
A€’ =[Ae;; Aey; Aezz 2Aey;] =[0.001 Q001 0 0]
E=210GPa v=0 0,0 = 240M Pa

Hint: Whenv = 0 the relations;; = D,y e, reduces ta;; = Ee;;.

16.2Consider the yield function for an von Mises elastic-iddaspc material material
under plane stress condition

2 2 1/2
f=0.—0= [0'1 +05— 610’2] — 00

a) Expresst in terms of the strain ratg; using the consistency conditigh= 0.

b) Integrate the the constitutive equations using one fahkaler step and one fourth-
order RK step, for the scheme given in the text book, for thrersincrement used in
(16.1).

16.3For the plane stress case the von Mises yield surface cambessed in terms of
principal stresses as

1/2
f=0.—0= [O’%-I-Gg—GlO'z] / — 040
Calculate the updated state for the data in task (16.1) tisengackward Euler method

a) Calculate the trial stress, i.e. the updated state fatiel@ading.

b) Express the the updated state in terma &f

c) Calculatea 4 using the yield conditionf = 0, at the updated state.

d) Calculate the updated state’"!, and compare the result with the result obtained
from task (16.2).
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ANSWERS

1.2
a)
cosa —sSina O
AT = | sina cosa O
0 0 1
2.3
a)

2x1 X2 X3
e=k| xo 2x; O

X3 0 le
2 2 3
b) Point(1,23¢e¢=k| 2 2 0
3 0 2
1 1
n"=2[340]; m'"=—[4 -3 3]
5 V34
98
€un = 2—5k
41
€m = ——=—k ; Vom = 2€nm
5v34
2 40
c) Point(1,40=€e¢=k| 4 2 0
0 0 2
€1 = 6k > ny = 5[110]
€ =2k => n?:[OOl]
€3 = —2k > ny =1 -10]
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2.4

a)
5+ 20coszsina  10(coga —sifa) O
4
€ = 10(coga —sirfa) 5-20cogasina 0
0 0 -6
b)
+115 0 O
€ = % 0 -5 0
0O 0 -6
i.e. a principal strain state.
2.5
a)
e =215 ni = +[110]
e =125 ny =+[1 -10]
e3= 1276 n!l =[001]
3.2

a) they coincide

b)
[ 1 —v —v 0 0 0 |
—-v 1 —v 0 0 0
C - i v —v 1 0 0 0
“E|l 0O O 02:v) O 0
0 0 0 0 2Hv O
0 0 0 O 0 2(kv)
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3.3The factor% 104 is to be excluded in the answer2.

3.4The factor% 10~*is to be excluded in the answer2d.

3.5
a)
1|t
t=on=—| o7
V3| 4,
b)
[ nTt = _Il
1 1 2
o =tt-o) = §(S§ + 55+ 55) = 3808 = §J2
3.7
a)
- T _ V3 1443
o1 =p(1++V3) = nl = \/31+_\/§ [1+2 L+ 1]
06,=0 > ny==-[1 -1 0]
= p(1 — T_ _ 1 [1-«/5 1-v3 1]
o3 = p(1—V3) > n == | )
nInz = n{ng, = ngng =0
b)

A" =[ny n; ng| ny,npandnzgivenina).

c) Cayley-Hamilton equation:c2 + 6,62 — 6,06 — 651 = O fulfilled with 8, = 2p,
02 = —2p2, 93 =0

28



3.8

[ 011+ 022 - 022 — 011 013+ 023 ]
—_— 12
2 2 V2
) 022 — 011 011+ 022 - 023 — 013
c = —01p ————
2 2 V2
031+ 032 032 — 031
E— E— 033
B V2 V2 i

3.10

2 1
611=2 nT=§l1 —E —1]

oC
€jj = E = (a + bIl)Sij + bJ25ij

b) a = 310" (1/MPa) b =10"° (1/(MPay)

c)
b2 ar O
[€[j] = art bT2 0
0 0 b2
d) e =367 =03 (exi)linear elastic= 0

7.1Useey; = 6,6, ando,, €, = o€ MOreover, use;; = %(5“5,-,+5,,5js)és, (where
also the right-hand side is symmetriciiandj). Some manipulations will show that
61] = Dijstést Where
Dijsy = 1665 + %ﬁZ(éis(Sjt + 6i6}5) + 30,65 + Padij0y

+:_2Lﬂ5(0-i55jt + 0,0;s + 04;6;5 + 05;6i1)

+ﬁ66ik6kj5st + ﬁ?aijast + %ﬁBéij(o-tmo-ms + Gsmamt)

+%ﬂ9[6ik(0ks6jt + 61:6j5) + 01;(016is + 036;;)]

+P106:k 0105t + 3P1161;(CtmOms + CsmOmr)

1
+§ﬂ126ik0—kj (O—tmo—ms + Gsmamt)
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8.1

a) o1 = 4 MPa,nl = (0, i, - %

0y = 2 MPa,nQ: (%, -%, -%)

o3 = 1 MPa,ns= (5, 3, 3)
b) s; =5/3 MPa,s, = -1/3 MPa,s3; = -4/3 MPa
c) J1=0,J,=7/3 (MPa¥, J3 = 20/27 (MPa}

8.41, = 60 MPa,J, = 8 225 (MPa$, J5 = 265 250 (MPa3, 6 = 7.5

8.5
2T max for O<ax<l
2
c = — Tnax for a>1
a
2

T e for a<0
-

8.6See Fig.8.32

8.7

a) The following ¢, 6»)-points are found

1)(1425,-225) 2)(-225,1425) 3)(-1425,225) 4)(225 —1425)
5)(~165 —1425) 6)(-1425 —165) 7)(1651425)  8)(1425, 165)
9)(165 22.5) 10)(225,165)  11)(165-225) 12)(225, —165)

1) from measurements, 2) changeando, (isotropy), 3) reverse the loading,
4) isotropy, 5) add hydrostatic pressure -142.5 to 1), anmhso

b) From 1) and 9) and convexity 154 MRas,, whereas 8) and 9) and convexity
giveso,0< 165 MPa, i.e. 154 MP& 0,0 < 165. Likewise, 2) and 3) as well as
2) and 10) gives 83 MP4 7,, < 103 MPa

¢) von Misesws,, = 155 MPa,,, =89.5 MPa
Trescais,, =165 MPa,r,, =82.5 MPa

8.8von Mises:F = 395 kN, TrescaF = 335 kN

. 1
8.9See Fig.8.25¢, = o, P

8.100,, = 216 MPa
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8.12

) GIGC
a) Ty, =
e o+ o,
b) 2 o0,
T —
ye V30, + o0,
(oF}
C) Tyo = ﬁ
o
d) Tyo = Et

8.13Trescar,o = 0,0/2, von Misesr,o = 6,0//3

9.2lsotropic hardeninge!, = , % ; kinematic hardeninge], = /13“2’6—::’)
9.3
a) 6 =0,,/V3
10 O
- V3 L
euzﬁ§ 00 O X ﬂzefff
0 0 -1
b) 6 =0,,/2
10 O
. V3.
P _ P
€; =4 8 8 —(?I. 4 5 Cerr
¢) o = fl(3a + V3)
[$+a0 0 o
&=2 0 a O =L
0 0 -L+a V1+ 202
d) o = 0,,/(2 k)
&=2|00 0|; i=—L—
00 -1 \/3(k2+1)

9.4
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100

- P 1 - P

61']':}L 0 2 0 ' '1_€eff
0 0 -1

b) o = p/(1+2a)

' S+a 0 0 _ &,

=i 0 3+4a O L A= —
0 0 -l+4a V1+ 202

For the criteria of Tresca and Coulomb, we obtain the sibmashown in Fig.9.30.
This is dealt with byKoiter’s flow rule not treated in the course.

9.6 Everywheres?, = e5, = 0 ande, = €5, = —¢},/2.
Irrespective of the load path, at point C

m. e __ 0y0
€11=TF €127 356

e _ e __ e . e _ e __
€pp = €33 = —Ve€y ; €13=€,3=0

a) Load path AB is purely elastic; plasticity is intiated airt B.
Load path B~ C

050 T c,0 V3
P - el =" "In2

w= i 2=y

b) Load path AD is purely elastic; plasticity is initiatedgatdint D.
Load path D— C

O—yO\/é

P 001

611=F§|n2; Ei) = (1——)
c) Proportional loading
1
c=koy, T= ﬁkayo

where 0< k < 1. Yielding is initiated wherk = 1/v2, i.e. plasticity occurs
when Y/v2 < k < 1.

P 050 1 . P O-yO\/é
= -_— 1— — = -
G F- ) = F T

d) The same curve,;, = aeff(efff) is obtained for all the load cases a), b) and c¢).
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