Formelsamling i hallfasthetslara

Spanningar och tojningar

Spanningstensorns komponenter (0, 0y, 0%, Tyz, Taz, Tay)
definieras av f6ljande samband

Sg = 0Ny + ToyMy + TazNz,
Sy = TayNg + OyTly + TyzNz, (1)
Sz = TzzNg + TyzTly + 02Nz,

dér (S, Sy, S:) ar kraft per ytenhet som verkar pa en god-
tycklig plan yta med normalvektorn (ng, ny, n,).

Tojningstensorns komponenter (eg,¢ey, €5, %’yyz, %’ym, %%y)
definieras av
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82 y Yoy = aiy + %a
dér u, v och w ar forskjutningar i respektive x-, y- och z-led.

Tojningen med tojningskomponenterna
1 1 1 . . ..
(€x,Eys €2, 5Vy2s 3V2z> 57Vay) OCh spénningen med spéin-
ningkomponenterna (o4, 0y, 0., Tys, Tazs Toy) 4 tensorer. P&
matrisform skrivs tensorerna for spanningar och tojningar
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Matrisernas egenviarden &r huvudspanningar resp.  hu-
vudtdjningar.  Motsvarande egenvektorer &ar huvudspéan-

ningsriktningar resp. huvudtdjningsriktningar. Spénning-
stensorn och téjningstensorn har identiska riktningar.

Lat {sz, Sy, Sz, tyz, taz, tay} vara en tensor. Tensorns egen-
viarden s = s1,89 och s = s3 ar rotter till ekvationen

Sy — 8 tey tos
toy  Sy—s ty. |=0. (3)
[ ty S, — S

Egenvektorerna (v, vy, 1) ges av sambanden
($g — 8)Vg + tayvy + tysv, =0,

toyVs + (Sy — S)vy + b1, =0, (4)
tosVa + tyavy + (52 — 8)v, =0,

for s = s1, so respektive ss.

Tensortransformation i z-y planet

o
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For tensorn (s, Sy, ty) transformeras i koordinatsystemet a'-
y’ enligt foljande

s = s,cos? 0 + Sy sin? 6 + 2t4y sin 6 cos 0,

s; = s, sin?0 4+ Sy cos? 6 — 2ty sinf cos b, (5)

thy = 2572 sin 20 + t,y cos 26,

Vinkeln mellan z-axlen och z’-axeln ar 6. Extremvirden for
normalkomponenterna s, tillika tensorns egenvérden ar

81ZM+R7 SQZMfR (6)
2 2
och maximal skjuvkomponent ges av
tmae = R
2
dir R =/ (25%) + 2,

Vinkeln o mellan z-axeln och normalvektorn for huvudpla-
nen, ges av

1 2t
o = arctan <xy> . (7)

Sz — Sy

Maximala skjuvkomponenter erhalls i riktningarna

B=ats (8)

Tva effektivspanningar anviands for att bedéma risken for
plasticering. Effektivspanning enligt von Mises hypotes (de-
viationsarbeteshypotesen) definieras av

Oe = %\/(01 —02)*+ (01 —03)> + (02 — 03)> =

— 2 2 2 _ _ _ 2 2 2
=4/0;z t 0y + 0 — 0,0y — 0,0, —0y0, + 375, + 377, + 37

(9)
Effekktivspanning enligt Trescas hypotes (skjuvspdnninghy-
potesen) definieras av

0. = max(|oy — o3|, |01 — 03], |02 — 03]). (10)



Konstitutiva samband

Sambandet mellan spédnningar och téjningar hos isotropa lin-
jara elastiska material ges av Hookes generaliserad lag:
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€z = E [0 — V(Uy +02)], Vyz = aTyz,
1 1
Ey = E [Uy - V(UI + O-Z)} y Yoz = ETzz, (11)
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€y, = E [Uz - V(O';E +O'y)], ’YTy = aTry’
eller
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Speciallt vid plan spénning géller 0, = 7., = 7. = 0 och

E
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E
oy = =) ley +veg], (13)
Toy = G'Ya:ya

och vid plan deformation géller €, = v, = v, = 0 och
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Materialparametrarna FE &ar elasticitetsmodulen och v &r

tviarkontraktionstalet eller Poissons tal. Skjuvmodulen
definieras som G = 2(17]11,)

For visko-elastiska material vid enaxlig belastning ges ett
samband mellan t6jning £ och spénning o och deras tids-
derivator ¢, &, &, €, etc. Enkla element som kan inkluderas i
en viskoelastisk modell ar linjér elasticitet

Lmi

€

o= Fe (15)
dar F ar en elastisk modul och linjéar viskositet
o i o
_i% i
5
oc=né (16)

dar n ar en viskocitetsparameter. Modellerna anvands i kom-
bination for att simulera mer komplicerade konstitutiva sam-
band.

Enaxlig dragning

Belastning
T,=N, T.=0, M,=M,=0 (17)
Spanningar
o=y, (18)
Differentialekvation
% <EAZZ) +X=0 (19)

dér X ar palagd utbredd kroppskraft i z-led per lingdenhet.
Forlangning av en homogen stang med ldngden L och for
X =0 ar

FL
6= —. 20
o (20)
Vridning
Belastning
T,=1T.=0, M,=M,, M,=0, (21)

dar M, ar ett vridande moment.



Spéanningar i cylindriska ror

M, | M|
— T Tmaz =
K’ W,

Tro (22)
dar K vridstyvhetens tvarsnittsfaktor och W, &r vridmot-
standet.

For ett cylindriskt ror med ytterdiametern D och innerdiam-
etern d géller att K = J5(D* — d*) och W, = 175 (D* — d*).
Ett kvadratiskt tvirsnitt med sidlangden a ar ger K =
0.141a* och W, = 0.208a3.

For enkelt sammanhéngande tunnviggiga tvérsnitt med
varierande vaggtjocklek, t(s), dar s ar en koordinat lings
viiggen, ir K = % [3(s)ds. Sammansatta trimlor med kon-
stanta tjocklekar ¢; och langderna s; berdknas som en summa
K = 1> t}s;. Summeringen utfors for alla strimlor. Vrid-
motstandet &r i bada fallen W, = K /tpq,. HAr ar ¢4, ar
den storsta vaggtjockleken.

En tunnviggig halsektion har K = 4A4%/ [$(1/t(s))ds]. Sym-
bolen ¢ betyder att integrationen foretas lings koordinaten
s, varvet runt. Halets yta &r A. Om véiggen bestar av strim-
lor med konstanta tjocklekar ¢; och respektive langder s;
blir K = 4A2/[> (s;/t;)]. Vridmotstdndet &r i bada fallen
Wy = 2Atin , dar t,, ar den minsta viggtjockleken.

Fig. a) Enkelt ssammanhéngade sektion. b) halsektion.

Differentialekvation
dM de
- = d M=GK-— 2
. +H =0 me G In’ (23)

dar H ar palagt utbrett moment per langdenhet. Forvridning
av en homogen stang med lingden L och med H = 0 &r

M,L
GK

o= . (24)

Bojning

Belastning

T, =0, T,=T, M,=0, M,=M,, (25)

dar T ar tvarkraft ocn M, ar béjande moment. Den enda
férekommande normalspénningen ges av

| M|

b
0y = —2, med Opar =

(26)

z-koordinaten utgar fran medellinjen, dvs den linje som bildas
av tyngdpunkten i varje tvérsnitt.

Om tvirkraften T # 0 forekommer &ven skjuvspanningar. I
ett rektangulédrt tvarsnitt ar dessa

6T h

2
= (z—2)2 2
To: = 5(2 = 3) (27)
Jamviktsamband vid bojning
aT dMy
=—— och T=——. 2
e dz ¢ dz (28)

dér g ar utbredd last i z-led per ldngdenhet ldngs balken.

Differentialekvationen for bojning (elastiska linjens ekvation)
skrivs )
d*w
My, =—-FI—. 29
=Bt (20)

Losta exempel for speciella randvillkor

Belastningsfall 1

Belastningsfall 2
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R, =aPl, Ry =(1—«a)P¢,
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0, = %aﬁ(l +8),6(8) = 557
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Belastningsfall 3
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00 = 2&221’ 5(8) = 2%[;“1 [5 - 26 + 54] :
Tvarsnittsdata
Beteckning Amm?] [,[mm*] W,mm? I,[mm?] W,[m?]
HE140A 31.4 1030 155 389 56
180 7.58 77.8 19.5 6.29 3.00
USP200 32.2 1910 191 148 27,0
T-profil 50 5.66 12.1 3.36 6.06 2.42

Rektangulart tvirsnitt med héjden b och och bredden b: I, =

3 2 =
%, Wy, = % runt en axel som &r parallell med kanterna med

léngden b och som gar genom tvérsnittets tyngdpunkt.

Cirkulédrt tvarsnitt med diametern D och med koncentriskt

hal med diametern d: I, = & (D*—d*), W, = & L4 pung

en axel som gar genom tvéarsnittets tyngdpunkt.

Materialtabeller

Ref. Bodelind och Persson.

Material EkN/mm?] v[-] plkg/m3]
stal 2101 0.3 7800
hoglegerat 206 0.3 7880
rostfritt 220 0.3 7710
aluminium 70 0.34 2700
duraluminium 72 0.32 2800
koppar 120 0.35 8900
volfram 360 0.17 19300
magnesium 45 0.33 1730

Stalkvalitéer E[kN/mm?] v[-] 204N/mm?]
SS1550-01 205 0.3 260
$52090-04 206 0.3 1300
S552172-00 205 0.3 310
S52331-43 206 0.3 980

IElasticitetsmodulen fér stal varierar mellan 180 och 240
kN/mm?.

2Variationer beroende p& materialets volym férekommer.



