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1. NOTATIONS AND CARTESIAN TENSORS

1.1. Thexi-coordinate system is transformed to thex
′

i-coordinate system by the trans-
formation matrixA.

A =
1
25





12 −9 20
15 20 0
−16 12 15





Show that the point (0, 1,−1) in thexi-system coincides with the point (−29/25, 4/5,
−3/25) in thex

′

i-system.

1.2The original cartesianxi-coordinate system is rotated an angleα about thex3-axis
to get a newx

′

i-coordinate system, see figure.

x1

x2

x′1

x′2

α

x3x′3

The relation between thexi- and thex
′

i-coordinate system can be written in matrix
form as

x = ATx
′

a) Determine for this special caseAT andA

b) Show for this special case that

ATA = I , AAT
= I

i.e., thatA is an orthogonal matrix (this is a generalproperty ofA).

1.3 If Φ is a scalar, show the following:

a) Φ,i is a first-order tensor.

b) Φ,ij is a second-order tensor.

c) Φ,kk is a zero-order tensor (scalar).
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1.4Using the transformation matrixA given in1.1, show that the following two planes
coincide:

2x1 −
1
3
x2 + x3 = 1 expressed in thexi-system

47
25
x

′

1 +
14
15
x

′

2 −
21
25
x

′

3 = 1 expressed in thex
′

i-system.

1.5 If bi = ai/
√
ajaj , show thatbi is a unit vector.

1.6For Kronecker’s deltaδrs show thatδijδjk = δik.

1.7Given the relations

σij = sij +
1
3
σkkδij

J2 =
1
2
sijsji

whereσij andsij are symmetric second-order tensors, show that:

a) sii = 0

b) ∂J2/∂σij = sij

1.8Prove that there is no pair of vectorsai andbi such thataibj = δij.

1.9For an arbitrary second-order tensorσij, definesij by

sij = σij − αδij

Determineα such thatsii = 0. The quantitysij is called thedeviatoric partof σij.
Prove that ifσij is symmetric, alsosij is symmetric.

1.10Show that if all components of a tensor vanish in one coordinate system, then they
vanish in all other coordinate systems.

1.11Prove the theorem: The sum or difference of two tensors of the same type is again
a tensor of the same type.
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1.12If aij is a tensor and the componentsaij = aji, then the tensor is called asymmet-
ric tensor. If the componentsaij = −aji, then the tensor is said to beanti-symmetric.
Show that these symmetry properties are conserved under coordinate transformations.

1.13Hooke’s law for a linear elastic material can be written

σij = Dijklǫkl (1)

whereDijkl is the elastic stiffness matrix. The expression in (1) is valid in thexi-
coordinate system. If we instead express (1) in a newx

′

i-coordinate system we get

σ
′

ij = D
′

ijklǫ
′

kl

where thexi- andx
′

i-coordinates are related to each other by

x
′

i = Aijxj − ci

andAij is the coordinate transformation matrix. This matrix fulfils the conditions

AkiAkj = δij , AikAjk = δij

SinceDijkl is a fourth-order tensor, the componentsDijkl andD
′

ijkl are related by

D
′

ijkl = AimAjnDmnpqAkpAlq (2)

If (1) expresses Hooke’s law for isotropic materials,Dijkl is given as

Dijkl = 2G

[

1
2

(δikδjl + δilδjk) +
ν

1− 2ν
δijδkl

]

(3)

whereG is the shear modulus andν is Poisson’s ratio.
CalculateD

′

ijkl using (2) and (3) and comment upon the result.

2. STRAIN TENSOR

2.1Prove formally that the Cauchy strain invariants

θ1 = ǫii θ2 =
1
2
θ2

1 −
1
2
ǫijǫji θ3 = det(ǫij)

are invariants.
Hint: Determine the invariants in a new coordinate system and use the transformation
rules for a tensor. Moreover, since detA = 1, we have

det(AǫAT ) = detA · detǫ · detA = (detA)2 · detǫ = detǫ
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2.2Prove thatJ
′

3 =
1
3eijejkeki can be expressed as

J
′

3 =
1
3(e3

1 + e
3
2 + e

3
3)

2.3The displacement field for a deformed body is given by

ui = k(x2
1, 2x1x2, 2x1x3)

wherek is a constant.

a) Determine the strain tensorǫij.

b) At the point (1, 2, 3) determine the tensorial shear strainand the engineer-
ing shear strain between the two directions defined by the orthogonal vectors
(3, 4, 0) and (13, −1

4, 1
4). Determine also the normal strain in the direction of (3,

4, 0).

c) At the point (1, 4, 0) determine the principal strains and the corresponding prin-
cipal directions.

2.4The original cartesianxi-coordinate system is rotated an angleα about thex3-axis
to get a newx

′

i-coordinate system, see figure.

x1

x2

x′1

x′2

α

x3x′3

The relation between thexi- and thex
′

i-coordinate system can be written in matrix
form as

x = ATx
′

In this particular case, we have

AT
=





cosα − sinα 0
sinα cosα 0

0 0 1





a) Since the strain tensorǫij is a second-order tensor, the componentsǫij in the
xi-coordinate system and the corresponding componentsǫ

′

ij in thex
′

i-coordinate
system are related to each other by

ǫ
′

kl = AkiǫijAlj or ǫ
′
= AǫAT
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Suppose thatǫij is given by

[ǫij] =
10−4

2





5 10 0
10 5 0
0 0 −6





Calculate the components ofǫ
′

ij.

b) From the result in a), calculate theǫ
′

ij-components when the angleα is chosen
asα=45o. Comment upon the result.

2.5 If the strain tensorǫij is given as

[ǫij] =
10−4

2





5 10 0
10 5 0
0 0 −6





a) Determine the principal strains and the corresponding principal directions.

b) Compare the result in a) with the result in problem2.4b) and comment upon the
result.

3. STRESS TENSOR

3.1The deviatoric stress tensorsij is defined by

sij = σij −
1
3
δijσkk

Show that the principal directions forsij andσij coincide.

3.2 Using tensor notation, Hooke’s law for general isotropic elastic behaviour can be
written as

ǫij =
1+ ν

E
σij −

ν

E
σkkδij (1)

whereE = Young’s modulus andν = Poisson’s ratio.

a) Do the principal directions forǫij andσij coincide or not? Prove your statement.

b) Using matrix notation, Eqn (1) can be written asǫ = Cσ where

ǫT = (ǫ11, ǫ22, ǫ33, 2ǫ12, 2ǫ13, 2ǫ23)

σT = (σ11, σ22, σ33, σ12, σ13, σ23)

Determine the matrixC.

5



3.3The original cartesianxi-coordinate system is rotated an angleα about thex3-axis
to get a newx

′

i-coordinate system, see figure.

x1

x2

x′1

x′2

α

x3x′3

The relation between thexi- and thex
′

i-coordinate system can be written in matrix
form as

x = ATx
′

In this particular case, we have

AT
=





cosα − sinα 0
sinα cosα 0

0 0 1





a) Since the stress tensorσij is a second-order tensor, the componentsσij in the
xi-coordinate system and the corresponding componentsσ

′

ij in thex
′

i-coordinate
system are related to each other by

[σ
′

kl] = AkiσijAlj or σ
′
= AσAT

Suppose thatσij is given by

[σij] =





5 10 0
10 5 0
0 0 −6





Calculate the components ofσ
′

ij.

b) From the result in a), calculate theσ
′

ij-components when the angleα is chosen
asα=45o. Comment upon the result.

3.4 If σij is given as

[σij] =





5 10 0
10 5 0
0 0 −6




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a) Determine the principal stresses and the corresponding principal directions.

b) Compare the result in a) with the result in problem3.3b) and comment upon the
result.

3.5 Assume that the coordinate system is colinear with the principal directions of the
stress tensor.

a) Determine the traction vectort on the surface, where the outer normal unit vector
n is given bynT = (1, 1, 1)/

√
3.

b) The component oft alongn is called the normal stressσn and the component
of t along the surface is called the shear stressτn. For this particular choice of
coordinate system andn-vector the following notation is often employed:

σn = σo = octahedral normal stress.

τn = τo = octahedral shear stress.

Show that

τ2
n = τ2

o =
2
3
J2 where J2 =

1
2
tr(s2) =

1
2
sijsji

σn = σo =
1
3
I1 where I1 = trσ = σkk

3.6A circular disk without any holes and made of an arbitrary material is loaded along
the circular boundary by a uniform radial pressurep1 > 0.

a) Prove that all boundary conditions and equilibrium conditions are fulfilled by
the following stress state

σ11 = σ22 = −p1 σ33 = σ12 = σ13 = σ23 = 0

where thex1- andx2-axes are located in the disk plane.

b) Prove that the stress state given above is not a proper stress state, if there also
exists a circular hole in the center of the disk loaded by a uniform radial pressure
p2 > 0, unlessp2 = p1.

3.7At a point the following stress state is given

σ11 = σ22 = σ12 = σ13 = σ23 = p and σ33 = 0

a) By hand-calculations, determine the principal stressesand directions and check
that the principal directions are orthogonal.
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b) Same as a), but now use CALFEM or another program; compare the results.

c) The original coordinate system is given by thexi-coordinates. A newx
′

i-coordinate
system is chosen to be colinear with the principal directions. The relation be-
tween the new and old coordinates can be written asx

′
= Ax. DetermineA and

show that for the particularA-matrix in question, we haveATA = I, i.e.A is an
orthogonal matrix (this is a generalproperty ofA).

d) Demonstrate by inspection that theσ-matrix given above fulfils Cayley-Hamilton’s
theorem.

3.8 In the xi-coordinate system an arbitrary stress matrixσ is given. A newx
′

i-
coordinate system is chosen, so that the unit vectors along the x

′

1-, x
′

2- andx
′

3-axes
are given by the components

[

1 1 0
]

/
√

2,
[

−1 1 0
]

/
√

2 and
[

0 0 1
]

,
respectively, in the old coordinate system.
Determine the stress matrixσ

′
in the new coordinate system, which corresponds toσ

in the old coordinate system.

3.9For the unit vectorn and the parameterk, we can define a stress tensorσ given by

σ = knnT

Show that this stress tensor corresponds to pure tension in the directionn.

3.10A stress tensor is given by

σ =





σ11 2 1
2 0 2
1 2 0





Determineσ11 so that a section will exist on which the traction vectort is zero. Deter-
mine a unit vector normal to that section.

4. HYPER–ELASTICITY

4.1Prove the following relations

∂Ĩ1

∂ǫij
= δij ,

∂Ĩ2

∂ǫij
= ǫij ,

∂Ĩ3

∂ǫij
= ǫikǫkj

4.2Determine the results of the partial derivatives

∂I1

∂σij
,

∂J2

∂σij
,

∂J3

∂σij
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4.3LetDijkl be given by

Dijkl = 2G

[

1
2

(δikδjl + δilδjk) +
ν

1− 2ν
δijδkl

]

Show thatσij = Dijklǫkl then implies

σij = 2G
[

ǫij +
ν

1− 2ν
δijǫkk

]

Demonstrate also thatDijkl fulfils the symmetry propertiesDijkl = Djikl,Dijkl = Dijlk

andDijkl = Dklij.

4.4For linear isotropic elasticity we have

Dijkl = 2G

[

1
2

(δikδjl + δilδjk) +
ν

1− 2ν
δijδkl

]

and

Cijkl =
1

2G

[

1
2

(δikδjl + δilδjk) −
ν

1+ ν
δijδkl

]

Show that these expressions fulfil the equation

DijmnCmnkl =
1
2

(δikδjl + δilδjk)

4.5We haveǫij = Cijkl σkl. Multiply with Dpqij and show that we obtainσij = Dijkl ǫkl.

4.6 We haveσij = Dijkl ǫkl. Write this equation in matrix formσ = Dǫ and identify
all terms. For isotropic elasticity show thatD is given by

D =
E

(1+ν)(1−2ν)

















1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1

2(1−2ν) 0 0
0 0 0 0 1

2(1−2ν) 0
0 0 0 0 0 1

2(1−2ν)

















4.7Use superposition of simple loading situations to show thatthe strain-stress relation
for an isotropic material can be written as

ǫ =
1
E

















1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1+ν) 0 0
0 0 0 0 2(1+ν) 0
0 0 0 0 0 2(1+ν)

















σ
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Hint, to obtain the relations between shear strains and stresses use can be made of
Mohr’s circles of stress and strain.

4.8 For a general isotropic hyper-elastic material the strain energy can be written in
term of the strain invariants, i.e.

W = W (Ĩ1, Ĩ2, Ĩ3)

where

Ĩ1 = ǫkk, Ĩ2 =
1
2
ǫijǫji, Ĩ3 =

1
3
ǫikǫkjǫji

a) Determine the strain-stress relation based on

σij =
∂W

∂ǫij

b) Based on a) and that

∂W

∂Ĩ1

= λǫkk

determine that fourth-order tensorDs
ijkl given by

σij = Ds
ijklǫkl

c) Derive the incremental relation

dσij = Dt
ijkldǫkl where Dt

ijkl =
∂2W

∂ǫij∂ǫkl

and identifyDt
ijkl. Assume that

∂W

∂Ĩ2

and
∂W

∂Ĩ3

are constants

d) In a uniaxial loading situation, i.e. in aσ − ǫ-graph, identifyDs andDt (the cor-
responding uniaxial quantities). No calculations are necessary, a graphical illus-
tration is sufficient.

4.9The strain energy can be written asW =
1
2σijǫij. Show that it also can be written

asW =
1
2σ

Tǫ = 1
2ǫ

Tσ.

4.10A hyper-elastic material is assumed to possess the following complementary en-
ergy

C = aJ2 + bI1J2 (1)

wherea andb are constants.
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a) Derive the constitutive relationǫij = ǫij(σkl).

b) For uniaxial tension, the stress-strain behaviour as experienced in the laboratory
can be approximated by

ǫ = 10−4σ + 10−5σ2

whereσ is measured in MPa. Determine the parametersa andb in (1).

c) For loading in pure shear whereτ = 100 MPa calculate the corresponding strains.

d) For the load defined in c), determine the volumetric strainǫkk and compare with
the volumetric strain for a linear elastic isotropic material.

4.11 Using two perpendicular symmetry planes show that the general (orthotropic)
hyper-elastic stress-strain relation can be written as

σ =

















D11 D12 D13 0 0 0
D21 D22 D23 0 0 0
D31 D32 D33 0 0 0
0 0 0 D44 0 0
0 0 0 0 D55 0
0 0 0 0 0 D66

















ǫ

What will the use of a third symmetry plane yield?

4.12 Similar to (4.7), use simple loading and engineering definitions for the elastic
moduli that the othotropic strain-stress relation can be written as

ǫ =



















1
Ex

− νyx

Ey
− νzx
Ez

0 0 0
− νxy

Ex

1
Ey

− νzy

Ez
0 0 0

− νxz
Ex

− νyz

Ey

1
Ez

0 0 0
0 0 0 1

Gxy
0 0

0 0 0 0 1
Gxz

0
0 0 0 0 0 1

Gyz



















σ

Give also a physical interpretation of the elastic constants, as well as, assuming hyper-
elasticity comment upon the symmertry reqirements.

4.13Derive the constitutive matrixD corresponding to plane stress for an orthotropic
material.
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5. CAUCHY - ELASTICITY

5.1Consider isotropic hyper-elasticity. The most general format of the complementary
energyC is then given by

C = C(I1, J2, J3) (1)

a) Derive the most general hyper-elasticity formatǫij = ǫij(σkl).

b) Write the most general non-linear Hooke formulation for hyper-elasticity ex-
pressed in terms of the non-linear parametersG andK. CanG andK depend on
J3?

c) Consider isotropic Cauchy-elasticity. What is the most general Cauchy-elasticity
formatǫij = ǫij(σkl)?

d) Write the most general non-linear Hooke formulation for Cauchy-elasticity ex-
pressed in terms of the nonlinear parametersG andK. CanG andK depend on
J3?

e) For which materials are the influence ofJ3 important?

f) For nonlinear elasticity, what is the difference in response during loading and
unloading? Which materials behave like nonlinear elasticity during unloading?

6. REPRESENTATION THEOREMS

6.1Prove by inspection that

ǫ = α1I + α2σ + α3σ
2

satisfies the conditions of coordinate invariance and isotropy.

6.2Write in index notation the tensor generatorsG1. . .G8 given by

G1 = I ; G2 = N ; G3 = N
2 ; G4 = P ; G5 = P

2

G6 = NP + PN ; G7 = N
2P + PN2 ;

G8 = NP
2
+ P 2N

6.3 Derive the constitutive relation for the Maxwell model and the Kevin model and
determine the responses for a sudden applied load for the uniaxial loading situation.
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7. HYPO - ELASTICITY

7.1Equation

σ̇ij = β1ǫ̇kkδij + β2ǫ̇ij + β3ǫ̇kkσij + β4σmnǫ̇mnδij
+β5(σik ǫ̇kj + ǫ̇ikσkj) + β6ǫ̇mmσikσkj + β7σmnǫ̇nmσij
+β8σlmσmnǫ̇nlδij + β9(σikσklǫ̇lj + ǫ̇ikσklσlj)
+β10σmnǫ̇nmσikσkj + β11σlmσmnǫ̇nlσij
+β12σlmσmnǫ̇nlσikσkj

may be written as ˙σij = Dijstǫ̇st. Determine the tensorDijst.

8. FAILURE AND INITIAL YIELD CRITERIA

8.1For the stress tensorσij given by:

















3
2

−
1

2
√

2
−

1

2
√

2

−
1

2
√

2

11
4

−
5
4

−
1

2
√

2
−

5
4

11
4

















MPa

a) Find the principal stresses and the corresponding principal directions.

b) Find the deviatoric stress tensor,sij, and the principal deviatoric stressess1, s2

ands3.

c) Determine the deviatoric stress invariantsJ1, J2 andJ3.

8.2Answer the following questions and explain the answer.

a) If s1 > s2 > s3, cans3 be equal to zero?

b) CanJ2 be negative?

c) CanJ3 be positive?

8.3 Show that subtracting a hydrostatic stress from a given state of stress does not
change the principal directions.

8.4The stress state at a point is given by

[σij] =





30 45 60
45 20 50
60 50 10



MPa
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Determine the stress invariantsI1, J2, J3 and the Lode angleθ.

8.5 A metal yields when the maximum shear stress,τmax, reaches the value of 125
MPa. A material element of this metal is subjected to a biaxial state of stress:

σ1 = σ ; σ2 = ασ ; σ3 = 0

whereα is a constant andσ is positive. For what values of (σ, α) will yielding occur?

8.6For biaxial stress states and adopting the Tresca criterion, draw the yield curve in
theσ1σ2-coordinate system. Note that in this coordinate system, the usual convention
of σ1 ≥ σ2 ≥ σ3 is abandoned.

8.7A metal yields at a state of plane stress with

σ11 = 80 MPa, σ22 = 40 MPa, σ12 = 80 MPa

Assume isotropy, independence of hydrostatic pressure, and equality of properties
for reversed loading (for instance, that tension and compression gives the same yield
stress).

a) Derive other biaxial states of stress at yield in the (σ1, σ2)-space using the above
informations.

b) Plot the result in part a) in the (σ1, σ2)-space and estimate the yield stress in
axial tension and in simple shear, respectively, and give limits of possible error
of your estimate, based on convexity.

c) Determine the yield stresses in b), based on the von Mises criterion and the
Tresca criterion, respectively.

8.8 A long circular steel tube having a mean diameter of 254 mm and3.2 mm wall
thickness is subjected to an internal pressure of 4.83 MPa. The ends of the tube are
closed. The yield stress of the steel is 227 MPa. Find the additional axial tensile load
F which is needed to cause yielding of the tube, based on the vonMises criterion and
the Tresca criterion, respectively.

8.9a) The Coulomb failure criterion can be written as (assumek > 1)

kσ1 − σ3 = σc (1)

whereσ1 ≥ σ2 ≥ σ3 are the principal stresses (tension is considered as positive)
For plane stress conditions and considering only principalstresses show the failure
curve corresponding to (1) in theσ1σ2-coordinate system (where the conventionσ1 ≥
σ2 ≥ σ3 now is abandoned). Express the uniaxial tensile strength interms ofσc andk.
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8.10 A simple torsion test of certain material, using a hollow cylinder specimen as
shown in the figure, shows that the load-deflection curve is linear for a shearing stress
below 125 MPa and that at the stress 125 MPa yielding occurs. If the von Mises yield
criterion is adopted, what is the expected value of the tensile stress at which yielding
occur in a tension test specimen as shown in the figure?

3 in.

0.05 in.

1 in.

1
2 in. 2 in.

Shear test Tension test

8.11A closed-ended thin-walled tube of thicknesst and mean radiusr is subjected to
an axial tensile forceF , which is less than the valueFo necessary to cause yielding. If
a gradually increasing internal pressurep is now applied, show that the tube will yield
according to the Tresca criterion when

pr

tσy0
=















1 when
F

Fo
≤

1
2

2(1− F
Fo

) when
F

Fo
≥

1
2

and according to the von Mises criterion when

pr

tσy0
=

2
√

3

√

1− (
F

Fo
)2

8.12Given the yield stressesσt andσc in uniaxial tension and compression, respec-
tively, find the yield stress in shear resulting from the following yield criteria: a)
Coulomb, b) Drucker-Prager, c) von Mises and d) Tresca.

8.13Show that for a state of plane stress withσ11 = σ, σ12 = τ andσ22 = 0, both the
Tresca and von Mises yield criterion can be expressed in the form

(
σ

σyo
)2
+ (

τ

τy0
)2

= 1

How isσy0 andτy0 related for the Tresca and the von Mises criterion, respectively?
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8.14The initial yield criterion of Drucker-Prager is defined by

f =

√

3J2 + αI1 − β = 0

whereα andβ are parameters and

J2 =
1
2
sijsij sij = σij −

1
3
δijσkk I1 = σkk

Consider the stress state

[σij] =





σ τ 0
τ 0 0
0 0 0





a) Assume that loading takes place such thatτ = σ. Calculate the value ofσ for which
yielding starts. Bothσ > 0 andσ < 0 should be considered.

b) In the meridian plane,
√

3J2 − I1, draw the shape of the Drucker-Prager yield
criterion and the loading paths given byτ = σ. Bothσ > 0 andσ < 0 should be
considered.

c) In the deviatoric plane illustrate the shape of the Drucker-Prager yield criterion and
the loading path given byσ = 0 andτ 6= 0. (one path is sufficient). Hint: the
angle is given by

cos(3θ) =
3
√

3
2

J3

J
3/2
2

where J3 =
1
3
sikskjsji

8.15von Mises isotropic criterion can be written as

sijPijklskl − 1 = 0 or sTPs − 1 = 0

where

Pijkl =
3

4σ2
yo

(δikδjl + δilδjk)

Derive the matrixP corresponding toPijkl. Next, use thatsii = 0 to derive an alterna-
tive format of the von Mises isotropic criterion, i.e.

sT P̂ s − 1 = 0 where P̂ 6= P

8.16Show that
σTPσ − 1 = 0
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for the special choice

P =

















F +G −F −G 0 0 0
−F F +H −H 0 0 0
−G −H G +H 0 0 0

0 0 0 2L 0 0
0 0 0 0 2M 0
0 0 0 0 0 2N

















can be written as
sTPs − 1 = 0

8.17Derive the general format ofP andq in

σTPσ − qTσ − 1 = 0

if orthotropy and pressure independent response is assumed. How may independent
parameters does the model have?

8.18The von Mises criterion for orthotropy can be written asσTPσ − 1 = 0 where

P =

















A −F −G 0 0 0
−F B −H 0 0 0
−G −H C 0 0 0

0 0 0 2L 0 0
0 0 0 0 2M 0
0 0 0 0 0 2N

















Establish (imagined) test methods such that all parameterscan be determined.

9. INTRODUCTION TO PLASTICITY THEORY

9.1Let the effective plastic strain rate ˙ǫ
p

eff and the effective stressσeff be defined by

ǫ̇
p

eff = (
2
3
ǫ̇
p

ij ǫ̇
p

ij)
1/2 ; σeff = (

3
2
sij sij)

1/2

Show that we then have the convenient properties thatσeff = σ holds for uniaxial
tension and that ˙ǫpeff = ǫ̇p holds for uniaxial tension if plastic incompressibility isas-
sumed.

9.2A von Mises material is considered. For isotropic hardening, we have

f = (
3
2
sijsij)

1/2 − σy = 0

17



whereas kinematic hardening is given by

f = [
3
2

(sij − αdij)(sij − α
d
ij)]

1/2 − σy0 = 0

For associated plasticity, derive expressions for ˙ǫ
p

ij.

9.3 Ideal plasticity according to the following criteria is considered:

a) the von Mises yield criterion:
√

3J2 − σyo = 0

b) the Tresca yield criterion:σ1 − σ3 − σyo = 0 ; σ1 ≥ σ2 ≥ σ3

c) the Drucker - Prager criterion:
√

3J2 + αI1 − β = 0

d) the Coulomb criterion:kσ1 − σ3 − σy0 = 0 ; σ1 ≥ σ2 ≥ σ3

A material element is subjected to proportional loading. The principal stresses are
given by (2σ, σ, 0) whereσ is an increasing stress value. Find the magnitude ofσ

where the material begins to yield. Adopting the associatedflow rule, find also the
plastic strain rate ˙ǫpij at onset of yielding expressed in terms of the plastic multiplier λ̇.
If the effective plastic strain rate ˙ǫ

p

eff is defined as ˙ǫpeff = (2
3 ǫ̇

p

ijǫ̇
p

ij)
1/2, how isλ̇ related

to ǫ̇peff?

9.4The same problem as 9.3, but for the principal stresses (σ, σ, 0) and only consid-
ering the von Mises and the Drucker-Prager criteria. When considering the Tresca and
the Coulomb criteria, what problem is encountered if you should determine ˙ǫpij?

9.5 Isotropic hardening of a von Mises material is given by

f (σij , K) =
√

3J2 − σyo −K(κ) = 0 (1)

where

J2 =
1
2
sklskl ; skl = σkl −

1
3
δklσpp

andσyo is the initial yield stress in tension. The current yield stressσy is then given by

σy(κ) = σyo +K(κ)

i.e. (1) takes the form
f =

√

3J2 − σy(κ) = 0 (2)

The associated flow rule provides

ǫ̇
p

ij = λ̇
∂f

∂σij
; λ̇ ≥ 0 (3)

18



The effective plastic strain rate is defined by

ǫ̇
p

eff = (
2
3
ǫ̇
p

ijǫ̇
p

ij)
1/2 (4)

Strain hardening is assumed, i.e. the following evolution law forκ is assumed

κ̇ = ǫ̇
p

eff

a) Based on (2) and (3) determine the explicit form of the plastic strain rate, i.e. ˙ǫpij.

b) From the definition (4) prove that we have

ǫ̇
p

eff = λ̇ (5)

c) Consider uniaxial tension where

[σij] =





σ 0 0
0 0 0
0 0 0



 (6)

For this stress state prove that yielding requires that

σ = σy(ǫ
p

eff )

d) For the stress state defined by (6), identify the expression

ǫ̇
p

ij = λ̇



 ?
3× 3





Denote ˙ǫp by ǫ̇p = ǫ̇
p

11 and show that in the present case, we have

ǫ̇
p

eff = ǫ̇p

9.6The initial yield stress isσy0 and during uniaxial tension in the plastic regime, we
havedσ/dǫp = H whereH is a constant (i.e. linear hardening). Investigate isotropic
hardening of a von Mises material. Associated plasticity isadopted. Calculate the
resulting elastic and plastic strains at point C for the loadhistories:

a) load path ABC

b) load path ADC

c) proportial loading, i.e. load path AC

d) calculate the curveσeff = σeff (ǫpeff ) for the three load cases mentioned above
and comment upon the result.
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σ

τ

σyo√
3

(σyo,
σyo√

3
)

σyo
A

B C

D

Note:
∫

x2 dx
a+bx2 =

x
b
− a

b
1√
ab

arctanx
√
ab
a

10. GENERAL PLASTICITY THEORY

10.1Write all nesessary equations to establish ˙σij = D
ep

ijklǫ̇kl.

10.2The interpretation of the plastic modulus in the uniaxial case is shown in the figure
below.

σ
H>0

H=0

H<0

ε

Show that this is true for all plasticity models.

12. COMMON PLASTICITY MODELS

12.1From σ̇ij = D
ep

ijklǫ̇kl where

D
ep

ijkl = Dijkl −
9G2

A
sijskl

and

Dijkl = 2G[
1
2

(δikδjl + δilδjk) +
ν

1− 2ν
δijδkl]
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derive the corresponding matrix format, i.e.σ̇ = Depǫ̇.

12.2 a) Derive the plane strain formula ofσ̇ = Depǫ̇ in (12.1). b) Determine also the
expression for the out-of-plane stress rates ˙σ13, σ̇23 andσ̇33.

12.3Using the von Mises model with the initial yield stressσy◦, the following loading
test is conducted:

(σ, τ) = (0, 0) → (2σy◦, 0) → (0, 2σy◦) → (2σy◦, 2σy◦)

Assuming that the behaviour of this material follows the isotropic hardening rule, draw
the initial yield surface and the subsequent yield surfacesin theσ− τ space at the ends
of the loading paths. Note that in each loading step, the loadis varied proportionally.

12.4Show how i) the isotropic and ii) the kinematic von Mises bilinear model behaves
in uniaxial loading when
a) the stress is cycled 4 times betweenσo and -σo.

σyo

σo

ǫ

σ

b) the strain is cycled 4 times betweenǫo and -ǫo

ǫyo ǫo
ǫ

σ

12.5Using the Drucker-Prager criterion as the yield functionf (σij, K), and the von
Mises criterion as the plastic potential functiong(σ,K) in

ǫ̇
p

ij = λ̇
∂g

∂σij
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derive the expression for the scalarλ̇.

15. SOLUTION OF GLOBAL EQUATIONS

15.1Euler forward scheme and Newton-Raphson equilibrium iterations.
Consider a bar with constant areaA and lengthL.
No body forces act on the bar.

x L

A

The equilibrium condition states that

d

dx
(Aσ) = 0 (1)

a) Show that the weak form of (1) is given by
∫L

0

dv

dx
Aσdx = [vAσ]L0 (2)

wherev is an arbitrary weight function.

b) The axial displacementu = u(x) (measured positive in thex-direction) is approxi-
mated by

u = Na

i.e. the axial strainǫ = ǫ(x) becomes

ǫ = Ba where B =
dN

dx

Use the Galerkin method to express the equilibrium condition (2) as

ψ = [NTAσ]L0 − A
∫L

0
BTσdx ; ψ = 0 (3)

c) As indicated, the behaviour of the bar is approximated by one linear finite element.
The figure shows the nodal displacementsu1 andu2 as well as the external forcesF1

andF2 acting on the nodal points.
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u1 u2

F1 F2

x L

Show that the equilibrium condition (3) then takes the form

ψ =

[

F1

F2

]

−
A

L

[

−1
1

] ∫L

0
σdx ; ψ = 0 (4)

d) The behaviour of the material is assumed to be given by the constitutive equation

σ̇ = Eepǫ̇ (5)

where

Eep
= E(1− 2αǫ) (6)

andE is Young’s modulus whereasα is a dimensionless positive parameter. With this
material model show that the incremental form of (4) takes the form

AEep

L

[

1 −1
−1 1

] [

u̇1

u̇2

]

=

[

Ḟ1

Ḟ2

]

(7)

(Hint: how doesǫ vary along the bar?; how doesEep vary along the bar?)

e)

1 2

The boundary conditions are given by

u1 = 0 ; F2 prescribed (8)

Show that the part of the incremental formulation (7) that isof interest becomes

AEep

L
u̇2 = Ḟ2 (9)
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Discuss how and (7) and (9) are related to (13.23).
Likewise, show that the part of the equilibrium condition (4) that is of interest becomes

ψ = F2 − Aσ ; ψ = 0 (10)

Discuss how (4) and (10) are related to (13.15) and (13.16).

f) With the definitions

K =
AEep

L
; a = u2 ; f = F2 (11)

the incremental formulation (9) can be written

Kȧ = ḟ (12)

whereas the equilibrium condition (10) takes the form

ψ = f − Aσ ; ψ = 0 (13)

We assumeα = 102.

g) Using the Euler forward scheme, determine the result for two load stepsf1 =

10−3AE andf2 = 2 · 10−3AE.
(Result:a1 = 10−3L; a2 = 2.25 · 10−3L).

h) Determine the correct response by integrating (5) exactly.
(Result:a1 = 1.127· 10−3L ; a2 = 2.764· 10−3L).

i) Using the Newton-Raphson approach with 3 equilibrium iterations in each load step
obtain the response (4 digits-calculations).
(Result:a1

1 = 10−3L, a2
1 = 1.125· 10−3L, a3

1 =1.127· 10−3L

a1
2 = 2.418· 10−3L, a2

2 = 2.741· 10−3L, a3
2 =2.765· 10−3L).

j ) Show the results of g), h) and i) in a figure and comment upon the results.

16 INTEGRATION OF ELASTO-PLASTIC CONSTI-
TUTIVE EQUATIONS

16.1For the plane stress case the von Mises yield surface can be expressed in terms of
principal stresses as

f = σe − σy0 =
[

σ2
1 + σ

2
2 − σ1σ2

]1/2 − σy0
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The contact stateγc, i.e. where the stress path intersect with the yield surfacecan be
determined from the condition

f =
[

(σc1)2
+ (σc2) + σ

c
1σ

c
2

]1/2 − σy0 = 0

where
σcij = σnij + γ

cDijkl∆ǫkl

Determine the contact state for the data below

σnT = [σ11 σ22 σ33 σ21] = [180 − 40 0 0]

∆ǫT = [∆ǫ11 ∆ǫ22 ∆ǫ33 2∆ǫ21] = [0.001 0.001 0 0]

E = 210GPa ν = 0 σy0 = 240MPa

Hint: Whenν = 0 the relationσij = Dijklǫkl reduces toσij = Eǫij.

16.2Consider the yield function for an von Mises elastic-ideal plastic material material
under plane stress condition

f = σe − σy0 =
[

σ2
1 + σ

2
2 − σ1σ2

]1/2 − σy0

a) Expresṡλ in terms of the strain rate ˙ǫij using the consistency conditioṅf = 0.
b) Integrate the the constitutive equations using one forward Euler step and one fourth-
order RK step, for the scheme given in the text book, for the strain increment used in
(16.1).

16.3For the plane stress case the von Mises yield surface can be expressed in terms of
principal stresses as

f = σe − σy0 =
[

σ2
1 + σ

2
2 − σ1σ2

]1/2 − σy0

Calculate the updated state for the data in task (16.1) usingthe backward Euler method

a) Calculate the trial stress, i.e. the updated state for elastic loading.
b) Express the the updated state in terms of∆λ.
c) Calculate∆λ using the yield condition,f = 0, at the updated state.
d) Calculate the updated state,σn+1, and compare the result with the result obtained
from task (16.2).
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ANSWERS

1.2

a)

AT
=





cosα − sinα 0
sinα cosα 0

0 0 1





2.3

a)

ǫ = k





2x1 x2 x3

x2 2x1 0
x3 0 2x1





b) Point (1,2,3)⇒ ǫ = k





2 2 3
2 2 0
3 0 2





nT =
1
5

[3 4 0] ; mT
=

1
√

34
[4 − 3 3]

ǫnn =
98
25
k

ǫnm =
41

5
√

34
k ; γnm = 2ǫnm

c) Point (1,4,0)⇒ ǫ = k





2 4 0
4 2 0
0 0 2





ǫ1 = 6k ⇒ nT1 =
1√
2
[1 1 0]

ǫ2 = 2k ⇒ nT2 = [0 0 1]

ǫ3 = −2k ⇒ nT3 =
1√
2
[1 − 1 0]
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2.4

a)

ǫ
′
=

10−4

2











5+ 20 cosα sinα 10(cos2 α − sin2 α) 0

10(cos2 α − sin2 α) 5− 20 cos2 α sinα 0

0 0 −6











b)

ǫ
′
=

10−4

2





15 0 0
0 −5 0
0 0 −6





i.e. a principal strain state.

2.5

a)

ǫ1 =
10−4

2 15 nT1 =
1√
2

[1 1 0]

ǫ2 = −10−4

2 5 nT2 =
1√
2

[1 − 1 0]

ǫ3 = −10−4

2 6 nT3 = [0 0 1]

3.2

a) they coincide

b)

C =
1
E

















1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1+ν) 0 0
0 0 0 0 2(1+ν) 0
0 0 0 0 0 2(1+ν)
















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3.3The factor1
210−4 is to be excluded in the answer to2.4.

3.4The factor1
210−4 is to be excluded in the answer to2.5.

3.5

a)

t = σn =
1
√

3





σ1

σ2

σ3





b)

σn = n
T t =

1
3
I1

τ2
n = t

T t − σ2
n =

1
3

(s2
1 + s

2
2 + s

2
3) =

1
3
sijsij =

2
3
J2

3.7

a)

σ1 = p(1+
√

3) ⇒ nT1 =
1√

3+
√

3

[

1+
√

3
2

1+
√

3
2 1

]

σ2 = 0 ⇒ nT2 =
1√
2

[1 − 1 0]

σ3 = p(1−
√

3) ⇒ nT3 =
1√

3−
√

3

[

1−
√

3
2

1−
√

3
2 1

]

nT1n2 = n
T
1n3 = n

T
2n3 = 0

b)

AT
=
[

n1 n2 n3

]

n1, n2 andn3 given in a).

c) Cayley-Hamilton equation:−σ3 + θ1σ
2 − θ2σ − θ3I = 0 fulfilled with θ1 = 2p,

θ2 = −2p2, θ3 = 0
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3.8

σ
′
=

















σ11 + σ22

2
+ σ12

σ22 − σ11

2
σ13 + σ23√

2
σ22 − σ11

2
σ11 + σ22

2
− σ12

σ23 − σ13√
2

σ31 + σ32√
2

σ32 − σ31√
2

σ33

















3.10

σ11 = 2 nT =
2
3

[

1 −
1
2

− 1

]

4.10

a)

ǫij =
∂C

∂σij
= (a + bI1)sij + bJ2δij

b) a = 3
210−4 (1/MPa) b = 10−5 (1/(MPa)2)

c)

[ǫij] =





bτ2 aτ 0
aτ bτ2 0
0 0 bτ2





d) ǫkk = 3bτ2 = 0.3 (ǫkk)linear elastic= 0

7.1Useǫ̇kk = δstǫ̇st andσmnǫ̇mn = σstǫ̇st. Moreover, use ˙ǫij = 1
2(δisδjt+δitδjs)ǫ̇st (where

also the right-hand side is symmetric ini andj). Some manipulations will show that
σ̇ij = Dijstǫ̇st where

Dijst = β1δijδst +
1
2β2(δisδjt + δitδjs) + β3σijδst + β4δijσst

+
1
2β5(σisδjt + σitδjs + σtjδis + σsjδit)

+β6σikσkjδst + β7σijσst +
1
2β8δij(σtmσms + σsmσmt)

+
1
2β9[σik(σksδjt + σktδjs) + σlj(σtlδis + σslδit)]

+β10σikσkjσst +
1
2β11σij(σtmσms + σsmσmt)

+
1
2β12σikσkj(σtmσms + σsmσmt)
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8.1

a) σ1 = 4 MPa,n1 = (0, 1√
2
, - 1√

2
)

σ2 = 2 MPa,n2= ( 1√
2
, -1

2, -1
2)

σ3 = 1 MPa,n3= ( 1√
2
, 1

2, 1
2)

b) s1 =5/3 MPa,s2 = -1/3 MPa,s3 = -4/3 MPa

c) J1 = 0, J2 = 7/3 (MPa)2, J3 = 20/27 (MPa)3

8.4I1 = 60 MPa,J2 = 8 225 (MPa)2, J3 = 265 250 (MPa)3, θ = 7.5o

8.5

σ =























2τmax for 0 ≤ α ≤ 1

2
α
τmax for α > 1

2
1− α

τmax for α < 0

8.6See Fig.8.32

8.7

a) The following (σ1, σ2)-points are found

1)(142.5,−22.5) 2)(−22.5, 142.5) 3)(−142.5, 22.5) 4)(22.5,−142.5)
5)(−165,−142.5) 6)(−142.5,−165) 7)(165, 142.5) 8)(142.5, 165)
9)(165, 22.5) 10)(22.5, 165) 11)(−165,−22.5) 12)(−22.5,−165)

1) from measurements, 2) changeσ1 andσ2 (isotropy), 3) reverse the loading,
4) isotropy, 5) add hydrostatic pressure -142.5 to 1), and soon.

b) From 1) and 9) and convexity 154 MPa≤ σyo whereas 8) and 9) and convexity
givesσy0≤ 165 MPa, i.e. 154 MPa≤ σy0 ≤ 165. Likewise, 2) and 3) as well as
2) and 10) gives 83 MPa≤ τyo ≤ 103 MPa

c) von Mises:σyo = 155 MPa,τyo =89.5 MPa
Tresca:σyo =165 MPa,τyo =82.5 MPa

8.8von Mises:F = 395 kN, Tresca:F = 335 kN

8.9See Fig.8.25,σt = σc
1
k

8.10σyo = 216 MPa
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8.12

a) τyo =
σtσc

σt + σc

b) τyo =
2
√

3

σtσc

σt + σc

c) τyo =
σt√
3

d) τyo =
σt

2

8.13Trescaτy0 = σy0/2, von Misesτy0 = σy0/
√

3

9.2 Isotropic hardening: ˙ǫpij = λ̇
3sij
2σy

; kinematic hardening: ˙ǫpij = λ̇
3(sij−αij )

2σy0

9.3

a) σ = σyo/
√

3

ǫ̇
p

ij = λ̇

√
3

2





1 0 0
0 0 0
0 0 −1



 ; λ̇ = ǫ̇
p

eff

b) σ = σyo/2

ǫ̇
p

ij = λ̇





1 0 0
0 0 0
0 0 −1



 ; λ̇ =

√
3

2
ǫ̇
p

eff

c) σ = β/(3α +
√

3)

ǫ̇
p

ij = λ̇





√
3

2 + α 0 0
0 α 0
0 0 −

√
3

2 + α



 ; λ̇ =
ǫ̇
p

eff
√

1+ 2α2

d) σ = σyo/(2 k)

ǫ̇
p

ij = λ̇





k 0 0
0 0 0
0 0 −1



 ; λ̇ =
ǫ̇
p

eff
√

2
3(k2 + 1)

9.4
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a) σ = σyo

ǫ̇
p

ij = λ̇





1
2 0 0
0 1

2 0
0 0 −1



 ; λ̇ = ǫ̇
p

eff

b) σ = β/(1+2α)

ǫ̇
p

ij = λ̇





1
2 + α 0 0

0 1
2 + α 0

0 0 −1+ α



 ; λ̇ =
ǫ̇
p

eff
√

1+ 2α2

For the criteria of Tresca and Coulomb, we obtain the situation shown in Fig.9.30.
This is dealt with byKoiter’s flow rule, not treated in the course.

9.6Everywhereǫp13 = ǫ
p

23 = 0 andǫp22 = ǫ
p

33 = −ǫp11/2.
Irrespective of the load path, at point C

ǫe11 =
σy0

E
; ǫe12 =

σy0

2
√

3G

ǫe22 = ǫe33 = −νǫe11 ; ǫe13 = ǫe23 = 0

a) Load path AB is purely elastic; plasticity is intiated at point B.
Load path B→ C

ǫ
p

11 =
σy0

H
(1−

π

4
) ; ǫ

p

12 =
σy0

H

√
3

4
ln 2

b) Load path AD is purely elastic; plasticity is initiated atpoint D.
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c) Proportional loading

σ = kσy0 ; τ =
1
√

3
kσy0

where 0≤ k ≤ 1. Yielding is initiated whenk = 1/
√

2, i.e. plasticity occurs
when 1/

√
2 ≤ k ≤ 1.
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d) The same curveσeff = σeff (ǫpeff ) is obtained for all the load cases a), b) and c).
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